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Abstract 

 
     This paper presents an approximate method to solve unconstrained optimal control 

problem (OCP).This method is classified as a direct method in which an OCP is 

converted into a mathematical programming problem.The proposed direct method is 

employed by using the state parameterization technique with the aid of Laguerre 

polynomials and Laguerre functions to approximate the system state variables. To 

facilitate the computations within this method, new properties their proofs of Laguerre 

polynomials and Laguerre functions are given with proof.Furthermore, we will derive 

the condition under which the proposed method with Laguerre functions converges to 

the solution of the OCP equation. We will also show that for N (the number of basis 

functions) sufficiently large, the approximate states stabilize the system.The proposed 

method has been applied on several numerical examples and we find that it gives better 

or comparable results compared with some other methods. 

 

Introduction 
     Optimal control is a special type of the optimization problem and has 

tremendous applications. It deals with the study of systems. The early 

developments of the theories were given by engineers whose systems were 

machines and their interactions were controls. However, nowadays the 

system covers a much wider range, such as the human body or a particular 

system of the human body, a particular industry or even the whole 

economy of a country. )Alonzo & Bryan ,2002, Beeler & Tran,1999, 

Herdman & Morin, 2002, Jankowski,2002(. 

     In order to understand a system, a mathematical equation representing it 

exactly or to a reasonable approximation is written. Usually a system is 

represented by one of the equation: differential, partial-differential, 

integral, integro-differential, difference, stochastic-differential, stochastic-

integral, and such equations are known as models of the system. The 

objective of optimal or an optimal )(tu

 control is to determine an optimal 

open loop control that forces the system to satisfy physical constraints 

),( txu

feedback control   and at the same time minimizes or maximizes a 
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performance index. )Auzinger & Kneisl ,2002 ,Findeisen & Diehl,   

2001(.Systems governed by ordinary differential equations arise in many 

applications as, e.g. , in astronautics, aeronautics, robotics, and economics . 

The task of optimizing these systems leads to the OCP investigated in this 

paper.The general OCP formulation is to find a control vector )(tu  that 

minimize the functional )Hussein, 1998( 

       

ft

t

f dttutxtFtxtutxJ

0

))(),(,())(())(),((                                                 …(1) 

subject to a system of n  differential equations 

      )),(),(()( ttutxftx ii  ,     ni ,2,1     
ftt 0                                         …(2) 

with the boundary conditions   0)),(),0(( ffi ttxxr , nki 2,,2,1    

Here, the l vector of control variables is denoted by T

l tututu ))(,),(()( 1   and 

the n vector of state variables is denoted by T

n txtxtx ))(,),(()( 1  .The 

functions  1: n , nlnf   1: , are assumed to be continuously 

differentiable. The controls ],0[: fi tu , li ,2,1  are assumed to be 

bounded and measurable and  ft  may be finite or infinite. 

    The work throughout this work is concerned with the QOC problems and 

is associated with both finite and infinite time of minimizing a running cost  

or performance index subject to linear  control dynamics.(Binder  & Blank, 

2001). The mathematical formulation of the problems addressed in this 

paper is given by: 

P1:   Finite time horizon linear quadratic optimal control  FLQOC problem, 

where the optimization  index (performance  index) , eqn. (1) ,  is over a 

finite time interval 

 

ft

t

TT dtRuuQxxJ

0

)(                                                                          …(3) 

subject to the linear system state equations   

BuxAx                                                                                          …(4) 

satisfying the initial conditions 

00 )( xtx                                                                                               …(5) 

where nnA  ,  lnB  ,  nx  , lu  , Q  is  nn  positive semi definite 

matrix , ,0QxxT and R  is a  ll    positive definite matrix, 0RuuT  unless  

0)( tu . 
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P2: Infinite time horizon linear  quadratic optimal control  ILQOC 

problem,   where    the   optimization  index , eqn. (3),  is  over an  infinite 

time interval. 

 

The Basic Idea of the Method 
     The direct methods can be applied by using either the discretization or 

the parameterization techniques for : control variables, both state and 

control variables or state variables. Throughout this work, state 

parameterization technique is used. In this technique, Laguerre polynomials 

and Laguerre functions will be used to approximate the solution to the 

finite and infinite OCP respectively. (Marta  & Werner  1995, Oskar &  

Bulirsch,1992). 

     To apply state vector parameterization, it is first necessary to place the 

solution to the differential equation in a Hilbert space. To do so we restrict 

attention to a compact subset  of the stability region of a known 

stabilizing control. When the solutions to the OCP equation are restricted to 

this set, they exist in the Hilbert  space  )(2 DL . 

     To  use the Laguerre polynomials for state vector parameterization of 

finite time horizon  OCP, eqn. (3), on the time interval ],0[ ftt , any time 

function )(ts , ftt 0 , can be approximated by adding a number of 

Laguerre polynomials as follows, 

      





1

0

)()(
N

i

ii tLats                                                                                    … (6) 

So eqn. (6) is a parameterization of the function )(ts , ftt 0 , by Laguerre 

polynomials and 110 ,,, Naaa   are the N parameters called Laguerre 

coefficients. Therefore, 

      





1

0

)()(
N

i

iiN tLatx                                                                                 … (7) 

is called a Laguerre series approximation of )(ts , ftt 0 . 

     The following three properties of Laguerre series will be especially 

useful to solve OCP by means of state parameterization, 

  The recurrence relation       

  )()()( 11 tnLtLntL nnn                                                                        … (8)                                  

       The initial values  

       !)0( nLn                                                                                            … (9) 
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     Integration property  

         
 

x

n
nn

n

xL
xLdttL

0

1

1

)(
)()(                                                             … (10) 

Moreover; an important new formula of Laguerre polynomials is derived in 

this paper. 
 

Lemma (1): 

  The first derivative of Laguerre polynomials )(tLn , is formulated as: 

  1
!

)(
!)(

1

0

 




n
i

tL
ntL

n

i

i
n
                                                               … (11) 

Proof: ) Hussein ,1998( 

The mathematical induction principle is used to prove this lemma. 

eqn. (11) is true for  0n   and  1n  by direct  calculation, 

Since  1)(0 tL   and  1)(1  ttL ,  we have  0)(0 tL   and  
01 )( LtL   . 

Let us assume that eqn. (11) is true for a particular positive integer  kn   , 

i.e., 







1

0 !

)(
!)(

k

i

i
k

i

tL
ktL                                                                           …(12) 

Now, we wish to see that eqn. (12)  is true for   1 kn . Using the 

recurrence relation  (8)  with  1 kn , 

 

                )()1()()1(1 tLktLkL kkk 
  )()()1( tLtLk kk    

                                                           







 





1

0

)()(
!

!
)1(

k

i

ki tLtL
i

k
k  

                                                           )()1()(
!

)!1(
1

0

tLktL
i

k
ki

k

i




 




 

                                                           )(
!

)!1(

0

tL
i

k
i

k

i





  

Hence         )(
!

)!1(
)(

0

1 tL
i

k
tL i

k

i

k 





  

Thus, since  eqn. (11)  is true for  0n   , so it is valid for  ,2,1n  . 

 

Remark 
     This lemma is useful for our computational work because it relates 

Laguerre series approximations of time functions to Laguerre series 

approximations of the time derivatives of these time functions. The idea of 

the state vector parameterization, using the Laguerre  polynomials iL , as a 
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basis functions,   is to approximate the state variables as follows: 

     Approximate the state variables by a finite length Laguerre series, i.e.   

      



N

i

iij

N

jj tLatxtx
0

)()()(  ,   nj ,2,1                                               … (13) 

where saij

,  are the unknown parameters and the stLi

,)(  are functions in 

),(2 baL . 

     The control variables )(tuk , mk ,2,1 , are determined from the 

system state equations as a function of the unknown parameters of the state 

variables. Note that, two cases can be distinguished when applying SVP 

technique. 
 

Case (1): 

     If the numbers of the states and the control variables are equal mn  , 

then each state variable will be approximated by a finite length Laguerre 

series and the control vector is obtained as a function of the state variables 

(13). Therefore, in this case,  the matrix B  in eqn. (4) is assumed to be 

nonsingular, then the control variables can be obtained as: 

       )()()( 1 tAxtxBtu jjk      ;   mnkj  ,2,1,                                    … (14)                           

Then  by substituting eqn.  (13) into eqn. (14), yields: 

      
















 



N

i

iiji

N

i

ijk tLaAtLaBtu
00

1 )()()(                                                          … (15)    

Rewrite )(tLi
 in terms of )(tLi , then reordering eqn. (15) by collecting the 

coefficients of the same )(tLi
, yields:  

      



N

i

iikk tbtu
0

)()(  ,         mnk  ,,2,1                                               … (16) 

where sbi

,  are expressed in terms of sai

, . 

 

Case (2): 

     If the number of the state variables is greater than the number of control 

variables, i.e., mn  , then there is no need to approximate all the state 

variables. In this case, a set of the state variables are approximated which 

will enable us to find the remaining state variables and control variables as 

a functions of this set, so that the quadratic optimal control problem (3)-(5) 

is reduced to a quadratic programming problem with fewer unknown 

parameters. Then the initial conditions (5) are replaced by equating 

constraints as follows: 



 78 

Journal of Kirkuk University –Scientific Studies , vol.1, No.2 ,2006 

 

 

 Since                           



N

i

iijj tLatx
0

)()( ,     nj ,2,1  

Hence,                         



N

i

iijj Lax
0

)0()0(  

or                             0)0()0(
0




j

N

i

iij xLa ,       nj ,2,1                      … (17) 

Eqn. (17) represents the equality constraints. 

By substituting the approximations (13) and (16) of the state  and control 

variables respectively into the performance index (3), we can get the 

approximate performance index value J , so that the LQOC problem (3)-

(5) can be converted into a quadratic function of the unknown parameters 

ija  as follows: 

Rewrite eqns. (13) and (16) in the forms 
Lx      and      Lu   

where              























Nnnn

N

N

aaa

aaa

aaa









10

21202

11101


,              























Nmmm

N

N

bbb

bbb

bbb









10

21202

11101


 

and                     TNLLLL 1̀0 . 

Therefore, the formula of approximate performance index J  is equal to 

                                

ft

TTTT dtRQJ
0

)(   

Let    QV T    and    RW T ,  yields:  

                     

ft

TT dtWVJ
0

)(                                                          … (18) 

The first  term of the integrand in (18) can be written as: 

        

NNNN

NN

NN

NN

T

LLv

LLvLLv

LLvLLvLLv

LLvLLvLLvLLvVLL

1,1

21,32233

11,221231122

01,1201310120011

2

22

222

























                     … (19) 

Also the second term of the integrand in (18) can be written in the same 

way. Now, the QOC problem (3)-(5) is converted into parameters 

optimization problem which is quadratic in the unknown parameters and 

the new problem can be stated as: 

HaaJ T

a 2

1
min 

… (20) 
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  Subject to    

                          0bFa                                                                          …(21) 

The matrix H  can be defined by finding the Hessian of J , 

                   
jkik aa

J
H






2

,       Nji ,2,1,0,                                             …(22) 

where   nk ,2,1   if   mn   and    nqk  ,,2,1    if  mn   . 

The constraints (21) are due to the initial conditions (17).  

 

Remark  
     The state equations which are not satisfied yet are added to the initial 

conditions to represent equality constraints.                                                                  

Finally, the optimal value of the vector a  can be obtained from the 

standard quadratic programming  method discussed  

bFFHFHa TT 111 )(                                                                          

Now to solve the following infinite LQOC Problems using Laguerre 

functions, 

             Minimize              



0

)( dtRuuQxxJ TT                                       …(23) 

           subject to                uBxAx                                                  …(24) 

                                           
0)0( xx                                                          …(25) 

An important new formula of Laguerre polynomials is derived in this 

paper. 
 

Lemma (2): 

     The first  derivatives of Laguerre functions is given by: 

)(
)!(

!
)(

2

1
)(

1

tl
in

n
tltl in

n

i

nn 






  

Proof: 

     Since the   nth   Laguerre  functions  )(tln  is defined by   

                                     )()( 2/ tLetl n

t

n

  

Then differentiating  Laguerre functions with respect to  t , yields 

                     )(
2

1
)()( 2/2/ tLetLetl n

t

n

t

n

  






  )(

2

1
)(2/ tLtLe nn

t                                      

with the aid of lemma (1) , we get 

   
                               








 






1

0

2/ )(
2

1

!

)(
!)(

n

i

n
it

n tL
i

tL
netl 





 
1

0

2/2/

!

)(
!)(

2

1 n

i

it

n

t

i

tL
entLe
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since    




1

0 !

)(n

i

i

i

tL    is equal to    






n

i

in

in

tL

1 )!(

)(  

Then    )(
)!(

!
)(

2

1
)(

1

tl
in

n
tltl in

n

i

nn 






    which is the required result. 

     The algorithm represents the state vector parameterization with the use 

of Laguerre functions which can be summarized as follows: 

   Approximate  the  state  variables  by  using a finite number of basis 

Laguerre functions, such that: 

          If  mn          



N

i

iij

N

jj tlatxtx
0

)()()( ,      nj ,,2,1    

           If  mn          



N

i

iij

N

jj tlatxtx
0

)()()( ,      nqj  ,,2,1     

   Determine the control variables  )(tuk , mk ,,2,1  , such that: 

        If  mn   then use  (16)  to obtain )(tuk  

          
















 



N

i

iiji

N

i

ijk tlaAtlaBtu
00

1 )()()(   

with the aid of the differentiation formula for Laguerre functions which 

was given through lemma (2), we obtain 

          



























  

 




N

i

N

i

iij

i

j

jiiijk tlaAtl
ji

i
tlaBtu

0 01

1 )()(
)!(

!
)(

2

1
)(  

which  can be rewritten as: 

          



N

i

iikk tlbtu
0

)()( ,                 mnk  ,,2,1                                        …(26) 

where sbik

,
 are expressed in terms of  saij

,
. 

   If  mn  , then                         

           



N

i

iikk tlbtu
0

)()( ,    mk ,2,1                   

   Evaluate the two matrices   QV T   and   RW T  ,  then  test for  

     illcondition , that is we compute the condition number of  V  and W ,  
1

22
)(


 VVVcond     and   1

22
)(


 WWWcond  

   Determine   the   two   terms  VllT   and  WllT , then consider the  integral  

    from  0t  to t , such that: 

Since Laguerre functions are orthogonal over  ,0 , i.e., 

 

 











0

2)!(

0
)()(

mnn

mn
dttltl mn
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Hence   



0

1,1

2

44

2

33

2

2211 )!()!3()!2( NN

T vNvvvvVldtl  



N

i

iivi
0

1,1

2)!(                                                                                   

similarly,         


0

WldtlT 



N

i

iiwi
0

1,1

2)!(                                                

    Find an expression of  
J , such that 

                           


 
0

)( dtWllVllJ TT  1,1

0

1,1

2)!( 



  ii

N

i

ii WVi                        …(27) 

   Compute the Hessian for  J  using  (22). 

  Use the initial values of  Laguerre functions to find the equality 

constraints  

                           0)0()0(
0




j

N

i

iij xla ,       nj ,2,1              

since  !)0( ili  , therefore, the equality constraints become 

           0)0(!!3!2 3210  jNjjjjj xaNaaaa  , nj ,2,1                 …(28)   

Eqn. (28) can be rewritten in the form  (21) and thus we can find the 

matrices F and b . 

   Use the standard quadratic programming  method  to find  the optimal 

parameters  ija ;  Ni ,,2,1,0  ;  nqj  ,,2,1  . 

   Find the optimal value  
J  using  eqn. (27). 

 

The Convergence Test 
     In the proposed method, the state vector will be approximated globally, 

over the entire domain of the problem. To do so, we assumes a global 

functional form for the solution, typically an expansion in terms of a set of 

orthogonal functions (basis set) or at least linearly independent set, 

          





1

)()(
k

kiki tatx            ni ,,2,1                                                   …(29) 

It is not possible to perform computations on an infinite number of terms, 

therefore; we must truncate the series in eqn. (29). In place of (29), we take 

         



N

k

kikiN tatx
1

)()(   

so that          )()()()()(
1

trtxtatxtx iiN

Nk

kikiNi  




                                 …(30) 

we must select coefficients in eqn. (30) such that the norm of the residual 

function )(tr  is less than some convergence criterion   , where 

))(,),(),(max()( 21 trtrtrtr N
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     Now we will return to the question of how large N must be later. An 

important of SVP method is that the residual function decreases very 

rapidly. In fact, SVP in general are of infinite order, that is, the norm of the 

residual  )(tr  approaches zero faster than any finite power of    N1 . 

     There is a convergence  test that must be used with SVP method. It is to 

do with the number of terms kept in the basis set N . The most useful test of 

convergence in terms of N comes from examining the 2L  norm of ix , 

ni ,,2,1  (the state variables that is approximated using Laguerre 

functions), i.e.,           

                              iiNi dttxtx 









 2

1

0

2
)()( ,     ni ,,2,1   

Let ),,,max( 21 n  , therefore 

                                









 2

1

0

2
)()( dttxtx N

 

for all N greater than some value 0N . Since we do not know )(tx , we 

replace the presumably better approximation )(tx MN , where 1M  

                                













2

1

0

2
)()( dttxtx NMN
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




















 








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1

0

2

00

)()( dttlatla i
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
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


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
 
 
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1

0
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
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


















 
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
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1
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                              








dttltlaa ji

MN

Ni

MN

Nj

ji )()(
01 1

                                         …(31) 

 

Since Laguerre functions )(tli are orthogonal functions over  ,0 , it can be 

shown that (31) reduces to the simple form 

                             




MN

Nk

kak
1

22)!(  
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     In other words, when the sum of the squares of the remaining 

coefficients becomes negligible, then we have a satisfactory approximation 

to the solution. 

 

Numerical Examples 
 

Example (1): 

    The following finite linear quadratic problem is considered , 

         Minimize        

                               

1

0

22

2

2

1 005.0 dtuxxJ                                        …(32)                     

       Subject to    

                             21 xx                       0)0(1 x                                       …(33) 

                            uxx  22
               1)0(2 x                                    …(34)                        

     The optimal value of the performance in this problem is  06936094.0 . 

This example contains two state variables  )(1 tx  and  )(2 tx  and one control  

variable )(tu , i.e., 2n  and  1m . 

     Here  )(1 tx  is approximated by th5  order Lagueerre series of unknown 

parameters, then )(2 tx  is found from (33) using the differentiation property 

of the Laguerre polynomials that is used. The  control variable )(tu  is 

obtained from (34). By substituting )(1 tx , )(2 tx  and  )(tu  into (32), an 

expression of  J  can be found.  In this approach, the state variables )(1 tx  

and )(2 tx as well as the control variable )(tu  are approximated to be: 

                        



5

0

1 )()(
i

ii tLatx                           

                        

 
 

 

 

)(5

)(204

)(60123

)(1202462

)(1202462)(

45

354

2543

15432

0543212

tLa

tLaa

tLaaa

tLaaaa

tLaaaaatx











 

and 

                 
   

  )(5)(4)(360

)(224024)(1360486)(

4534235

12540543

tLatLatLaa

tLaaatLaaaatu




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Then the expression for J  will be equal to: 

               
5040302010

2

0
3

151
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2

1

3

2
aaaaaaaaaaaJ   
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1
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2

2
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744017
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41899
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1531
aaaaaaa   

                         
5343

2

3
6300

3515917

3500

3855827

7000

892513
aaaaa   

                         
54

2

4
360

9731551

225

567511
aaa   

                         2

5
5544

422309369
a  

 

     Note that, for simplification, ia  is written instead of  1ia , 5,,1,0 i . 

The equality constraints are: 
                 01202462 543210  aaaaaa  

               0160096184 54321  aaaaa  

 

     Comparing the above constraints with the equation 0bFa , we have 

                    












6009618410

120246211
F ,           













1

0
b  

while              Taaaaaaa 543210  

 

     When using quadratic programming method, the optimal parameters are 

obtained : 
 45612945.4563662261.12096044577.10601157449.19 a  T92711047.239072014.64  

 

     The optimal trajectories and the optimal control are: 
 45612945.4563662261.12096044577.10601157449.19)(1 tx

 )(92711047.239072014.64 tLT                                                                 

 0206712.1996936251.4607295833.4346900279.541)(2 tx  )(06355537.14 tLT  

 5628806.25725823985.39218467.18715975254.601)( tu  )(06355537.14 tLT     
                                               
while the optimal value is 60759522088.0J . 

     Also this problem is solved by expanding )(1 tx  into different orders of 

Laguerre series. Table (1) shows the values of the optimal parameters with 

the optimal value  for 7N of   Laguerre series . 
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Table (1) 

Laguerre Parameters of order N=7 

 
 

 

 

 

 

 

 

 

 

   

  This example was solved by (Hsieh,1965) using a modified steepest 

method and by (Neuman &Sen,1973)  using collocation and approximation 

by cubic splines,  while (Hussian ,1998) treated this example by using state 

parameterization with Chebyshev polynomials. These results besides the 

present results are listed in Table (2). 

 

Table (2) 

Optimal values of  J for example (1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

Laguerre Parameters 

1ia  2ia  1ib  

7

6

5

4

3

2

1

0

 

74691657.7

63628795.347

84131792.5735

14607425.43852

47851417.161057

73172890.266391

09351802.163312

28568404.21469









 

0

22841597.54

44723191.1760

97043003.19876

70257687.95900

32781191.95470

80783398.141842

28568404.21469









 

0

22841597.54

81772771.2085

35411059.27052

04957476.146707

39454885.330753

32998393.262217

57136873.42937









 

J  06969730.0  

.appexact JJ   4103636.3   

Source J .appexact JJ   

 Exact value 0.06936094 _ 

 Hsieh [7] 0.0702 8.3906 410  

Neuman&Sen[13]   N=4 

                               N=9 

0.0703 

0.06989 

9.3906 410  

5.2906 410  

Hussian [8]              N=5 

                    N=9 

0.07595646 

0.0693689 

6.5955 310  

7.96 610  

Our Research           N=4 

                         N=5 

                         N=6 

                         N=7 

                         N=8 

                         N=9 

0.09172786 

0.07595221 

0.07098744 

0.06969730 

0.06941721 

0.06936891 

2.2367 210  

6.5913 310  

1.6265 310  

3.3636 410  

5.627 510  

7.97 610  
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Example (2): 

     The algorithm using Laguerre functions is  tested on the following 

infinite nonlinear QOC problem. 

Minimize         

                                    




















0

25.0
5.00

05.0
dtuxxJ T  

subject to       

                                    21 xx                                 1)0(1 x  

                                   uxx 
3

12
                          0)0(2 x  

The linearized system about )0,0(),( 21 xx for this problem is treated using 

Laguerre functions. The parameters ia1 , ia2  and ib1 ; 5,,1,0 i are listed in 

table(3).                                                       

Table (3) 

The Parameters of Laguerre Functions for  N=5 
 

 

 

     

         

 

 

 

 

 

 

 

  In Table (4) a comparison between the computed optimal value obtained 

by using the algorithm with Laguerre functions for different orders. 

 

Table (4) 

Minimum Values of  for  N=2,3,4,5,6 
 

 

 

 

 

 

 

 

i  

                     SVPl              )5( N        

1ia  
2ia      

1ib        

  

5

4

3

2

1

0

 

 

00013807.0

01579266.0

01387732.0

03721944.0

16538476.0

05485473.1









 

 

00006904.0

00164802.0

01736144.0

09151002.0

13754711.0

47257263.0

 

 

 

00003452.0

00116919.0

01665352.0

12175775.0

40379908.0

23628632.0













 

J  86607560.0  

N  SVPl  

6

5

4

3

2

 

86607560.0

86607560.0

86667996.0

87693015.0

96292489.0
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Discussion 

     In this paper, approximate approaches are proposed to solve QOC 

problems for both finite and infinite time performance indices depending 

on Laguerre polynomials and Laguerre functions. The following points can 

be stated : 

  From the numerical results, it  is  clear  that  using  Laguerre basis 

function to approximate the states  will  produce  accurate  solution as  N 

increases and the numerical solution  converges  to  the  correct  optimal  

trajectories  as the length of series increases. 
 

  Since  the  proposed  algorithm depending on Laguerre polynomials  

doesn
'
t  deal  with   the infinite   time   problems,  the  finite  time  version  

of  the   infinite  time problems can be considered, but the infinite  time 

optimal  performance index  can   be   approximated  by   a  finite   time   

optimal  performance index  if  the states )( ftx
and )(ˆ

ftx are near   the  

origin, where  )( ftx   is  the  optimal  state  of the infinite time problem at  

time  ftt    and )(ˆ
ftx is  the optimal state of the finite time  problem  at the 

end time, therefore;  the algorithm depending on Laguerre functions avoids 

the problem  associated  with  the  algorithm using Laguerre polynomials to 

solve all infinite     time    problems with satisfactory results. 

   The main advantages of the proposed algorithms are: 

+  The  OC  problem   is  converted  into  quadratic   programming problem 

with   a few linear  constraints,  which  can  be solved using the standard 

quadratic programming . 

+  The number of unknown parameters is kept as small as possible. 

+ The coefficients ija  and ijb ;  ni ,1,0 , mj ,1,0 decrease rapidly 

as  N  increases. 
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 الطريقة المباشرة لأمثلية المسار باستخدام دوال لاكير

 

 

 الراوي و عبدالسميع الجنابي نجيب سهى،  عمر محمد الفاعور
 الجامعة التكنلوجية

 

 الخلاصة
 

هذا البحث يُقدم طريقة تقريبية لحل مسألة السيطرة المثلى غير المُقيدة. هذه الطريقةة تصنة ك رطريقةة         
رحة أ جةت   مباشرة و التي تحول مسألة السيطرة المثلى الى مسألة البرمجة الرياضية. الطريقة المباشرة المقت

 لة بمساعدة متعددا  حدود لاريةر ودوال لاريةر لتقريةب م ةومةة     باستخدام أسلوب المعلما  لمتغيرا  الحا
. أشتق  و بره   بعض الخواص الجديدة لمتعددا  حدود ودوال لارير لتسهيل الحسابا  فةي  متغيرا  الحالة
ذلك, قد تم أشتقاق شروط الأقتراب للخوارتمية المقترحة لحةل مسةألة السةيطرة     إلى بالإضافةهذه الطريقة. 

 وأعطي   تائج أفضل مقار ة مع طرق أخرى. لةمث  الطريقة المطروحة على بعض الأالمثلى. طبق
 

 


