Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

A direct Approximation Method to solve OCP Using
Laguerre Functions

Abdul Samee A. Al-Janabee , Omar M. Al-Faour and Suha N. Al-Rawi
University of Technology

Abstract

This paper presents an approximate method to solve unconstrained optimal control
problem (OCP).This method is classified as a direct method in which an OCP is
converted into a mathematical programming problem.The proposed direct method is
employed by using the state parameterization technique with the aid of Laguerre
polynomials and Laguerre functions to approximate the system state variables. To
facilitate the computations within this method, new properties their proofs of Laguerre
polynomials and Laguerre functions are given with proof.Furthermore, we will derive
the condition under which the proposed method with Laguerre functions converges to
the solution of the OCP equation. We will also show that for N (the number of basis
functions) sufficiently large, the approximate states stabilize the system.The proposed
method has been applied on several numerical examples and we find that it gives better
or comparable results compared with some other methods.

Introduction

Optimal control is a special type of the optimization problem and has
tremendous applications. It deals with the study of systems. The early
developments of the theories were given by engineers whose systems were
machines and their interactions were controls. However, nowadays the
system covers a much wider range, such as the human body or a particular
system of the human body, a particular industry or even the whole
economy of a country. (Alonzo & Bryan ,2002, Beeler & Tran,1999,
Herdman & Morin, 2002, Jankowski,2002).

In order to understand a system, a mathematical equation representing it
exactly or to a reasonable approximation is written. Usually a system is
represented by one of the equation: differential, partial-differential,
integral, integro-differential, difference, stochastic-differential, stochastic-
integral, and such equations are known as models of the system. The

objective of optimal or an optimal u'(t) control is to determine an optimal
open loop control that forces the system to satisfy physical constraints

u"(x1) feedback control and at the same time minimizes or maximizes a
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performance index. (Auzinger & Kneisl ,2002 ,Findeisen & Diehl,
2001).Systems governed by ordinary differential equations arise in many
applications as, e.g. , in astronautics, aeronautics, robotics, and economics .
The task of optimizing these systems leads to the OCP investigated in this
paper.The general OCP formulation is to find a control vector u(t) that

minimize the functional (Hussein, 1998)

t
J(x(B) u(t)) = d(x(t;)) + j F(t, x(t), u(t))dt ...(1)
t
subject to a system of n differential equations
%(t) = fi(x®.,ut)Y), i-12..n o<t<t, ...(2)
with the boundary conditions r,(x(0),x(t,).t;)=0, i=12,...k<2n
Here, the 1 vector of control variables is denoted by u(t) = (u,(t)....,u, (t))" and
the nvector of state variables is denoted by x(t)=(x,(t),....x, (t))".The

functions o:w™ 5%, f:x"* %", are assumed to be continuously
differentiable. The controls u,:[0,t;]>%R, i=12...1 are assumed to be

bounded and measurable and t, may be finite or infinite.

The work throughout this work is concerned with the QOC problems and
is associated with both finite and infinite time of minimizing a running cost
or performance index subject to linear control dynamics.(Binder & Blank,
2001). The mathematical formulation of the problems addressed in this
paper is given by:

P1: Finite time horizon linear quadratic optimal control FLQOC problem,
where the optimization index (performance index) , eqn. (1), is over a
finite time interval

ty

J :I(XTQX+UTRU)dt ...(3)
to
subject to the linear system state equations
X = Ax+Bu .4
satisfying the initial conditions
X(t,) = X, -..(5)

where Acsi"x®", BeR"xR', xe®R", ueR', Q IS nxn positive semi definite
matrix , x’Qx>0,and R isa IxI positive definite matrix, u"Ru >0 unless
u(t)=0.
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P2:. Infinite time horizon linear quadratic optimal control ILQOC
problem, where the optimization index , eqn. (3), is over an infinite
time interval.

The Basic Idea of the Method

The direct methods can be applied by using either the discretization or
the parameterization techniques for : control variables, both state and
control variables or state variables. Throughout this work, state
parameterization technique is used. In this technique, Laguerre polynomials
and Laguerre functions will be used to approximate the solution to the
finite and infinite OCP respectively. (Marta & Werner 1995, Oskar &
Bulirsch,1992).

To apply state vector parameterization, it is first necessary to place the
solution to the differential equation in a Hilbert space. To do so we restrict
attention to a compact subset Qof the stability region of a known
stabilizing control. When the solutions to the OCP equation are restricted to
this set, they exist in the Hilbert space L,(D).

To use the Laguerre polynomials for state vector parameterization of
finite time horizon OCP, eqn. (3), on the time interval t<[0,t,.], any time

function s(t), 0<t<t., can be approximated by adding a number of
Laguerre polynomials as follows,
s(t) zEaiLi (t) ... (6)

So eqn. (6) is a parameterization of the function s(t), o<t<t,, by Laguerre
polynomials and a,,a,...,a,, are the N parameters called Laguerre
coefficients. Therefore,

X, (t) = Z_O:ai L (t) .. (7

is called a Laguerre series approximation of s(t), o<t<t,.
The following three properties of Laguerre series will be especially
useful to solve OCP by means of state parameterization,
e The recurrence relation
L, () =nL,,(t) - nL, , () .. (8)
e The initial values
L (0)=n! .. (9
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. Integration property
jl_(t)dt L (x)— Loa(X) ... (10)

n+1

Moreover, an important new formula of Laguerre polynomials is derived in
this paper.

Lemma (1):
The first derivative of Laguerre polynomials L, (t), is formulated as:
L(t)——n'ZL(t) n>1 ... (11)

Proof: ( Husseln ,1998)
The mathematical induction principle is used to prove this lemma.
eqgn. (11) istrue for n=0 and n=1 by direct calculation,
Since L,(t)=1 and L (t)=-t+1, we have L, (t)=0 and L (t)=-
Let us assume that egn. (11) is true for a particular positive integer n=k ,
ie.,
: 5 L)
L (t) = —k!;T
Now, we wish to see that egn. (12) is true for n=k+1. Using the
recurrence relation (8) with n=k+1,

..(12)

L = (k+DL )~ (K +DL (0 = (k+D) [L, () - L )]
=(k+1)[ 3K L(t) L (t)}

Z(k+-1) L)

i=0

L ) -kk+1L, (1)

Hence  1,m=-3% o

Thus, since eqn. (li) istrue for n=0 ,soitisvalid for n=12,... .

Remark

This lemma is useful for our computational work because it relates
Laguerre series approximations of time functions to Laguerre series
approximations of the time derivatives of these time functions. The idea of
the state vector parameterization, using the Laguerre polynomials L, as a
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basis functions, is to approximate the state variables as follows:
Approximate the state variables by a finite length Laguerre series, i.e.

xj(t)zx?(t)ziaijLi(t) , j=12,...n ... (13)

where a;s are the unknown parameters and the L(t)s are functions in
L,(a,b).
The control variables u,(t), k=12,...m, are determined from the

system state equations as a function of the unknown parameters of the state
variables. Note that, two cases can be distinguished when applying SVP
technique.

Case (1):

If the numbers of the states and the control variables are equal n=m,
then each state variable will be approximated by a finite length Laguerre
series and the control vector is obtained as a function of the state variables
(13). Therefore, in this case, the matrix B in eqn. (4) is assumed to be
nonsingular, then the control variables can be obtained as:

U (t) =BH%, () - Ax,(t) ; jk=12..n=m .. (14)
Then by substituting eqn. (13) into eqn. (14), yields:
u () = Bl[iaij L (t)—Aiaij L (t)} ... (19)

Rewrite L (t)in terms of L (t), then reordering eqgn. (15) by collecting the
coefficients of the same L, (t), yields:

uk(t)=ZN:bik¢i(t), k=12,...,n=m ... (16)

where b's are expressed in terms of as.

Case (2):

If the number of the state variables is greater than the number of control
variables, i.e., n>m, then there is no need to approximate all the state
variables. In this case, a set of the state variables are approximated which
will enable us to find the remaining state variables and control variables as
a functions of this set, so that the quadratic optimal control problem (3)-(5)
is reduced to a quadratic programming problem with fewer unknown
parameters. Then the initial conditions (5) are replaced by equating
constraints as follows:
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Since X, (t) =iaijLi t), j=12,...n
Hence, x;(0) =iau L, (0)
or iaijLi(O)—xj(O)zo, j=12,...n ... (17)

Eqgn. (17) represents the equality constraints.

By substituting the approximations (13) and (16) of the state and control
variables respectively into the performance index (3), we can get the
approximate performance index value J ™, so that the LQOC problem (3)-
(5) can be converted into a quadratic function of the unknown parameters
a; as follows:

Rewrite eqns. (13) and (16) in the forms
X=aL and u=pL

o1 83 ..o 8y b01 by, ... by
where lan an, .oay, |, by by by,
a=| . : : B= : : :
ag, &, ... Ay, boy by oo Dym
and L Lo L

Therefore, the formula of approximate performance index J* is equal to
J' =}(¢TaTQa¢+¢TﬁT Rpp)dt
Let v-4'Qa and V\(/):,BTRﬁ, yields:
J'= I (¢'Vo+p"Wg)dt ... (18)

The first term of the integrand in (18) can be written as:
L'VL = vy, LoLg + 2y, Lo L, + 2V oLy, + -+ 2V, LoLy
+ VoL +2vy L L, 4o+ 20, L Ly
+ Vaglol, +-- 4+ 2v5 Loy

.. (19)

N+1,N+1LN I—N

Also the second term of the integrand in (18) can be written in the same
way. Now, the QOC problem (3)-(5) is converted into parameters
optimization problem which is quadratic in the unknown parameters and
the new problem can be stated as:

+V

. L1,
;n 2a Ha ... (20)
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Subject to
Fa-b=0 ...(21)
The matrix H can be defined by finding the Hessian of J*,
0°J"
H = i i=
Ganoa, i,j=012,...N ...(22)

where k=12,..n if n=mand k=12....q<n if n>m.
The constraints (21) are due to the initial conditions (17).

Remark

The state equations which are not satisfied yet are added to the initial
conditions to represent equality constraints.
Finally, the optimal value of the vector a* can be obtained from the
standard quadratic programming method discussed

=H?F (FH'F")"b

Now to solve the following infinite LQOC Problems using Laguerre
functions,

Minimize J= ]O(x Qx +uT Ru)dt ...(23)
subject to X = Ax+Bu ...(24)
x(0) = X, ...(25)

An important new formula of Laguerre polynomials is derived in this
paper.

Lemma (2):
The first derivatives of Laguerre functions IS given by:
I, (t ——| t
() ==L~ Z( oy 1 €

Proof:
Since the nth Laguerre functions 1 (t) is defined by

1,(t) =e™"L, (1)
Then differentiating Laguerre functions with respect to t, yields
L0 =", 0 - e L0 = e”{tn 0-1L, (t)}
with the aid of lemma (1) , we get

0 ze_t,{ $L0 1

i-0

L)

L (t)} ~e V7L, (t)—nle™? |

i=0

A€



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

' S L L
since LW s equal to ai ()
= q ;(n—i)!
Then [m=-11m-S_" . hich is the required result.
I, (t) 2In(t) ;(n_i)! I (t) whichl qui u

The algorithm represents the state vector parameterization with the use
of Laguerre functions which can be summarized as follows:

e Approximate the state variables by using a finite number of basis
Laguerre functions, such that:

N
If n=m = x,O~x't)=>3alt), j=12...n
i=0

N
If n>m = x,®O=x}'t)=> L), j=12..q<n
i=0

o Determine the control variables u,(t), k=12,...,m, such that:
If n=m thenuse (16) to obtain u,(t)

0, (t) = B{ia.,l’. (- Aia.,l.(t)}

with the aid of the differentiation formula for Laguerre functions which
was given through lemma (2), we obtain

u, (t) = B-l{i a, [—; I, (t) - 2'7' li; (t)J - Ai ayl; (t)}

= (i)
which can be rewritten as:

uk(t)zzN:bikli(t), k=12,...,n=m ...(26)

where b, 's are expressed in terms of a;'s.
If n>m, then

u, (t) =ibikli(t), k=12,...m

o Evaluate the two matrices V =a'Qa and W =g'Rg , then test for
illcondition , that is we compute the condition number of V and W,

cond (V) =|V[,, IV[,* and  cond (W) =[w], |,

o Determine the two terms I'VI and I"WI, then consider the integral
from t=o0 to t =00, such that:
Since Laguerre functions are orthogonal over [0,«), i.e.,
j I () (t)dt :{
0

0 n#m
(NM)? n=m

Ao
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2 N
Hence J.ITVIdt =y +Vop + (2) Vg + (3D V- + (ND Vg = 2L (D Vi
0 i=0

00 N
similarly, IITWIdt =3 (1) Wi
0 i=0
o Find an expression of J°, such that
o0 N
3= [V WYt = (1) Vgyon + Wy ..(27)
0 i=0

o Compute the Hessian for J* using (22).
e Use the initial values of Laguerre functions to find the equality
constraints

_ZN:aiin(O)_Xj(O):Ol j=12,...n

since 1.(0) =i!, therefore, the equality constraints become
aoj+a1j+2!a2j+3!a3j+---+N!aNj—xj(0)20, j=12,...n ...(28)
Eqgn. (28) can be rewritten in the form (21) and thus we can find the

matrices F and b .
o Use the standard quadratic programming method to find the optimal

parameters &;; i=012...,N; j=12..,q<n.
« Find the optimal value J* using eqgn. (27).

The Convergence Test

In the proposed method, the state vector will be approximated globally,
over the entire domain of the problem. To do so, we assumes a global
functional form for the solution, typically an expansion in terms of a set of
orthogonal functions (basis set) or at least linearly independent set,

X 0= a,4, () i=12,...n ...(29)

It is not possible to perform computations on an infinite number of terms,
therefore; we must truncate the series in eqn. (29). In place of (29), we take

Xiy (1) = Zaik¢k (t)

so that X; (1) = Xy (1) + iaik¢k (t) =X (D) + (1) . -(30)

k=N+1
we must select coefficients in egn. (30) such that the norm of the residual
function ||r(t)| is less than some convergence criterion ¢ , where

r(t) = max(r, (1), ,(t).... 1y (1)

AT
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Now we will return to the question of how large N must be later. An
important of SVP method is that the residual function decreases very
rapidly. In fact, SVP in general are of infinite order, that is, the norm of the
residual |r(t)| approaches zero faster than any finite power of (1/N).

There is a convergence test that must be used with SVP method. It is to
do with the number of terms kept in the basis set N . The most useful test of
convergence in terms of N comes from examining the L* norm of x,

i=12,...,n(the state variables that is approximated using Laguerre
functions), i.e.,

ﬁ(xi (1) — X, (1)) dtT <e, i=12...,n

Let e =max(g,,¢,,....&,), therefore

ﬁ(x(t) —xy (1)) dtT <&

0

for all N greater than some value N,. Since we do not know x(t), we
replace the presumably better approximation x,_,, (t), where M >1

ﬁ Xy (£) = X, (0) dt}<5

= { Eﬂaili(t)—iaili(t)j dt]2<g
= { NiMaJ,(t)j d}

. { N+M )j(N+M (t)jdt} s

N+M N+M

= za,a,jl M1, di<e ...(31)

i=N+1 j=N+1

O — ] ot—3

ot—38

Since Laguerre functions I,(t) are orthogonal functions over [0,«), it can be

shown that (31) reduces to the simple form
N+M

> (k)?a’<e

k=N+1

AY



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

In other words, when the sum of the squares of the remaining

coefficients becomes negligible, then we have a satisfactory approximation
to the solution.

Numerical Examples

Example (1):
The following finite linear quadratic problem is considered ,
Minimize
1
3 = [(x” + %, +0.005u ot ..(32)
0
Subject to
X =X, x(0)=0 ...(33)
X, =—X, +U X,(0) =-1 ...(34)

The optimal value of the performance in this problem is 0.06936094 .
This example contains two state variables x(t) and x,(t) and one control

variable u(t),i.e., n=2and m=1.

Here X, (t) is approximated by 5th order Lagueerre series of unknown
parameters, then x, (t) is found from (33) using the differentiation property
of the Laguerre polynomials that is used. The control variable u(t) is
obtained from (34). By substituting x,(t), x,(t) and u(t) into (32), an
expression of J° can be found. In this approach, the state variables x(t)
and x,(t)as well as the control variable u(t) are approximated to be:

%~ aL

X, (t) ~—|(a, + 2a, + 6a, + 24a, +120a )L, (t)
+(2a, +6a, + 24a, +120a; )L, (t)
+(3a, +12a, +60a )L, (t)
+(4a, +20a )L, (t)
+5a,L, (1)]
and
u(t) = [(6a, +48a, +360a, —al)L, (t) +(24a, + 240a, — 2a, )L, (t)
+(60a —3a, )L, (t) — 4a, Ly (t) - 5a; L, ()]

AA
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Then the expression for J* will be equal to:
. L2 2 1 38 151
J =4, +a0al+§aoa2—anafgaoa‘l—?aoa5

,803 . 2053 427 23957 +731701aia
600 "300 1% 0 A% T 300 MMt 00 A%

1531 , 41899 744017 706891
+ a2 + a2a3 + a2a4 + a2 5
150 600 2625 525
892513 , 3855827 3515917
+ a; + a,a, — a,a;
7000 3500 6300
, 567511, 9731551
225 * 360
422309369
+ a5
5544

4a5

Note that, for simplification, @; is written instead of @;, i=041,...,5.
The equality constraints are:
a, +a, +2a, +6a, + 24a, +120a, =0
—a, —4a, —18a, —96a, —600a, +1=0

Comparing the above constraints with the equation Fa—b =0, we have
(11 2 6 24 120 L_(0
0 -1 -4 -18 -9 -600)’ ‘(-1}

while a=(a, a a a, a, a)"

When using quadratic programming method, the optimal parameters are

obtained :
a=(-19.01157449 106.96044577 —120.63662261 45.45612945 6439072014 2.92711047 )"

The optimal trajectories and the optimal control are:
X, (t) =(—19.01157449 106.96044577 —120.63662261 45.45612945

~64.39072014 2.92711047 )T L(t)
X, (t) = (541.6900279 434.7295833 460.6936251 199.0206712 —14.6355537 0)'L(t)
u(t) = (—601.5975254 —-1871.218467 39.25823985 257.5628806 —14.6355537 0)TL(t)

while the optimal value is J- =0.07595220886.
Also this problem is solved by expanding x,(t) into different orders of

Laguerre series. Table (1) shows the values of the optimal parameters with
the optimal value for N =7 of Laguerre series .
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Table (1)
Laguerre Parameters of order N=7

Laguerre Parameters

I ail ai2 bi1
0 —21469.28568404 | —21469.28568404 | —42937.57136873
1 163312.09351802 141842.80783398 | 262217.32998393
2 —266391.73172890 | —95470.32781191 | —330753.39454885
3 161057.47851417 95900.70257687 146707.04957476
4 —43852.14607425 | —19876.97043003 | —27052.35411059
S 5735.84131792 1760.44723191 2085.81772771
6 —347.63628795 —54.22841597 —54.22841597
7 7.74691657 0 0
J 0.06969730

Jeract = Japp] 3.3636 x107*

This example was solved by (Hsieh,1965) using a modified steepest
method and by (Neuman &Sen,1973) using collocation and approximation
by cubic splines, while (Hussian ,1998) treated this example by using state
parameterization with Chebyshev polynomials. These results besides the

present results are listed in Table (2).

Table (2)
Optimal values of J for example (1)
Source J Jexact — Japp
Exact value 0.06936094 _
Hsieh [7] 0.0702 8.3906 .10+
Neuman&Sen[13] N=4 0.0703 9.3906 10+
N=9 0.06989 5.2906 10
Hussian [8] N=5| 0.07595646 6.5955,10°
N=9 0.0693689 7.96.10°
Our Research N=4 | 0.09172786 2.2367 «10°
N=5| 0.07595221 6.5913,10°
N=6 | 0.07098744 1.6265.10°
N=7 | 0.06969730 3.3636.10¢
N=8 | 0.06941721 5.627 x10°
N=9 | 0.06936891 7.97 10
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Example (2):
The algorithm using Laguerre functions is tested on the following
infinite nonlinear QOC problem.

Minimize
J :I{XT {0(')5 O(.)SJXJFO'SUZ}dt
subject to
X, =X, X (0) =1
X, =% +u x,(0) =0

The linearized system about (x,, x,) = (0,0) for this problem is treated using

Laguerre functions. The parameters a,;,a,; and b, ; i=o0z1...,5are listed in
table(3).
Table (3)
The Parameters of Laguerre Functions for N=5
SVPI (N =5)
| a; aiz bil
0 1.05485473 | —0.47257263 | —0.23628632
1 0.16538476 0.13754711 | —0.40379908
2 —0.03721944 0.09151002 | —0.12175775
3 —0.01387732 0.01736144 | —0.01665352
4 | —0.01579266 0.00164802 | —0.00116919
5 —0.00013807 0.00006904 | —0.00003452
J 0.86607560

In Table (4) a comparison between the computed optimal value obtained
by using the algorithm with Laguerre functions for different orders.

Table (4)
Minimum Values of for N=2,3,4,5,6

SVPI
0.96292489

0.87693015
0.86667996
0.86607560
0.86607560

o 0~ w NZ

N
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Discussion

In this paper, approximate approaches are proposed to solve QOC
problems for both finite and infinite time performance indices depending
on Laguerre polynomials and Laguerre functions. The following points can
be stated :
e From the numerical results, it is clear that using Laguerre basis
function to approximate the states will produce accurate solutionas N
increases and the numerical solution converges to the correct optimal
trajectories as the length of series increases.

e Since the proposed algorithm depending on Laguerre polynomials
doesnt deal with the infinite time problems, the finite time version
of the infinite time problems can be considered, but the infinite time
optimal performance index can be approximated by a finite time

optimal performance index if the states x'(t;)and X(t,)are near the
origin, where x*(t;) is the optimal state of the infinite time problem at

time t=t; and x(t,)is the optimal state of the finite time problem at the

end time, therefore; the algorithm depending on Laguerre functions avoids
the problem associated with the algorithm using Laguerre polynomials to
solve all infinite  time problems with satisfactory results.

The main advantages of the proposed algorithms are:
+ The OC problem is converted into quadratic programming problem
with a few linear constraints, which can be solved using the standard
quadratic programming .
+ The number of unknown parameters is kept as small as possible.

+ The coefficients &; and b;; 1=01...n, j=0.1...mdecrease rapidly
as N increases.
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