ON GENERALIZED ALMOST CONTRA CONTINUOUS FUNCTIONS AND SOME RELATIONS WITH ANOTHER KINDS OF CONTINUITY ON INTUITIONISTIC TOPOLOGICAL SPACES

Yunis J. Yaseen Ali M. Jasim
College of Education - Tikrit University.

ARTICLE INFO

Received: 11 / 1 /2009
Accepted: 25 / 6/2009
Available online: 14/6/2012
DOI: 10.37652/juaps.2010.43890

Keywords:

ALMOST CONTRA CONTINUOUS FUNCTIONS ,
CONTINUITY ON INTUITIONISTIC,
TOPOLOGICAL SPACES.

Abstract

We study in this paper the concept of almost contra continuous functions and generalized them in intuitionistic topological spaces and we studied the relations of each kind of these function by properties, examples and a diagram to summarize these functions. Also we study some relation between almost contra continuous function and some continuous functions.

Introduction;

Almost contra continuous functions were introduced by Joseph and Kwack [4], almost contra pre continuous fun- ction was introduced by Ekici [3]. So we are going generalized them on ITS's.

In this paper we investigate defin-itions of almost contra continuous, almost contra semi continuous, almost contra pre continuous, almost contra α continuous, almost contra θ continuous, almost contra β continuous, almost contra g continuous, almost contra gs continuous, almost contrasg continuous almost contra gp continuous, almost contra pg continuous, almost contra g α continuous, almost contra αg contin- uous, almost contra $\mathrm{g} \beta$ continuous and almost contra $\theta \mathrm{g}$ continuous functions and we show the relations of each kind of these functions by properties and counter examples and we illustrate the result by a diagram and we introduced the definitions of almost semi-regular, almost regular closed,regular irresolute and regular set connected and study the relation among them and almost contra continuous functions.

2.Preliminaries

Let X be anon- where A_{1} and A_{2} are disjoint subset of X. the set ${ }^{A_{1}}$ is called the set of member of A, while ${ }^{A_{2}}$ is called the set of non member of A, an intuitionistic topology (IT, for short) on a non-empty

[^0]set X, is a family T of IS in X containing $\widetilde{\varnothing}, \widetilde{\mathrm{X}}$ and closed under arbitrary unions and finitely intersections. In this case the pair (X, T) is called an intuitionistic topological space (ITS, for short), any IS in T is known as an intuitionistic open set (IOS, for short) in X. The complement of IOS is called intuitionistic closed set (ICS, for short), so the interior and closure of A are denoted by $\operatorname{int}(A)$ and ${ }^{c l(A)}$ respectively and defined by $\operatorname{int}(A)=U\left\{G_{i}: G_{i} \in T\right.$ and $G_{i} \subseteq$
A) and $c(A)=$
$\cap\left\{F_{i}: F_{i}\right.$ is ICS in X and $\left.A \subseteq F_{i}\right\}$
So ${ }^{\operatorname{int}(A)}$ is the largest IOS contained in A , and $\operatorname{cl}(\mathrm{A})$ is the smallest ICS contain A , a set A is called intuitionistic regular-closed set (IRCS, for short) if $\mathrm{A}=\mathrm{clint} A$ intuitionistic ${ }^{\alpha}$-ciosed set ($\mathrm{I}^{\alpha} \mathrm{CS}$, for short) if ${ }^{\text {clintclA }} \subseteq \mathrm{A}$, intuitionistic semi-closed set (ISCS, for short) if intclA \subseteq A, intuitionistic preclosed set (IPCS, for short) if $\operatorname{clintA} \subseteq \mathrm{A}_{\text {,intuitionistic }} \beta_{\text {-closed }}$ set (I ${ }^{\beta} \mathrm{CS}$, for short) if intclintA $\subseteq A$. The complem- ent of IRCS (resp. I^{α} CS, ISCS, IPCS and I^{β} CS) is called intuitionistic regular-open set (resp. intuitionistic ${ }^{\alpha}$ open set, intuitionistic semi-open set, intuitionistic preopen set and intuitionistic ${ }^{\beta}$-open set) in X. (IROS, I^{α} OS, ISOS, IPOS and I ${ }^{\beta}$ OS, for short), A is said to be intuitionistic semi-regular set (ISRS, for short) [6] if A is ISOS and ISCS in X , so A is called
intuitionistic B-set (IBS, for short) [6] if A is the intersection of an IOS and ISCS and A is said to be an intuitionistic ${ }^{\theta}$-closed set (I ${ }^{\theta} \mathrm{CS}$, for short) if $\mathrm{A}=\mathrm{cl}_{6} \mathrm{~A}$
where
$\operatorname{cl}_{0} A=\{x \in X: \operatorname{cl}(U) \cap A \neq \emptyset, U \in$
T and $x \in U\}$.
A is called intuitionistic ${ }^{\theta}$ generalized-closed set (${ }^{\mathrm{I} \theta \mathrm{g}}$ closed for short) if $\mathrm{cl}_{0} \mathrm{~A} \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IOS.

3. Generalized almost contra continuous functions on ITS's.

The definitions of almost contra continuous functions which appears in general topology by [2],[5] and [6], so we generalized them on ITS's.
Definition 3.1. Let (X,T) and (Y, ${ }^{\boldsymbol{\sigma}}$) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be:
An intuitionistic almost contra continuous (I almost contra cont., for short) function if the inverse image of each IROS in Y is ICS in X .
An intuitionistic almost contra semi-continuous (I almost contra semi-cont., for short) function if the inverse image of each IROS in Y is ISCS in X .
An intuitionistic almost contra ${ }^{\alpha}$-continuous (I almost contra ${ }^{\alpha}$-cont., for short) function if the inverse image of each IROS in Y is $\mathrm{I}^{\alpha} \mathrm{CS}$ in X .
An intuitionistic almost contra pre-continuous (I almost contra pre-cont., for short) function if the inverse image of each IROS in Y is IPCS in X .
An intuitionistic almost contra ${ }^{3}$-continuous (I almost contra ${ }^{\beta}$-cont., for short) function if the inverse image of each IROS in Y is $\mathrm{I}^{\beta} \mathrm{CS}$ in X .
An intuitionistic almost contra ${ }^{\theta}$-continuous (I almost contra ${ }^{\theta}$-cont., for short) function if the inverse image of IROS in Y is $I^{\theta} \mathrm{CS}$ in X .
Definition 3.2. Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be an intuitionistic almost contra g-cont. (resp. almost contra gs-cont., almost contra sg-cont., almost contra gpcont., almost contra pg-cont., almost contra g α-cont., almost contra αg-cont., almost contra θ g-cont. and almost contra $\mathrm{g} \beta$-cont. functions if the inverse image of each IROS in Y is Ig-closed (resp. Igs-closed, Isgclosed, Igp-closed, pg-closed, Ig α-closed, I I g-closed, I 日g-closed and $\mathrm{Ig} \beta$-closed) set in X .

Proposition 3.3. Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then:
1- If f is I almost contra cont. function then f is I almost contra g -cont. function.
2- If f is I almost contra θ-cont. function then f is I almost contra cont. function.
3- If f is I almost contra $\theta \mathrm{g}$-cont. function then f is I almost contra g -cont. function.
4- If f is I almost contra cont. function then f is I almost contra α-cont. function.
5- If f is I almost contra θ-cont. function then f is I almost contra $\theta \mathrm{g}$-cont. function.
6 - If f is I almost contra α-cont. function then f is I almost contra semi-cont. function.
7- If f is I almost contra semi-cont. function then f is I almost contra β-cont. function.
8- If f is I almost contra α-cont. function then f is I almost contra pre-cont. function.
9- If f is I almost contra pre-cont. function then f is I almost contra β-cont. function.
10 - If f is I almost contra α-cont. function then f is I almost contra $\mathrm{g} \alpha$-cont. function.
11- If f is I almost contra β-cont. function then f is I almost contra $\mathrm{g} \beta$-cont. function.
12- If f is I almost contra semi-cont. function then f is I almost contra sg-cont. function.
13- If f is I almost contra g -cont. function then f is I almost contra αg-cont. function.
14- If f is I almost contra g -cont. function then f is I almost contra gs-cont. function.
15- If f is I almost contra $\mathrm{g} \alpha$-cont. function then f is I almost contra αg-cont. function.
16- If f is I almost contra sg-cont. function then f is I almost contra gs-cont. function.
17- If f is I almost contra pg-cont. function then f is I almost contra gp-cont. function.
18- If f is I almost contra pre-cont. function then f is I almost contra $\mathrm{g} \beta$-cont. function.
19- If f is I almost contra $\mathrm{g} \alpha$-cont. function then f is I almost contra pre-cont. function.
20- If f is I almost contra $\alpha \mathrm{g}$-cont. function then f is I almost contra gp-cont. function.
21- If f is I almost contra $\alpha \mathrm{g}$-cont. function then f is I almost contra gs-cont. function.
22- If f is I almost contra $\mathrm{g} \alpha$-cont. function then f is I almost contra gs-cont. function.
23- If f is I almost contra gs-cont. function then f is I almost contra $\mathrm{g} \beta$-cont. function.
24- If f is I almost contra gp-cont. function then f is I almost contra $\mathrm{g} \beta$-cont. function.

Proof:

We are give the proof of (21) as example and others can be proved in a similar way.

Let V be IROS in Y then $f^{-1}(V)$ is Iag-closed set in X (since f is I almost contra αg-cont. function). So for each IOS A in X and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \mathrm{A}$ then $\operatorname{acl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{A}$. Now since every IaCS is ISCS then $\operatorname{scl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)=\cap \quad\left\{\mathrm{F}_{\mathrm{i}}: \mathrm{F}_{\mathrm{i}}\right.$ is ISCS and $\left.\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \mathrm{F}_{\mathrm{i}}\right\} \subseteq \alpha \mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$. So we have that for each $\operatorname{IOS} \mathrm{A}$ in X and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \mathrm{A}$ then $\operatorname{scl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{A}$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is Igs-closed set in X and hence f is I almost contra gs-cont. function.

We start with example to show that I almost contra g -cont. is not imply I almost contra cont.
Example 3.4. Let $X=\{a, b, c, d\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C\} \quad$ where
$A=\{x,\{a, b\},\{c\}\rangle, B=$
$\{x,\{a\} ;\{b\})$ and $C=\{x,\{a, b\}, 0\}$
and let
$\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{H}\} \quad$ where
$\mathrm{D}=\langle\mathrm{y},\{1\}, \emptyset\rangle, \mathrm{E}=\langle\mathrm{y},\{2\},\{1,3\}\rangle$,
$F=\langle y,\{1,2\}, \emptyset\rangle$ and $H=\langle y, \emptyset,\{1,3\}\rangle$. Define a function $\quad \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y} \quad$ by
$f(a)=f(c)=1, f(b)=2$ and $f(d)=$
3

$$
\text { ROY }=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{D}\} \quad \text { Now } \quad \text { let }
$$

$G=f^{-1}(D)=\langle x,\{a, c\}, \emptyset\rangle$ then G is Ig-closed set in X since the only IOS containing G is X and $\mathrm{clG}=\mathrm{X} \subseteq \mathrm{X}$ but G is not ICS in X since $\mathrm{G} \neq \mathrm{clG}=\mathrm{X}$. So f is I almost contra g -cont. function but not I almost contra cont. function.
In this example we are going to show I almost contra α-cont. function is not imply I almost contra cont. function
Example 3.5. Let $X=\{a, b, c, d\}$ and let $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C, D\}$ where $\mathrm{A}=$
$(x,\{a, b\},\{c\}\rangle, B=\langle x,\{b, d\},\{a\}\rangle, C=$
($\mathrm{x},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$)
and $\mathrm{D}=(\mathrm{x},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \emptyset\rangle$ and let $\mathrm{Y}=\{1,2,3\}$ and $\sigma=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{E}, \mathrm{F}\} \quad$ where $\quad \mathrm{E}=\langle\mathrm{y}, \emptyset,\{1,2\}\rangle \quad$ and
$\mathrm{F}=\langle\mathrm{y},\{1\},\{2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by
$\mathrm{f}(\mathrm{a})=1$, $f(b)=f(c)=2$ and $f(d)=3$.
ROY $=\{\widetilde{\varnothing}, \widetilde{Y}, F\}$. So let
$G=f^{-1}(E)=\langle x,\{a\},\{b, c\}\rangle$ then G is $I \alpha C S$ set in X since clintcl $\mathrm{G}=\emptyset \subseteq \mathrm{G}$ but G is not ICS in X since
$\mathrm{clG}=\overline{\mathrm{C}} \neq \mathrm{G}$. Then f is I almost contra α-cont. but not I almost contra cont.

The following example shows I almost contra θ gcont. is not imply I almost contra θ-cont.
Example 3.6. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A\}$ where $A=\langle x,\{a, c\},\{b\}\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, B, C\} \quad$ where $B=\langle y,\{1\},\{2\}\rangle \quad$ and $C=\langle y, \emptyset,\{1,2\}\rangle$. Define a function $f: X \rightarrow Y$ by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=1$ and $\mathrm{f}(\mathrm{c})=2 . \quad \mathrm{ROY}=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{B}\}$ Now let $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{C})=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle$ then G is $\mathrm{I} \theta \mathrm{g}$ closed set in X since the only IOS containing G is X and $\mathrm{cl}_{0} \mathrm{G}=\mathrm{X} \subseteq \mathrm{X}$. But G is not $\mathrm{I} \theta \mathrm{CS}$ since $\mathrm{G} \neq \mathrm{cl}_{0} \mathrm{G}=\mathrm{X}$, then f is I almost contra $\theta \mathrm{g}$-cont. function. But f is not I almost contra θ-cont. function.

The next example shows that:

1. I almost contra semi-cont. is not imply I almost contra α-cont.
2. I almost contra semi-cont. is not imply I almost contra pre-cont.
3. I almost contra semi-cont. is not imply I almost contra cont.
Example 3.7. Let $X=\{a, b, c, d\}$ and $T=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}\} \quad$ where $A=\langle\mathrm{x},\{\mathrm{c}\},\{\mathrm{b}\}\rangle$ and $\mathrm{B}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}, \mathrm{b}\}\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $C=\langle y, \emptyset,\{1\}\rangle$ and $D=\langle y,\{2\},\{1\}\rangle$. Define a function $\quad \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=1, f(b)=2$ and $f(c)=3 . \quad R O Y=\{\widetilde{\varnothing}, \widetilde{Y}, C\}$ Now a set $G=f^{-1}(C)=\langle x, \emptyset,\{a\}\rangle$ is ISCS in X since intclG $=\mathrm{B} \subseteq \mathrm{G}$ but G is not $\mathrm{I} \alpha \mathrm{CS}$ (resp. IPCS and ICS) in X since clintclG $=$ clint $G=\mathrm{clG}=\overline{\mathrm{B}} \nsubseteq \mathrm{G}$. So the inverse image of each IROS in Y is ISCS in X . There fore, f is I almost contra semi-cont. function but f is not I almost contra α-cont. (resp. I almost contra pre-cont. and I almost contra cont.) function.

We are going to show that:
1- I almost contra cont. is not imply I almost contra θ-cont.
2- I almost contra cont. is not imply I almost contra θ g-cont.
3- I almost contra g-cont. is not imply I almost contra θ g-cont.
4- I almost contra g-cont. is not imply I almost contra θ-cont.

Example 3.8. Let $X=\{a, b, c\}$
and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C\}$
where
$A=\langle x,\{a\},\{b, c\}\rangle, B=$
$\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle$ and $\mathrm{C}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle$
and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{D}, \mathrm{E}\}$ where $D=\langle y,\{1\},\{2\}\rangle$ and $E=\langle y, \emptyset,\{1,2\}\rangle$. Define a function
$\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=$
2 and $f(c)=1$.
$\mathrm{ROY}=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{D}\} \quad$ Now let
$G=f^{-1}(D)=\langle x,\{c\},\{a, b\}\rangle$, then G is ICS and Igclosed set in X but G is not $I \theta C S$ in X since $\mathrm{cl}_{\theta} \mathrm{G}=\mathrm{X} \nsubseteq \mathrm{G}$ so G is not $\mathrm{I} \theta \mathrm{g}$-closed set since the only IOS containing G in X is C and $\mathrm{cl}_{\theta} \mathrm{G}=\mathrm{X} \nsubseteq \mathrm{C}$. So f is I almost contra cont. function and I almost contra g-cont. function but f is not I almost contra θ cont. function so f is not I almost contra $\theta \mathrm{g}$-cont. function.

The next example shows that:

1. I almost contra pre-cont. is not imply I almost contra α-cont.
2. I almost contra pre-cont. is not imply I almost contra semi-cont.
3. I almost contra pre-cont. is not imply I almost contra cont.
Example 3.9. Let $x=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{a, c\}, \emptyset\rangle, B=\langle x,\{c\},\{b\}\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\sigma}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $\mathrm{C}=\langle\mathrm{y},\{1\},\{3\}\rangle$ and $\mathrm{D}=\langle\mathrm{y}, \emptyset,\{1,3\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=3, \mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=1$. ROY $=\{\widetilde{\varnothing}, \widetilde{Y}, C\}$. Now
$\mathrm{G}=\mathrm{f}^{-1}(\mathrm{C})=\langle\mathrm{x},\{\mathrm{c}\},\{a\}\rangle$, then G is IPCS in X since clintG $=\emptyset \subseteq \mathrm{G}$ but G is not $\mathrm{I} \alpha \mathrm{CS}$ (resp. ISCS and ICS) in X since clintclG $=$ intclG $=\mathrm{clG}=\mathrm{X} \nsubseteq \mathrm{G}$. There fore, f is I almost contra pre-cont. function but f is not I almost contra α-cont. (resp. I almost contra semi-cont. and I almost contra cont.) function.

The following example shows that:

1. I almost contra β-cont. is not imply I almost contra cont.
2. I almost contra β-cont. is not imply I almost contra pre-cont.
3. I almost contra β-cont. is not imply I almost contra semi-cont.
4. I almost contra β-cont. is not imply I almost contra α-cont.

Example 3.10. Let $X=\{a, b, c, d\}$
and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C, D\}$
where
$A=\langle x,\{a\},\{b, c\}\rangle, B=$
$\langle\mathrm{x},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}\}\rangle, \mathrm{C}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \emptyset\rangle$
and $D=\langle x, \emptyset,\{a, b, c\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{E}, \mathrm{F}\} \quad$ where $\mathrm{E}=\langle\mathrm{y},\{2\},\{1\}\rangle$ and $F=\langle y, \emptyset,\{1,2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=f(d)=2, f(b)=1$ and
$f(c)=3 \cdot R O Y=\{\widetilde{\varnothing}, \widetilde{Y}, E\}$. Then a set $G=$ $f^{-1}(E)=\langle x,\{a, d\},\{b\}\rangle$ is $I \beta C S$ in X since intclintG $=\mathrm{A} \subseteq \mathrm{G}$ but G is not ICS (resp. I $\alpha \mathrm{CS}$, IPCS and ISCS) in X since $\mathrm{clG}=$ intclG $=$ clintclG $=\mathrm{X} \nsubseteq \mathrm{G}$ so clintG $=\mathrm{D} \nsubseteq \mathrm{G}$. Then f is I almost contra β-cont. function but f is not I almost contra cont. (resp. I almost contra semi-cont., I almost contra α-cont. and I almost contra pre-cont.) function.

We are going in the following example to show that:

1. I almost contra gs-cont. is not imply I almost contra αg-cont.
2. I almost contra gs-cont. is not imply I almost contra g-cont.
3. I almost contra sg-cont. is not imply I almost contra g-cont.
Example 3.11. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\} \quad$ where $A=\langle x,\{c\},\{a, b\}\rangle, B=\langle x,\{b\},\{c\}\rangle \quad$ and $\mathrm{C}=\langle\mathrm{x},\{\mathrm{b}, \mathrm{c}\}, \emptyset\rangle$ and let $\mathrm{Y}=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{D}, \mathrm{E}\}$ where $\mathrm{D}=\langle\mathrm{y},\{2\},\{3\}\rangle$ and $\mathrm{H}=\langle\mathrm{y}, \emptyset,\{2,3\}\rangle$ Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3 . \quad R O Y=\{\widetilde{\emptyset}, \widetilde{Y}, D\}$ and $\quad \mathrm{SOX}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}\} \quad$ where $E=\langle x,\{c\},\{b\}\rangle \quad$ and $F=\langle x,\{a, b\},\{c\}\rangle$. So $\alpha O X=T$. We have $B=f^{-1}(D)$ is Igs-closed and Isgclosed in X since the only IOS and ISOS in X that containing B are B, C and F so $s c l B=\bar{F}=B$. but B is not Ig-closed set and it's not I α g-closed set in X since the only I $\alpha \mathrm{OS}$ in X containing B is B and C and $\mathrm{clB}=\alpha \mathrm{ClB}=\overline{\mathrm{A}} \nsubseteq \mathrm{B}$ or C . There fore, f is I almost contra gs-cont. (resp. I almost contra sg-cont.) function but not I almost contra αg-cont.(resp. I almost contra g-cont.) function.

The following example shows that:

1. I almost contra gs-cont. is not imply I almost contra ga-cont.
2. I almost contra g-cont. is not imply I almost contra g α-cont.
3. I almost contra α g-cont. is not imply I almost contra g α-cont.
Example 3.12. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C\}$ where
$A=\langle x,\{a\},\{b, c\}\rangle, B=$
$\langle x,\{b\},\{a, c\}\rangle$ and $C=\langle x,\{a, b\},\{c\}\rangle$
and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\emptyset}, \widetilde{Y}, D, E\}$ where $\mathrm{D}=\langle\mathrm{y},\{3\},\{1\}\rangle$ and $\mathrm{E}=\langle\mathrm{y}, \emptyset,\{1,3\}\rangle$. Define a function $f: X \rightarrow Y$
by
$\mathrm{f}(\mathrm{a})=3, \mathrm{f}(\mathrm{b})=1$ and $\mathrm{f}(\mathrm{c})=2 . \quad \mathrm{ROY}=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{D}\}$
and

$$
\mathrm{SOX}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{G}, \mathrm{~K}, \mathrm{I}, \mathrm{~N}, \mathrm{~F}\}
$$

where
$\mathrm{G}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{K}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \mathrm{I}=$
($\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle, \mathrm{N}=$
$\langle x,\{b\},\{a\}\rangle$ and $F=\langle x,\{b, c\},\{a\}\rangle$.
So $\alpha O X=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C, K\}$. We have $G=f^{-1}(D)$ is Ig-closed (resp. Igs-closed, I α g-closed) set in X since the only IOS containing G is X and $\mathrm{clG}=\alpha \mathrm{ClG}=\overline{\mathrm{B}} \subseteq \mathrm{X}$ and $\mathrm{sclG}=\mathrm{N} \subseteq \mathrm{X}$ but G is not Ig α-cosed since $G \subseteq F$ where F is I $\alpha O S$ in X but $\alpha c l G=\overline{\mathrm{B}} \nsubseteq \mathrm{F}$. Then the inverse image of each IROS in Y is Ig-closed (resp. Igs-closed and I α g-closed) set in X. So f is I almost contra g-cont. (resp. I almost contra gs-cont., I almost contra αg-cont.) function but not I almost contra g α-cont. function.

We are going to show I almost contra g α-cont. is not imply I almost contra α-cont.
Example 3.13. Let $X=\{a, b, c, d\} \quad$ and $T=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\}$ where
$A=\langle x,\{b\},\{a, c\}\rangle$ and $B=$
$\langle x,\{a\},\{b, c\}\rangle$ and $C=\langle x,\{a, b\},\{c\}\rangle$
and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, D, E, F, H\}$ where
$\mathrm{D}=\langle\mathrm{y},\{2\},\{1,3\}\rangle, \mathrm{E}=$
$\langle\mathrm{y},\{1,2\}, \emptyset\rangle, \mathrm{F}=\langle\mathrm{y},\{1\}, \emptyset\rangle$ and $\mathrm{H}=$
$\langle y, \emptyset,\{1,3\}\rangle$.
Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=2, \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{c})=1$ and $\mathrm{f}(\mathrm{d})=$
3.
$R O Y=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{F}\} \quad$ and $\quad \alpha O X=\{\widetilde{\emptyset}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{K}\}$ where $K=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle$. So a set $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{~F})=\langle\mathrm{x},\{\mathrm{b}, \mathrm{c}\}, \emptyset\rangle$ is Ig α-closed set in X since the only I $\alpha O S$ containing G is X and $\alpha c l G=X \subseteq X$ but G is not $I \alpha C S$ in X since clintclG $=\mathrm{X} \nsubseteq \mathrm{G}$ then f is I almost contra g α-cont. function but not I almost contra α-cont. function.

The next example shows I almost contra gs-cont. is not imply I almost contra sg-cont.
Example 3.14. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $T=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\} \quad$ where
$A=\langle x,\{c\},\{a, b\}\rangle, B=\langle x,\{a\},\{b, c\}\rangle \quad$ and
$C=\langle x,\{a, c\},\{b\}\rangle$ and let $Y=\{1,2,3\}$ and
$\sigma=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{H}\} \quad$ where
$\mathrm{D}=\langle\mathrm{y},\{2\},\{1,3\}\rangle, \mathrm{E}=$
$\langle\mathrm{y},\{1,2\}, \emptyset\rangle, \mathrm{F}=\langle\mathrm{y}, \emptyset,\{1,3\}\rangle$ and $\mathrm{H}=$ $\langle\mathrm{y},\{1\}, \emptyset\rangle$

Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=2, f(b)=3$ and $f(c)=1 . \quad R O Y=\{\widetilde{\varnothing}, \widetilde{Y}, H\}$ and $\quad \mathrm{SOX}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{I}\} \quad$ where $\mathrm{K}=\langle\mathrm{x},\{\mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{L}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\}, \emptyset\rangle, \mathrm{M}=$ $\langle x,\{b, c\},\{a\}\rangle, N=\langle x,\{a\},\{c\}\rangle$ and $I=$ ($\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle$.
Now let $G=f^{-1}(H)=\langle x,\{c\}, \emptyset\rangle$, then G is Igsclosed set in X since the only IOS containing G is X and $\operatorname{sclG}=X \subseteq X$ but G is not Isg-closed set in X since $\mathrm{G} \subseteq \mathrm{L}$ where L is ISOS in X and $\mathrm{sclG}=\mathrm{X} \nsubseteq \mathrm{L}$. Then the inverse image of each IROS in Y is Igsclosed set in X so f is I almost contra gs-cont. function but not I almost contra sg-cont. function.

The following example shows that I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra gp-cont.
Example 3.15. Let $X=\{a, b, c\}$ and let $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C\}$ where
$A=\langle x,\{a\},\{b, c\}\rangle, B=\langle x,\{b\},\{a, c\}\rangle \quad$ and $\mathrm{C}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle \quad$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{D}, \mathrm{E}\} \quad$ where $\quad \mathrm{D}=\langle\mathrm{y},\{1\},\{2\}\rangle \quad$ and $\mathrm{E}=\langle\mathrm{y}, \emptyset,\{1,2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=1, f(b)=f(c)=2 . \quad R O Y=\{\widetilde{\emptyset}, \widetilde{Y}, D\} \quad$ and $\beta O X=$
$\{\widetilde{\emptyset}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{I}, \mathrm{M}, \mathrm{O}, \mathrm{N}, \mathrm{G}, \mathrm{V}, \mathrm{J}\}$ where

2010,(4), (1) :72-83
$\mathrm{F}=\langle\mathrm{x},\{\mathrm{b}\},\{\mathrm{a}\}\rangle, \mathrm{H}=\langle\mathrm{x},\{\mathrm{b}\},\{\mathrm{c}\}\rangle, \mathrm{K}=$
$\langle\mathrm{x},\{\mathrm{b}\}, \emptyset\rangle, \mathrm{L}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{I}=$
($\mathrm{x},\{\mathrm{a}\},\{\mathrm{c}\}\rangle, \mathrm{M}=\langle\mathrm{x},\{\mathrm{a}\}, \emptyset\rangle, \mathrm{O}=$
($\mathrm{x},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{N}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \mathrm{G}=$
$(\mathrm{x},\{\mathrm{b}, \mathrm{c}\}, \emptyset), \mathrm{V}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle$ and $\mathrm{J}=$ ($\mathrm{x},\{\mathrm{a}, \mathrm{c}\}, \emptyset$).
POX $=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{H}, \mathrm{K}, \mathrm{I}, \mathrm{N}, \mathrm{G}, \mathrm{J}\}$. Now a set $A=f^{-1}(D)$ is $I g B$-closed set in X since A is IOS and $\beta \mathrm{clA}=\mathrm{A}$. But A is not Igp-closed set since $\mathrm{pclA}=0 \nsubseteq \mathrm{~A}$. Then f is I contra $\mathrm{g} \beta$-cont. function since the inverse image of each IROS in Y is $\operatorname{Ig} \beta$ closed set in X . so f is not I contra gp-cont. function.

We are going to show that:

1. I almost contra pre-cont. is not imply I almost contra g α-cont.
2. I almost contra β-cont. is not imply I almost contra sg-cont.
3. I almost contra β-cont. is not imply I almost contra gs-cont.
4. I almost contra gp-cont. is not imply I almost contra sg-cont.
5. I almost contra gp-cont. is not imply I almost contra αg-cont.
6. I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra sg-cont.
7. I almost contra $g \beta$-cont. is not imply I almost contra gs-cont.
Example 3.16. Let $X=\{a, b, c\}$ and let $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{c\},\{b\}\rangle \quad$ and $B=\langle x,\{b, c\}, \emptyset\rangle \quad$ and let $\mathrm{Y}=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $C=\langle y,\{1\},\{2\}\rangle$ and $D=\langle y, \emptyset,\{1,2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=2, \mathrm{f}(\mathrm{b})=3$ and $\mathrm{f}(\mathrm{c})=$
8. $\mathrm{ROY}=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}\}$ and $\beta O X=\mathrm{POX}=$
$\mathrm{T} \cup\left\{\mathrm{K}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{17}$
where
$\mathrm{K}_{1}=\langle\mathrm{x},\{\mathrm{c}\}, \emptyset\rangle, \mathrm{K}_{2}=$
($\mathrm{x},\{\mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{K}_{3}=\langle\mathrm{x},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{K}_{4}=$
($\mathrm{x},\{\mathrm{b}, \mathrm{c}\}, \emptyset\rangle, \mathrm{K}_{5}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle, \mathrm{K}_{6}=$
$(\mathrm{x},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\rangle, \mathrm{K}_{7}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \mathrm{K}_{\mathrm{g}}=$
$(\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle, \mathrm{K}_{\mathrm{g}}=\langle\mathrm{x},\{\mathrm{a}\}, \emptyset\rangle, \mathrm{K}_{10}=$
($\mathrm{x},\{\mathrm{a}\},\{\mathrm{c}\}$),

$$
\begin{align*}
& \mathrm{K}_{11}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{K}_{12}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}, \mathrm{~b}\}\rangle, \\
& \mathrm{K}_{13}=\langle\mathrm{x}, \emptyset,\{\mathrm{~b}\}\rangle, \mathrm{K}_{14}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}\}\rangle, \\
& \mathrm{K}_{15}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\rangle, \mathrm{K}_{16}=\langle\mathrm{x},\{\mathrm{~b}\}, \emptyset\rangle \\
& \text { and } \quad \quad \mathrm{K}_{17}=\langle\mathrm{x},\{\mathrm{~b}\},\{\mathrm{a}\}\rangle . \tag{so}
\end{align*}
$$

$\alpha O X=S O X=T \cup\left\{\mathrm{~K}_{1}, \mathrm{~K}_{5}, \mathrm{~K}_{7}\right\}$ Then a set $\mathrm{K}_{2}=\mathrm{f}^{-1}(\mathrm{C})$ is IPCS (resp. I β CS, Igp-closed set and $\mathrm{Ig} \beta$-closed set) in X since clint $K_{2}=$ intclint $K_{2}=\emptyset \subseteq \mathrm{K}_{2}$, so the only IOS containing K_{2} is B and $\mathrm{pclK}_{2}=\beta \mathrm{clK}_{2}=\mathrm{K}_{2} \subseteq \mathrm{~B}$ but K_{2} is not Igs-closed (resp. Isg-closed, Ig α-closed, Iag-closed) set in X since the only IOS, I $\alpha \mathrm{OS}$ and ISOS containing K_{2} is B and K_{7} so $\alpha c l K_{2}$ $=\operatorname{sclK}_{2}=\mathrm{X} \Phi \mathrm{B}$ or K_{7}. There for, f is I almost contra pre-cont. (resp. I almost contra β-cont, I almost contra $g \beta$-cont. and I almost contra gp-cont.). but f is not I almost contra gs-cont. (resp. I almost contra sgcont., I almost contra g α-cont. and I almost contra αg cont.) function.

The following example shows that:
1- I almost contra gp-cont. is not imply I almost contra pre-cont.
2- I almost contra g-cont. is not imply I almost contra sg-cont.
3- I almost contra gp-cont. is not imply I almost contra sg-cont.
4- I almost contra gp-cont. is not imply I almost contra pg-cont.
5- I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra pre-cont.
6- I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra β-cont.
7- I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra sg-cont.
8- I almost contra $\mathrm{g} \beta$-cont. is not imply I almost contra pg-cont.
Example 3.17. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}\}$ where $A=\langle x,\{b, c\}, \emptyset\rangle$ and $B=\langle x,\{b\},\{c\}\rangle$. and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\} \quad$ where $C=\langle y,\{1\}, \emptyset\rangle, \mathrm{D}=\langle\mathrm{y},\{1,2\}, \emptyset\rangle$,
$E=\langle y,\{2\},\{1,3\}\rangle$ and $F=$
($\mathrm{y}, \emptyset,\{1,3\}$).
Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by
$f(a)=f(b)=1$ and $f(c)=2$.
$R O Y=\{\widetilde{\varnothing}, \widetilde{Y}, C\}, P O X=\beta O X=T U$
$\left\{\mathrm{K}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{17}$
where
$\mathrm{K}_{1}=$
$(\mathrm{x},\{\mathrm{b}\}, \emptyset), \mathrm{K}_{2}=\langle\mathrm{x},\{\mathrm{b}\},\{\mathrm{a}\}\rangle, \mathrm{K}_{3}=$
($\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{K}_{4}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\}, \emptyset\rangle, \mathrm{K}_{5}=$
($\mathrm{x},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{K}_{6}=$
($\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle, \mathrm{K}_{7}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}, \mathrm{c}\}\rangle, \mathrm{K}_{\mathrm{g}}=$
$(\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \mathrm{K}_{\mathrm{g}}=\langle\mathrm{x},\{\mathrm{a}\}, \varnothing\rangle, \mathrm{K}_{10}=$ ($\mathrm{x},\{\mathrm{c}\}, \emptyset$),
$\mathrm{K}_{11}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle, \mathrm{K}_{12}=$
$(\mathrm{x}, \emptyset,\{\mathrm{c}\}\rangle, \mathrm{K}_{13}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\rangle, \mathrm{K}_{14}=$
($\mathrm{x},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\rangle, \mathrm{K}_{15}=$
($\mathrm{x},\{\mathrm{c}\},\{\mathrm{a}\}\rangle, \mathrm{K}_{16}=$
($\mathrm{x},\{\mathrm{a}\},\{\mathrm{c}\}\rangle$) and $\mathrm{K}_{17}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}\}\rangle$.
SOX=TU\{ $\left.\mathrm{K}_{1}, \mathrm{~K}_{6}, \mathrm{~K}_{8}\right\}$ Now a set $\mathrm{K}_{8}=\mathrm{f}^{-1}(\mathrm{C})$ is
Ig-closed (resp. Igp-closed and Ig β-closed) set in X since the only IOS containing K_{8} is X and $\mathrm{clK}_{8}=\mathrm{pclK}_{8}=\mathrm{\beta clK}_{8}=\mathrm{X} \subseteq \mathrm{X}$ but K_{g} is not IPCS (resp, $\mathrm{I} \beta \mathrm{CS}$, Isg-closed set, Ipg-closed) set in X since $\operatorname{clint} \mathrm{K}_{\mathrm{g}}=\operatorname{intclint} \mathrm{K}_{8}=\mathrm{X} \nsubseteq \mathrm{K}_{8}$
$\mathrm{sclK}_{8}=\mathrm{pclK}_{8}=\mathrm{X} \Phi \mathrm{K}_{8}$ Then f is I almost contra g-cont. (resp. I almost contra gp-cont. and I almost contra $\mathrm{g} \beta$-cont.) function but it's not I almost contra pre-cont. (resp. I almost contra β-cont, I almost contra sg -cont. and I almost contra pg-cont.) function.

In the next example we show that I almost contra sg-cont. is not imply I almost contra semi-cont.
Example 3.18. Let $X=\{a, b, c\} \quad$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C\}$ where
$A=\langle x,\{a\},\{b, c\}\rangle, B=$
($\mathrm{x},\{\mathrm{c}\},\{\mathrm{a}\}\rangle$ and $\mathrm{C}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\}, \emptyset\rangle$
and let $\mathrm{Y}=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{H}\}$ where
$\mathrm{D}=\langle\mathrm{y},\{2\},\{1,3\}\rangle, \quad \mathrm{E}=\langle\mathrm{y}, \emptyset,\{1,3\}\rangle$,
$\mathrm{F}=\langle\mathrm{y},\{1,2\}, \emptyset\rangle$ and $\mathrm{H}=\langle\mathrm{y},\{1\}, \emptyset\rangle$. Define a
function $\quad \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by
$\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2$ and $\mathrm{f}(\mathrm{c})=3 . \mathrm{ROY}=\{\widetilde{\varrho}, \widetilde{\mathrm{Y}}, \mathrm{H}\}$, $\operatorname{sOX}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{K}, \mathrm{L}\}$
where
$K=\langle x,\{a\},\{c\}\rangle, L=\langle x,\{b, c\},\{a\}\rangle$. Now let $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{H})=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle$ then G is Isg-closed set in X since the only ISOS containing G is X and $\operatorname{sclG}=X \subseteq X$ but G is not ISCS in X since intclG $=\mathrm{X} \nsubseteq \mathrm{G}$. So the inverse image of each IOS in

Y is Isg-closed set in X and we have f is I almost contra sg-cont. function but not I almost contra semicont. function.

In the last example we show that:
1- I almost contra α g-cont. is not imply I almost contra g-cont.
2- I almost contra g α-cont. is not imply I almost contra g-cont.
Example 3.19. $\operatorname{Let} X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{a, c\},\{b\}\rangle$ and $B=\langle x,\{c\},\{a, b\}\rangle$ and let $Y=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{Y}, C, D\} \quad$ where $\mathrm{C}=\langle\mathrm{x},\{1\},\{2\}\rangle$ and $\mathrm{D}=\langle\mathrm{y}, \emptyset,\{1,2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{c})=2$. $\alpha O X=\{\widetilde{\varnothing}, \widetilde{X}, A, B, E, F, M, L, K, N\} \quad$ where $\mathrm{E}=\{\mathrm{x},(\mathrm{c},\{(b\}), \mathrm{P}=\{\mathrm{x},\{\mathrm{c}, \boldsymbol{\sigma}, \mathrm{M}=$
$(x,\{c\},\{a\rangle), L=\langle(x,\{b, c\}, 0), K=$ $(x,\{b, c\},\{a\})$
and $N=\langle x,\{a, c\}, \emptyset\rangle$. Now let $G=f^{-1}(C)=\langle x,\{a\},\{b, c\}\rangle$ then G is Iag-closed and Ig α-closed set in X since the only IOS containing G in X are A and N so $\alpha \mathrm{clG}=\overline{\mathrm{K}}=\mathrm{G} \subseteq \mathrm{A}$ and N . but G is not Ig-closed set in X since $\mathrm{clG}=\overline{\mathrm{B}} \nsubseteq \mathrm{A}$. Then the inverse image of each IOS in Y is Ig α-closed and Iag-closed set in X and hence f is I almost contra $\mathrm{g} \alpha$ cont. function and I almost contra αg-cont. function but it's not I almost contra g-cont. function.

We summarized the above result by the following diagram.

Diagram 3.20. The
following implications are true and not reversed:

4-Some relations among almost contra continuous functions and another kinds of continuity.

We introduce the following definitions.
Definition 4.1. Let (X, T) and ($\mathrm{Y}, \boldsymbol{\sigma}$) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be I almost SR-cont. (resp. I almost cont., I almost RC-cont. and I
regular irresolute) if the inverse image of each IROS in Y is ISRS (resp. IRCS and IROS) in X.
Remark 4.2. The notions I almost contra cont. function and I almost cont. function are independent.

The following examples shows this cases.
Example 4.3. Let $X=\{a, b, c\}$ and let $T=\{\widetilde{\varnothing}, \widetilde{Y}, A, B\} \quad$ where $A=\langle x,\{b\},\{c\}\rangle \quad$ and
$B=\langle x, \emptyset,\{a, c\}\rangle \quad$ and \quad let $Y=\{1,2,3\} \quad$ and $\sigma=\{\widetilde{\emptyset}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $\mathrm{C}=\langle\mathrm{y},\{3\},\{1\}\rangle$ and $\mathrm{D}=\langle\mathrm{y}, \emptyset,\{1,3\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=2, f(b)=1$ and $f(c)=3 . R O Y=\{\widetilde{\varnothing}, \widetilde{Y}, C\}$.
It's easy to verify f is I almost contra cont. function but not I almost cont. function.
Example 4.4. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{a\},\{b\}\rangle$ and $B=\langle x, \emptyset,\{a, b\}\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $\mathrm{C}=\langle\mathrm{y}, \emptyset,\{1,2\}\rangle$ and $\mathrm{D}=\langle\mathrm{y},\{1\},\{2\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2$ and $f(c)=3$. ROY $=\{\widetilde{\varnothing}, \widetilde{Y}, D\}$. Then f is I almost cont. function since the inverse image of each IROS in Y is IOS in X but f is not I almost contra cont. function.
Proposition 4.5. Let (X,T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1. f is I almost RC-cont. function.
2. f is I almost β-cont. function and I almost contra cont. function.
Proof $\mathbf{1} \Rightarrow \mathbf{2}$ Let V be IROS in Y then $\mathrm{f}^{-\mathbf{1}}(\mathrm{V})$ is IRCS in X (since f is I almost RC-cont. function) then clint $f^{-1}(V)=f^{-1}(V)$ hence $f^{-1}(V)$ is ICS in X so $\operatorname{clintf}{ }^{-1}(\mathrm{~V}) \subseteq \mathrm{f}^{-1}(\mathrm{~V})$ and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \operatorname{clintf}{ }^{-1}(\mathrm{~V})$ imply $\quad \mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ clintclf $^{-1}(\mathrm{~V})$. There fore, $f^{-1}(V)$ is I $\beta C S$ and hence f is I almost contra cont. function and I almost β-cont. function.
$\mathbf{2} \Rightarrow \mathbf{1}$ Let U be IROS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is $\mathrm{I} \beta$ OS and ICS in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{U}) \subseteq \operatorname{clintclf}^{-1}(\mathrm{U})$ and $\operatorname{clf}^{-1}(\mathrm{U})=\mathrm{f}^{-1}(\mathrm{U})$ imply $\quad \mathrm{f}^{-1}(\mathrm{U}) \subseteq \operatorname{clintf}^{-1}(\mathrm{~V}) \quad$ and $\operatorname{clint} \mathrm{f}^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U}) \quad$ imply $\mathrm{f}^{-1}(\mathrm{U})=\operatorname{clintf}^{-1}(\mathrm{U})$. There fore, $\mathrm{f}^{-1}(\mathrm{U})$ is IRCS in X . Hence f is I almost RC-cont. function.
Proposition 4.6. Let (X,T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1- f is I almost SR-cont. function.
2- f is I almost β-cont. function and I almost contra semi-cont. function.

Proof $\mathbf{1 \Rightarrow} \mathbf{2}$ Suppose that V be any IROS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISRS in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISOS and ISCS so $f^{-1}(V) \subseteq \operatorname{clintf}^{-1}(V)$ and intclf ${ }^{-1}(V) \subseteq f^{-1}(V)$. Now since $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \operatorname{clintf}^{-1}(\mathrm{~V}) \quad$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ clintclf ${ }^{-1}(\mathrm{~V})$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{I} \beta$ OS and ISCS in X. Hence f is I almost β-cont. and I almost contra semi-cont. function.
$\mathbf{2} \Rightarrow \mathbf{1}$ Suppose that U be IROS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is $\mathrm{I} \beta \mathrm{OS}$ and ISCS in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{U}) \subseteq \operatorname{clintclf}^{-1}(\mathrm{U}) \quad$ and intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U})$. Now we have intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U}) \quad \subseteq \operatorname{clintclf}^{-1}(\mathrm{U}) . \quad$ then $\mathrm{f}^{-1}(\mathrm{U})$ is ISOS in X also $f^{-1}(\mathrm{U})$ is ISCS in X. There fore, $\mathrm{f}^{-1}(\mathrm{U})$ is ISRS in X and hence f is I almost SRcont. function.
Corollary 4.7. Every I almost contra cont. function and I almost β-cont. function is I almost semi-cont. function.
Proof: Let (X,T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ an I almost contra cont. function and $\mathrm{I} \beta$-cont. function, so for any $\operatorname{IOS} V$ in Y then $f^{-1}(V)$ is ICS and $\mathrm{I} \beta \mathrm{OS}$ in X imply $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{clf}^{-1}(V)$ and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ clintclf $^{-1}(\mathrm{~V}) \quad$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \operatorname{clintf}^{-1}(\mathrm{~V})$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is ISOS in X . hence f is I almost semi-cont. function. \downarrow
Proposition 4.8. Let (X,T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1- f is IR-irresolute function.
2- f is I almost pre-cont. function and I almost contra semi-cont. function.
Proof $\mathbf{1} \Rightarrow \mathbf{2}$ Let V be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is IROS in X (since f is I R-irresolute cont. function) then $\mathrm{f}^{-1}(\mathrm{~V})=$ intclf ${ }^{-1}(\mathrm{~V})$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ intclf $^{-1}(\mathrm{~V})$ and intclf ${ }^{-1}(\mathrm{~V}) \subseteq \mathrm{f}^{-1}(\mathrm{~V})$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is IPOS and ISCS in X. Hence f is I almost pre-cont. function and I almost contra semi-cont. function. $\mathbf{2} \Rightarrow \mathbf{1}$ Let U be IOS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is IPOS and ISCS in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{U}) \subseteq$ intclf $^{-1}(\mathrm{U})$ and $\operatorname{clintf}{ }^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U})$ imply $\mathrm{f}^{-1}(\mathrm{U})=$ intclf ${ }^{-1}(\mathrm{U})$. There fore, $\mathrm{f}^{-1}(\mathrm{U})$ is IROS in X . Hence f is I R-irresolute cont. function. Proposition 4.9. Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1. f is I almost contra semi-cont. function.
2. f is I almost B-cont. function and I almost contra gs-cont. function.
Proof $\mathbf{1} \Rightarrow \mathbf{2}$ Suppose that V be any IOS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS in X (by hypothesis). Now let A be IOS in X and $\mathrm{f}^{-1}(V) \subseteq \mathrm{A}$ then $f^{-1}(V)=A \cap f^{-1}(V)$ imply $f^{-1}(V)$ is IBS, so $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{sclf}^{-1}(\mathrm{~V})$
since $\operatorname{sclf}^{-1}(V)=f^{-1}(V) \cup$ intclf ${ }^{-1}(V) \quad$ and intclf ${ }^{-1}(V) \subseteq f^{-1}(V)$. Hence for each IOS A in X and $\mathrm{f}^{-1}(V) \subseteq A$ then $\operatorname{sclf}^{-1}(V) \subseteq A$. There fore, $\mathrm{f}^{-1}(V)$ is Igs-closed set and IBS in X, so f is I almost contra gs-cont. function and I almost B-cont. function. $\mathbf{2} \Rightarrow \mathbf{1}$ Suppose that U be any IOS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is IBS and ISCS in X (by hypothesis). Then $\mathrm{f}^{-1}(\mathrm{U})=\mathrm{A} \cap \mathrm{G}$ where A is IOS containing $\mathrm{f}^{-1}(\mathrm{U})$ in X and G is ISCS in X. So sclf ${ }^{-1}(U) \subseteq A$ since $\mathrm{f}^{-1}(\mathrm{U})$ is Igs-closed set. Now intclf ${ }^{-1}(\mathrm{U})=\operatorname{intcl}(\mathrm{A} \cap \mathrm{G}) \subseteq$ $\operatorname{int}(\operatorname{clA} \cap \operatorname{clG})=\operatorname{intcl} A \cap \operatorname{intclG} \subseteq$ intclA $\cap G$

since	G	is	ISCS.	So
intclf ${ }^{-1}(\mathrm{U}) \cap \mathrm{A} \subseteq$ intclA $\cap \mathrm{A} \cap \mathrm{G}$				
intclf ${ }^{-1}(\mathrm{U}) \mathrm{Uf}^{-1}(\mathrm{U})=\operatorname{sclf}^{-1}(\mathrm{U}) \subseteq$				
A				
and	$A \subseteq$		We	have

intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{A} \cap \mathrm{G}=\mathrm{f}^{-1}(\mathrm{U})$. There fore, $\mathrm{f}^{-1}(\mathrm{U})$ is ISCS in X and hence f is I almost contra semi-cont. function.
Corollary 4.10. Let (X,T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1. f is I almost SR-cont. function.
2. f is I almost β-cont. function, I almost B-cont. function and I almost contra gs-cont. function.
Proof $\mathbf{1} \Rightarrow \mathbf{2}$ Let V be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISRS in X (since f is I almost contra SR-cont. function). Then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS and ISOS in X , that is intclf ${ }^{-1}(V) \subseteq f^{-1}(V)$ and $\mathrm{f}^{-1}(V) \subseteq \operatorname{clintf}{ }^{-1}(V)$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ clintclf ${ }^{-1}(V)$ then $\mathrm{f}^{-1}(V)$ is I OOS. Now let A be IOS in X and $f^{-1}(V) \subseteq A$ imply $f^{-1}(V)=A \cap f^{-1}(V)$ then $f^{-1}(V)$ is IBS. So $\mathrm{f}^{-1}(V)=\operatorname{sclf}^{-1}(V) \quad$ since $\quad \operatorname{sclf}^{-1}(V)=$ $\mathrm{f}^{-1}(V) \cup$ intclf ${ }^{-1}(V)$ and intclf ${ }^{-1}(V) \subseteq \mathrm{f}^{-1}(V)$. Hence for each IOS A in X and $f^{-1}(V) \subseteq A$ then $\operatorname{sclf}^{-1}(\mathrm{~V}) \subseteq \mathrm{A}$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is Igs-closed set,

IBS and IBOS in X and hence f is I almost B-cont. function, I almost β-cont. function and I almost contra gs-cont. function.
$\mathbf{2} \Rightarrow \mathbf{1}$ Let U be IOS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is $\mathrm{I} \beta \mathrm{OS}$, IBS and Igs-closed set in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{U}) \subseteq$ clintclf $^{-1}(\mathrm{U}) \quad$ and $\quad \mathrm{f}^{-1}(\mathrm{U})=\mathrm{A} \cap \mathrm{G}$ where A is IOS containing $\mathrm{f}^{-1}(\mathrm{U})$ in X and G is ISCS in X so $s c l f^{-1}(U) \subseteq A$ since $f^{-1}(U)$ is Igs-closed set. Now
$\operatorname{intclf}{ }^{-1}(\mathrm{U})=\operatorname{intcl}(\mathrm{A} \cap \mathrm{G}) \subseteq$
$\operatorname{int}(c l A \cap \operatorname{clG})=\operatorname{intcl} A \cap$
intclG \subseteq intclA $\cap G \quad$ since $G \quad$ is \quad ISCS. So intclf ${ }^{-1}(\mathrm{U}) \cap \mathrm{A} \subseteq$ intclA $\cap \mathrm{A} \cap \mathrm{G} \quad$ since intclf ${ }^{-1}(\mathrm{U}) \cup \mathrm{f}^{-1}(\mathrm{U})=\operatorname{sclf}^{-1}(\mathrm{U}) \subseteq$ A
and $A \subseteq$ intclA then intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{A} \cap \mathrm{G}=\mathrm{f}^{-1}(\mathrm{U})$. Hence $\mathrm{f}^{-1}(\mathrm{U})$ is ISCS in X. Now since $\mathrm{f}^{-1}(\mathrm{U}) \subseteq \operatorname{clintclf}^{-1}(\mathrm{U})$ and intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U})$ imply intclf ${ }^{-1}(\mathrm{U}) \subseteq$ $\mathrm{f}^{-1}(\mathrm{U}) \subseteq$ clintclf $^{-1}(\mathrm{U})$. Then we have $\mathrm{f}^{-1}(\mathrm{U})$ ISOS and ISCS in X , so $\mathrm{f}^{-1}(\mathrm{U})$ is ISRS in X and hence f is I almost SR -cont. function. \downarrow
Corollary 4.11. Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then the following statements are equivalent:

1. f is I R-irresolute function.
2. f is I almost pre-cont. function, I almost Bcont. function and I almost contra gs-cont. function.
Proof $\mathbf{1} \Rightarrow \mathbf{2}$ Suppose that V is IOS in Y then $f^{-1}(V)$ is IROS in X (by hypothesis). That is $\mathrm{f}^{-1}(\mathrm{~V})=$ intclf ${ }^{-1}(\mathrm{~V})$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq$ intclf $^{-1}(\mathrm{~V})$ and intclf ${ }^{-1}(V) \subseteq \mathrm{f}^{-1}(V)$ then $\mathrm{f}^{-1}(V)$ is IPOS and ISCS in X. Now let A be IOS in X and $f^{-1}(V) \subseteq A$ then $f^{-1}(V)=A \cap f^{-1}(V)$ imply $f^{-1}(V)$ is IBS. So $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{sclf}^{-1}(\mathrm{~V})$ since $\operatorname{sclf}^{-1}(V)=f^{-1}(V) \cup$ intclf $^{-1}(V) \quad$ and intclf ${ }^{-1}(V) \subseteq f^{-1}(V)$ and hence for each IOS A in X and $f^{-1}(V) \subseteq A$ then $s c l f^{-1}(V) \subseteq A$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is Igs-closed set, IBS and IPOS in X. hence f is I almost B -cont. function, I almost pre-cont. function and I almost contra gs-cont. function.
$\mathbf{2} \Rightarrow \mathbf{1}$ Suppose that U is IOS in Y then $\mathrm{f}^{-1}(\mathrm{U})$ is IPOS, IBS and Igs-closed set in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{U}) \subseteq$ intclf $^{-1}(\mathrm{U})$ and $\mathrm{f}^{-1}(\mathrm{U})=\mathrm{A} \cap \mathrm{G}$ where A is IOS containing $f^{-1}(\mathrm{U})$ in X and G is ISCS
in X so sclf ${ }^{-1}(\mathrm{U}) \subseteq A$ since $\mathrm{f}^{-1}(\mathrm{U})$ is Igs-closed set. Now intclf ${ }^{-1}(\mathrm{U})=\operatorname{intcl}(\mathrm{A} \cap \mathrm{G}) \subseteq$ $\operatorname{int}(\operatorname{clA} \cap \mathrm{clG})=\operatorname{intclA} \cap \operatorname{intclG} \subseteq \operatorname{intclA} \cap G$ since G is ISCS so intclf $^{-1}(\mathrm{U}) \cap \mathrm{A} \subseteq$ intclA $\cap A \cap G \quad$ since intclf $^{-1}(\mathrm{U}) \quad U$ $\mathrm{f}^{-1}(\mathrm{U})=\operatorname{sclf}^{-1}(\mathrm{U}) \subseteq \mathrm{A}$ and $\mathrm{A} \subseteq$ intclA then intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{A} \cap \mathrm{G}=\mathrm{f}^{-1}(\mathrm{U})$. Hence $\mathrm{f}^{-1}(\mathrm{U})$ is ISCS in X, then we have intclf ${ }^{-1}(\mathrm{U}) \subseteq \mathrm{f}^{-1}(\mathrm{U})$ and $\mathrm{f}^{-1}(\mathrm{U}) \subseteq$ intclf $^{-1}(\mathrm{U})$ imply $\mathrm{f}^{-1}(\mathrm{U})=$ intclf $^{-1}(\mathrm{U})$. There fore, $\mathrm{f}^{-1}(\mathrm{U})$ is IROS in X and hence f is IR -irresolute function.

The following definition is given in [1] by general topology, we generalized it on ITS's.
Definition 4.12. Let (X, T) and (Y, σ) be two ITS's then a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be intuitionistic contra continuous (resp. intuitionistic contra semi-continuous if the inverse image of each IOS in Y is ICS (resp. ISCS) in X.

The following definition is given in [5] by general topology, we generalized it on ITS's.
Definition 4.13. Let (X, T) and (Y, σ) be two ITS's then a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be intuitionistic regular set connected if the inverse image of each IOS in Y is clopen in X.
Proposition 4.14. Let (X, T) and (Y, σ) be two ITS's then and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then:

1- If f is 1 perfectly cont. function then f is ISRcont. function.
2- If f is ISR-cont. function then f is I contra semi-cont. function.
3- If f is I contra cont. function then f is I contra semi-cont. function.
4- If f is I perfectly cont. function then f is I regular set connected function.
5- If f is I regular set connected function then f is I almost contra cont. function.
6- If f is I contra cont. function then f is I almost contra cont. function.
7- If f is I almost contra cont. function then f is I almost contra semi-cont. function.
8- If f is I contra semi-cont. function then f is I almost contra semi-cont. function.

Proof:

1- Let V be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen set in X (since f is I perfectly cont. function) so $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$ and $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$ imply $\quad \operatorname{intcl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{f}^{-1}(\mathrm{~V}) \quad$ and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \operatorname{clintf}^{-1}(\mathrm{~V})$ then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS and ISOS. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is ISR-cont. function.

2- Suppose that V be IOS in Y then $f^{-1}(V)$ is ISRS in X (since f is ISR-cont. function) so $\mathrm{f}^{-1}(\mathrm{~V})$ is ISOS and ISCS. There fore, f is I contra semi-cont. function.
3- For any IOS V in Y then $f^{-1}(V)$ is ICS in X (since f is I contra cont. function) so $\mathrm{clf}^{-1}(\mathrm{~V})=\mathrm{f}^{-1}(\mathrm{~V})$ imply intcl $\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{f}^{-1}(\mathrm{~V})$. There fore, $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS in X and hence f is I contra semi-cont. function. \downarrow
4- Let V be IOS in Y then $f^{-1}(V)$ is clopen set in X (since f is I perfectly cont. function). Now since every IROS is IOS that is the inverse image of each IROS in Y is clopen set in X , so f is I regular set connected function.
5- Suppose that V be IROS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen set in X (by hypothesis). That is $\mathrm{f}^{-1}(\mathrm{~V})$ is IOS and ICS in X and hence f is I almost contra cont. function.
6- Let V be IOS in Y then $f^{-1}(V)$ is ICS in X (since f is I contra cont. function). Now since every IROS is IOS that is the inverse image of each IROS in Y is ICS in X. Hence f is I almost contra cont. function. \downarrow
7- For any IROS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is ICS in X (by hypothesis) then $\mathrm{f}^{-1}(\mathrm{~V})=\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \quad$ imply $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \operatorname{intcl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right)$, so $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS in X and hence f is I almost contra semi-cont. function. \downarrow 8 - Let V be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~V})$ is ISCS in X (since f is I contra semi-cont. function). Now since every IROS is IOS then the inverse image of each IROS in Y is ISCS in X . Hence f is I almost contra semi-cont. function.

We start with example to show that ISR-cont. function is not imply I perfectly cont. function.
Example 4.15. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{a\},\{b\}\rangle$ and $B=\langle x, \emptyset,\{b, c\}\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{C}\} \quad$ where $\mathrm{C}=\langle\mathrm{y},\{2\},\{3\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now let $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{C})=\langle\mathrm{x},\{\mathrm{b}\},\{\mathrm{c}\}\rangle$ then intclG $=\mathrm{B} \subseteq \mathrm{G}$ and $G \subseteq \operatorname{clintG}=\bar{B}$, that is G is ISCS and ISOS imply G is ISRS in X but G is not clopen set in X since $\operatorname{intG}=\mathrm{B} \neq \mathrm{G}$ so $\mathrm{clG}=\overline{\mathrm{B}} \neq \mathrm{G}$. Then f is ISRcont. function but f is I perfectly cont. function.

The next example shows that:
1- I contra semi-cont. is not imply ISR-cont.
2- I contra semi-cont. is not imply I contra cont.

[^1]$\mathrm{A}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{B}=$
($\mathrm{x},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle, \mathrm{C}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle$
and $\mathrm{D}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\rangle$ and let $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, E\}$ where $E=\langle y,\{2\},\{1\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=3$ and $f(c)=2$. Now let $G=f^{-1}(E)=\langle x,\{c\},\{a\}\rangle$ then G is ISCS in X since intclG $=\emptyset \subseteq G$ but G is not ISOS since $\mathrm{G} \nsubseteq$ clint $G=\emptyset$ so G is not ISRS in X as well as G is not ICS in X since $c l G=\bar{D} \neq G$, then the inverse image of each IOS in Y is ISCS in X .
We are going to show that I regular set connected function is not imply I perfectly cont. function.
Example 4.17. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ where
$A=\langle x,\{a\},\{B\}\rangle, B=\langle x, \emptyset,\{b, c\}\rangle, C=$
($\mathrm{x},\{\mathrm{b}, \mathrm{c}\}, \emptyset\rangle$
and $\mathrm{D}=\langle\mathrm{x}, \emptyset,\{\mathrm{b}\}\rangle$ and let $\mathrm{Y}=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{E}, \mathrm{F}\} \quad$ where $\mathrm{E}=\langle\mathrm{y},\{1\},\{2\}\rangle \quad$ and $F=\langle y, \emptyset,\{1,2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3 . \operatorname{ROY}=\{\widetilde{\varnothing}, \widetilde{Y}, F\}$. Now f is I regular set connected but f is not I perfectly cont. function.

The following example shows that I almost contra cont. is not imply I regular set connected.
Example 4.18. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A\}$ where $A=\langle x,\{a\}, \varnothing\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \widetilde{Y}, B\}$ where $B=\langle y, \emptyset,\{1\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2$ and $\mathrm{f}(\mathrm{c})=3 . \quad$ ROY $=\sigma . \quad$ Now \quad let $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{~B})=\langle\mathrm{x}, \emptyset,\{\mathrm{a}\}\rangle$ then G is ICS in X but G not IOS so it's not clopen in X. There fore, f is I almost contra cont. function but not I regular set connected.

The next example shows I almost contra cont. is not imply I contra cont.
Example 4.19. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $A=\langle x,\{c\},\{a\}\rangle$ and $B=\langle x,\{a, c\}, \emptyset\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}, \mathrm{D}\} \quad$ where $C=\langle y,\{3\},\{1\}\rangle$ and $D=\langle y, \emptyset,\{1,2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=3$ and $f(c)=2 . \quad$ ROY $=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{D}\} . \quad$ We have a set $\mathrm{H}=\mathrm{f}^{-1}(\mathrm{C})=\langle\mathrm{x},\{\mathrm{b}\},\{\mathrm{a}\}\rangle$ is not ICS in X since $\mathrm{clH}=\mathrm{X} \neq \mathrm{H}$, then f is not I contra cont. function but f is I almost contra cont. function.

The following example shows that I almost contra semi-cont. is not imply I almost contra cont.

Example 4.20. Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B\}$ where $\mathrm{A}=\langle\mathrm{x},\{\mathrm{a}\},\{\mathrm{b}\}\rangle$ and $\mathrm{B}=\langle\mathrm{x}, \emptyset,\{\mathrm{a}, \mathrm{b}\}\rangle$ and $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{Y}, \mathrm{C}\} \quad$ where $\mathrm{C}=\langle\mathrm{y}, \emptyset,\{1\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2$ and $\mathrm{f}(\mathrm{c})=3$. Now a set $\mathrm{G}=\mathrm{f}^{-1}(\mathrm{C})=\langle\mathrm{x}, \emptyset,\{\mathrm{a}\}\rangle$ then G is ISCS in X since intclG $=\mathrm{B} \subseteq \mathrm{G}$ but G is not closed since $\mathrm{clG}=\overline{\mathrm{A}} \neq \mathrm{G}$, hence f is I almost contra semi-cont. function but not I almost contra cont. function.

In the last example we show I almost contra semicont. is not imply I contra semi-cont.
Example 4.21. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}\}$ where $\mathrm{A}=\langle\mathrm{x},\{\mathrm{a}, \mathrm{c}\}, \emptyset\rangle$ and $\mathrm{B}=\langle\mathrm{x},\{\mathrm{c}\},\{\mathrm{b}\}\rangle$ and let $\mathrm{Y}=\{1,2,3\} \quad$ and $\quad \sigma=\{\widetilde{\varnothing}, \widetilde{\mathrm{Y}}, \mathrm{C}\} \quad$ where $\mathrm{C}=\langle\mathrm{y},\{3\},\{1\}\rangle$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=1, f(b)=2$ and $f(c)=3 . R O Y=\{\widetilde{\varnothing}, \widetilde{Y}\}$. We have that f is I almost contra semi-cont. function but f is not I contra semi-cont. function.

We summarized the above result by the following diagram.

Diagram 4.22.

The following implications are true and not reversed:

Proposition 4.23. Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then I contra cont. and I almost contra cont. are equivalent if:

1. (Y, σ) is discrete.
2. (Y, σ) is indiscrete.
3. (Y, σ) is disconnected

REFERENCES

[1]. Dontchev J. and Noiri, T.(1999) "Contrasemicontinuous functions" Math. Pannonica 10, pp. 159-168.
[2]. Ekici, A. (2007) "On the forms of continuity for fuzzy functions" Annals of university of Craiova, Math. comp. Sci. Ser. Vol. 34(1), pp. 58-65.
[3]. Ekici, E. (2004) "Almost contra-pre continuous function" Bulletin of the Malaysian Mathematical Sciences Society. no. 1, pp. 53-65.
[4]. Joseph, J.E. and Kwack, M. H. (1980) "On Sclosed spaces" Proc . Amer. Math. Soc. No.80, pp. 341-348.
[5]. Kilicman, A. and Salleh, Z. (2006) "Some results on (δ-pre,s)-continuous functions" Internat. Journal of Math. and math. Sci. pp. 1-11.
[6]. Noiri, T. and Popa, V. (2005) "Some properties of almost contra continuous functions" Bull. Malays. Sci. Soc. (2)28(2), pp.107-116.

الدوال المستمرة المتعاكسة تقريبا بكافة انواعها وعلاقتها مع بعضها وتعيمها على الفضاءات التوبولوجية الحسسية

علي محمد جاسم

يونس جهاد ياسين

سندرس في هذا البحث مفهوم الدوال المستمرة المعاكسة تقريباً (almost contra continuous) بكل انواعها (almost contra semi) continuous, almost contra g-continuous,...

طريق بعض المبرهنات والأمثلة وتوضيحها بمخطط سمي وكذلك سندرس علاقة هذه الدوال مع أنواع أخرى من الدوال المستمرة منها الدوال المستمرة المعاكسة وغيرها من الدوال المستمرة.

[^0]: * Corresponding author at: College of Education - Tikrit University, Iraq.E-mail address: scianb@yahoo.com

[^1]: Example 4.16. Let $X=\{a, b, c\}$ and
 $T=\{\widetilde{\varnothing}, \widetilde{X}, A, B, C, D\} \quad$ where

