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1. Introduction 

 
Let W(p),(p?1) denote the class of functions of the form: 

                        (1) 

 
 

which are analytic and multivalent in the open unit disk      U= {z ¢: |z|<1}  
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is in W(p),then convolution or Hadamard product of   f(z) and g(z) is defined by 
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Let  T(p) denote the subclass of W(p) or which is consisting of function  of the form  

                                                                                 (4)
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 is defined by G and defined as,0,)(  pcforpTfDefinition 1:The integral operator of   

 following : 
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The operator defined by (5) known as the Komatu operator [1]. 

  ,if there ex- )()( zgzf Defination 2 :The function f(z) is said to be subordinate to g(z) in U written  

ist a function W(z) analytic in U such that  W(0)=0,and |W(z)|<1,such that f(z)=g(W(z)). 
 

defined by (4))()( pTzf Definition 3:For A,B arbitrary fixed real number,-1?B<A? 1,  a function 

 satisfiesitifcBApT ),,,,,(  is said to be in the class  
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and G(z)  is defined in definition(1).The condition(6) is equivalent to,0 p where  
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for other subclasses of multivalent functions , we can see the recent works of authors[2],[3]. 

 
2. Coefficient Estimates 

      
),,,,,(  cBApTTheorem (1): A function f (z) defined by (4) belongs to the class  

  if and only if   
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  the result is sharp. 

 

=1, then from (7) and (5), we havezProof: Assume that the inequality (8) holds true and let 
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 . Conversely,),,,,,()(  cBApTzf Hence by the principle of maximum modulus , 

. Then from (5), we have),,,,,(  cBApTassume that f(z) defined by (4) is in the class  
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Since |Re (z) |? |z| for all z, we have 
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is real. Upon clearing the denominator of (9) 
)(

)(

zG

zGz Choose the values of z on the real axis so that   

and letting z? 1 through real values ,we get  
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which implies the inequality (8). 

Sharpness of the result follows setting 
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,then),,,,,(  cBApTCorollary (1): Let the function f(z) defined by (4) be in the class 
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The equality in (*) is attained for the function f (z) given by (10). 

 
3. Distortion and Growth Theorems 

 

. Then, for |z|=r   (0<r<1). ),,,,,(  cBApTTheorem (2): Let the function f (z) defined by (4) be in the class  
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  .The result (11) is sharp.Uzfor  

 

, in view of Theorem (1), we have ),,,,,()(  cBApTzf Proof: Since  
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which immediately yields 
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Consequently, for |z|= r (0<r<1),we obtain  

 

 

 

 

 

 

 

 

 



 
This completes the proof of Theorem (2).Finally, by taking the function 
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  we can show that the result of Theorem (2) is sharp. 

 
Corollary (2): Under the hypothesis of Theorem (2), f (z) is included in a disk with its center at the origin and  

 Radius r1 given by  
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.Then, for |z|=r   (0<r<1).),,,,,(  cBApTTheorem (3): Let the function f (z) defined by (4) be in the class 
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.The result (18) is sharp.Uzfor  

 

Proof:  In view of Theorem (1), we have  
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which readily yields 
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Consequently, for |z|=r   (0<r<1), we obtain 
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 .Further the result of Theorem (3) is sharp for the function f(z) given by (16).  UzFor  

 
Corollary (3): Under the hypothesis of Theorem (3) ,f '(z) is included in a disk with  

 its center at the origin and radius r2 given by  
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 the result is sharp with extremal function f(z) given by   (16) 
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),,,,,(  cBApTTheorem (4): Let the function f(z) defined by (4) be in the class  

Then f(z) is p-valently convex in the disk  |z|<WAp,  where  

 
)24(

))((

)())(())(1(

inf

1

2

2

1

pn

pn
p

pBApn

nc

pc
pBAppnBp

WA

































 

 
The result is sharp. 

 

Proof: To prove Theorem (4) ,it is sufficient to show that  
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Indeed, we have  
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Hence the function f(z) is p-valently convex if 
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This evidently completes the proof of Theorem (4). The result is sharp with extremal function f (z) given 

by (10) 

 

5. A set of Closure Theorem: 
 is closed under arithmetic mean and under ),,,,,(  cBApTHere, we shall prove that the class 

Convex linear combinations. 
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 ,which completes the proof of Theorem(5).),,,,,()(  cBApTzg Hence by ,Theorem (1) ,  
 

 

 

 

 

 



is closed under convex linear combination .  ),,,,,(  cBApTTheorem (6):  

 ),,,,,(  cBApTProof:  Let the function fj(z)(j=1,2) defined by (25) be in the class  

 it is sufficient to show that the function h(z) defined by 

)10(),()1()()( 21   zfzfzh 

  .)10(   since for ),,,,,(  cBApTis in the class   

n

nn

pn

p zaazzh ])1([)( 2,1,

1
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if and only if it can be expressed in the form:),,,,,()(  cBApTzf Then 

 





1

)1;0(
pn

npn  also ),()()(
1

zfzfzf n

pn

npp 




  

 

Proof: Assume that  

                               

 

n

n

pn

p

pn

nnpp

z

nc

pc
pBAppnB

pBAp
z

zfzfzf
































1

1

)())(())(1(

))((

)()()(

 

Then, since 

  

),)(())((

)())(())(1(

))((
))]()(())(1[(

1

1









































pBAppBAp

nc

pc
pBAppnB

pBAp

nc

pc
pBAppnB

pn

n

n

pn

 

, by virtue of Theorem (1).),,,,,()(  cBApTzf we conclude that 

   .It follows then from Corollary (1) that ),,,,,()(  cBApTzf Conversely,let  

.1,

))]()(())(1[(

))((








 pn

nc

pc
pBAppnB

pBAp
an



 

Setting  
 

 

 

 

 

 

 

 

 



 

,1

))((

)())(())(1(

1

















pn

np

nn

and

a
pBAp

nc

pc
pBAppnB










 

 ,





1

)()()(
pn

nnpp zfzfzf we have  

which completes the proof of Theorem (7). 

  
 6. Convolution Property: 

 .),,,,,(  cBApTHere, we prove the convolution result for functions belongs to the class 
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Proof:  By the hypothesis, we can write  
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In view of (30) the inequality (29) holds true if  
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