SUBCLASS OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY KOMATU OPERATOR

WAGGAS GALIB ATSHAN* and ALIA SHANI HASSAN** Department of Mathematics University of AL_Qadisiya Diwaniya_Iraq <u>*waggashnd@yahoo.com</u> <u>**aliashani@yahoo.com</u>

Abstract: In this paper ,we introduce some properties of the class $T(p, A, B, \alpha, c, \delta)$ for multivalent functions with negative coefficients defined by Komatu operator .We obtain coefficient estimates ,growth and distortion theorem, radius of convexity for the class $T(p, A, B, \alpha, c, \delta)$, closure theorems and convolution property.

Key words and phrases: Multivalent Functions, Komatu Operator, Coefficient Estimates, Distortion Theorem, Radius of Convexity, Closure Theorems, Convolution Property. **AMS Subject Classification: Secondary** 30C45.

1. Introduction

Let W(p), (p?1) denote the class of functions of the form:

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n}, p \in \mathbb{N} = \{1, 2, 3,\},$$
(1)

which are analytic and multivalent in the open unit disk $U = \{z \in \mathfrak{k} : |z| < 1\}$

if a function f is given by (1) and g is defined by $g(z) = z^{p} + \sum_{n=p+1}^{\infty} b_{n} z^{n}$ (2)

is in W(p),then convolution or Hadamard product of f(z) and g(z) is defined by

$$(f^*g)(z) = z^p + \sum_{n=p+1}^{\infty} a_n b_n z^n, z \in U$$
(3)

Let T(p) denote the subclass of W(p) or which is consisting of function of the form

$$f(z) = z^{p} - \sum_{n=p+1}^{\infty} a_{n} z^{n}, (a_{n} \ge 0)$$
(4)

Definition 1: The integral operator of $f \in T(p)$ for $c > -p, \delta \ge 0$, is defined by G and defined as following :

$$G(z) = \frac{(c+p)^{\delta}}{\Gamma(\delta)} \int_0^1 t^c \left(\log\frac{1}{t}\right)^{\delta-1} \frac{f(tz)}{t} dt, c > -p, \delta \ge 0$$

$$= z^p - \sum_{n=p+1}^{\infty} \left(\frac{c+p}{c+n}\right)^{\delta} a_n z^n$$
(5)

The operator defined by (5) known as the Komatu operator [1].

Defination 2 :The function f(z) is said to be subordinate to g(z) in U written $f(z) \prec g(z)$, if there exist a function W(z) analytic in U such that W(0)=0, and |W(z)|<1, such that f(z)=g(W(z)).

Definition 3: For A, B arbitrary fixed real number, -1? B<A? 1, a function $f(z) \in T(p)$ defined by (4) is said to be in the class $T(p, A, B, \alpha, c, \delta)$ if *it* satisfies

$$\frac{zG'(z)}{G(z)} \prec \frac{1 + [(A - B)(p - \alpha) + B]z}{1 + Bz}, (z \in U),$$
(6)

where $0 \le \alpha \le p$, and G(z) is defined in definition(1). The condition(6) is equivalent to

$$\left| \frac{\frac{zG'(z)}{pG(z)} - 1}{B + (A - B)(p - \alpha) - B \frac{zG'(z)}{pG(z)}} \right| < 1, z \in U.$$
(7)

for other subclasses of multivalent functions, we can see the recent works of authors[2],[3].

2. Coefficient Estimates

Theorem (1): A function f (z) defined by (4) belongs to the class T (p, A, B, α , c, δ) if and only if

$$\sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)] (\frac{c+p}{c+n})^{\delta} a_n \le p(A-B)(p-\alpha),$$
(8)

the result is sharp.

Proof: Assume that the inequality (8) holds true and let |z|=1, then from (7) and (5), we have

$$\begin{aligned} \left| \frac{zG'(z)}{pG(z)} - 1 \right| - \left| B + (A - B)(p - \alpha) - B \frac{zG'(z)}{pG(z)} \right| \\ = \left| -\sum_{n=p+1}^{\infty} (n - p)(\frac{c + p}{c + n})^{\delta} a_n z^n \right| \\ - \left| p(A - B)(p - \alpha) z^P + \sum_{n=p+1}^{\infty} (B(n - p) - p(A - B)(p - \alpha))(\frac{c + p}{c + n})^{\delta} a_n z^n \right| \\ \le \sum_{n=p+1}^{\infty} (n - p)(\frac{c + p}{c + n})^{\delta} a_n + \sum_{n=p+1}^{\infty} (p(A - B)(p - \alpha) - B(n - p))(\frac{c + p}{c + n})^{\delta} a_n - p(A - B)(p - \alpha) \\ = \sum_{n=p+1}^{\infty} ((1 - B)(n - p) + p(A - B)(p - \alpha))(\frac{c + p}{c + n})^{\delta} a_n - p(A - B)(P - \alpha) \le 0. \end{aligned}$$

Hence by the principle of maximum modulus , $f(z) \in T(p, A, B, \alpha, c, \delta)$. Conversely, assume that f(z) defined by (4) is in the class $T(p, A, B, \alpha, c, \delta)$. Then from (5), we have

$$\left| \frac{\frac{zG'(z)}{pG(z)} - 1}{B + (A - B)(p - \alpha) - B\frac{zG'(z)}{pG(z)}} \right|$$
$$= \left| \frac{-\sum_{n=p+1}^{\infty} (n - p)(\frac{c + p}{c + n})^{\delta} a_n z^n}{p(A - B)(p - \alpha) z^p + \sum_{n=p+1}^{\infty} (B(n - p) - p(A - B)(p - \alpha))(\frac{c + p}{c + n})^{\delta} a_n z^n} \right|.$$

Since |Re(z)|?|z| for all z, we have

$$\operatorname{Re}\left\{\frac{\displaystyle\sum_{n=p+1}^{\infty}(n-p)(\frac{c+p}{c+n})^{\delta}a_{n}z^{n}}{p(A-B)(p-\alpha)z^{p}+\displaystyle\sum_{n=p+1}^{\infty}(B(n-p)-(p(A-B)(p-\alpha))(\frac{c+p}{c+n})^{\delta}a_{n}z^{n}}\right\}<1.$$

Choose the values of z on the real axis so that $\frac{zG'(z)}{G(z)}$ is real. Upon clearing the denominator of (9)

and letting z? 1 through real values ,we get

$$\sum_{n=p+1}^{\infty} (n-p)(\frac{c+p}{c+n})^{\delta} a_n \le p(A-B)(p-\alpha)z^p + \sum_{n=p+1}^{\infty} (B(n-p)-p(A-B)(p-\alpha))(\frac{c+p}{c+n})^{\delta} a_n,$$

which implies the inequality (8).

Sharpness of the result follows setting

$$f(z) = z^{p} - \frac{p(A-B)(p-\alpha)}{((1-B)(n-p) + p(A-B)(p-\alpha))(\frac{c+p}{c+n})^{\delta}} z^{n}, n \ge p+1$$
(10)

Corollary (1): Let the function f(z) defined by (4) be in the class $T(p, A, B, \alpha, c, \delta)$, then

$$a_n \leq \frac{p(A-B)(p-\alpha)}{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+n}\right)^{\delta}}, n \geq p+1 \qquad (*)$$

The equality in (*) is attained for the function f(z) given by (10).

3. Distortion and Growth Theorems

Theorem (2): Let the function f (z) defined by (4) be in the class $T(p, A, B, \alpha, c, \delta)$. Then, for |z|=r (0<r<1).

$$r^{p} - \frac{p(A-B)(p-\alpha)r^{p+1}}{((1-B) + (p(A-B)(p-\alpha))(\frac{c+p}{c+p+1})^{\delta}} \leq |f(z)| \leq r^{p} + \frac{p(A-B)(p-\alpha)r^{p+1}}{((1-B) + p(A-B)(p-\alpha))(\frac{c+p}{c+p+1})^{\delta}}$$
(11)

for $z \in U$. The result (11) is sharp.

Proof: Since $f(z) \in T(p, A, B, \alpha, c, \delta)$, in view of Theorem (1), we have

$$[(1-B) + p(A-B)(p-\alpha)](\frac{c+p}{c+p+1})^{\delta} \sum_{n=p+1}^{\infty} a_n$$

$$\leq \sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta} a_n \leq p(A-B)(p-\alpha), (12)$$

which immediately yields

$$\sum_{n=p+1}^{\infty} a_n \le \frac{p(A-B)(p-\alpha)}{\left[(1-B) + p(A-B)(p-\alpha)\right] \left(\frac{c+p}{c+p+1}\right)^{\delta}}$$
(13)

Consequently, for |z|=r (0<r<1),we obtain

$$|f(z)| \ge r^{p} - r^{p+1} \sum_{n=p+1}^{\infty} a_{n}$$

$$\ge r^{p} - \frac{p(A-B)(p-\alpha)}{[(1-B) + p(A-B)(p-\alpha)](\frac{c+p}{c+p+1})^{\delta}} r^{p+1}$$
(14)

and
$$|f(z)| \leq r^{p} + r^{p+1} \sum_{n=p+1}^{\infty} a_{n}$$

 $\leq r^{p} + \frac{p(A-B)(p-\alpha)}{[(1-B) + p(A-B)(p-\alpha)](\frac{c+p}{c+p+1})^{\delta}} r^{p+1},$ (15)

for $z \in U$.

This completes the proof of Theorem (2). Finally, by taking the function

$$f(z) = z^{p} - \frac{p(A-B)(p-\alpha)}{((1-B)+p(A-B)(p-\alpha))(\frac{c+p}{c+p+1})^{\delta}} z^{p+1}$$
(16)

we can show that the result of Theorem (2) is sharp.

Corollary (2): Under the hypothesis of Theorem (2), f (z) is included in a disk with its center at the origin and Radius r1 given by

$$r_{1} = 1 + \frac{p(A-B)(p-\alpha)}{\left[(1-B) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+p+1}\right)^{\delta}}$$
(17)

Theorem (3): Let the function f (z) defined by (4) be in the class $T(p, A, B, \alpha, c, \delta)$. Then, for |z|=r (0<r<1).

$$pr^{p-1} - \frac{p(p+1)(A-B)(p-\alpha)r^{p}}{((1-B)+p(A-B)(p-\alpha))(\frac{c+p}{c+p+1})^{\delta}} \leq |f'(z)| \leq pr^{p-1} + \frac{p(p+1)(A-B)(p-\alpha)r^{p}}{((1-B)+p(A-B)(p-\alpha))(\frac{c+p}{c+p+1})^{\delta}}$$
(18)

for $z \in U$. The result (18) is sharp.

Proof: In view of Theorem (1), we have 5

$$\frac{\left[(1-B)+p(A-B)(p-\alpha)\left(\frac{c+p}{c+p+1}\right)^{\delta}}{(p+1)}\sum_{n=p+1}^{\infty}nq_{n} \leq \sum_{n=p+1}^{\infty}(1-B)(n-p)+p(A-B)(p-\alpha)\right]\cdot\left(\frac{c+p}{c+n}\right)^{\delta}a_{n} \leq p(A-B)(p-\alpha), \quad (19)$$
which readily yields

lly y

$$\sum_{n=p+1}^{\infty} na_n \le \frac{p(p+1)(A-B)(p-\alpha)}{\left[(1-B) + p(A-B)(p-\alpha)\left(\frac{c+p}{c+p+1}\right)^{\delta}\right]}$$
(20)

Consequently, for |z|=r (0<r<1), we obtain

$$|f'(z)| \ge pr^{p-1} - r^p \sum_{n=p+1}^{\infty} na_n \ge pr^{p-1} - \frac{p(p+1)(A-B)(p-\alpha)}{\left[(1-B) + p(A-B)(p-\alpha)\right] \left(\frac{c+p}{c+p+1}\right)^{\delta}} r^p$$
(21)

and $|f'(z)| \leq pr^{p-1} + r^p \sum_{n=p+1}^{\infty} na_n$ $\leq pr^{p-1} + \frac{p(p+1)(A-B)(p-\alpha)}{[(1-B) + p(A-B)(p-\alpha)]\left(\frac{c+p}{c+p+1}\right)^{\delta}}r^p$ (22)

For $z \in U$. Further the result of Theorem (3) is sharp for the function f(z) given by (16).

Corollary (3): Under the hypothesis of Theorem (3) ,f '(z) is included in a disk with its center at the origin and radius r_2 given by

$$r_{2} = p + \frac{p(p+1)(A-B)(p-\alpha)}{\left[(1-B) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+p+1}\right)^{\delta}}$$
(23)

the result is sharp with extremal function f(z) given by (16)

4. Raduis of Convexity for the Class $T(p, A, B, \alpha, c, \delta)$

Theorem (4): Let the function f(z) defined by (4) be in the class $T(p, A, B, \alpha, c, \delta)$ Then f(z) is p-valently convex in the disk $|z| < WA_p$, where

$$WA_{p} = \inf_{n \ge p+1} \left\{ \frac{p^{2} [(1-B)(n-p) + p(A-B)(p-\alpha)] (\frac{c+p}{c+n})^{\delta}}{n^{2} p(A-B)(p-\alpha)} \right\}^{\frac{1}{n-p}}$$
(24)

The result is sharp.

Proof: To prove Theorem (4) , it is sufficient to show that $\left| \begin{pmatrix} \tau f''(\tau) \end{pmatrix} \right|$

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| \le p, \text{ for } |z| < WA_p.$$

Indeed, we have

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| = \left| \frac{-\sum_{n=p+1}^{\infty} n(n-p)a_n z^{n-p}}{p - \sum_{n=p+1}^{\infty} na_n z^{n-p}} \right| \le \frac{\sum_{n=p+1}^{\infty} n(n-p)a_n |z|^{n-p}}{p - \sum_{n=p+1}^{\infty} na_n |z|^{n-p}}.$$

Thus

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| \le p \quad if \quad \frac{\sum_{n=p+1}^{\infty} n(n-p)a_n |z|^{n-p}}{p - \sum_{n=p+1}^{\infty} na_n |z|^{n-p}} \le p,$$

that is, if $\sum_{n=p+1}^{\infty} \left(\frac{n}{p}\right)^2 a_n |z|^{n-p} \le 1$.

But, from Theorem (1), we obtain

$$\sum_{n=p+1}^{\infty} \frac{\left[(1-B)(n-p)+p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+n}\right)^{\delta}}{p(A-B)(p-\alpha)} a_n \leq 1.$$

Hence the function f(z) is p-valently convex if

$$\left(\frac{n}{p}\right)^2 \left|z\right|^{n-p} \le \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+n}\right)^{\delta}}{p(A-B)(p-\alpha)}, n \ge p+1$$

that is ,if

$$|z| \leq \left\{ \frac{p^2 \left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n}\right)^{\delta}}{n^2 p(A-B)(p-\alpha)} \right\}^{\frac{1}{n-p}}, n \geq p+1$$

This evidently completes the proof of Theorem (4). The result is sharp with extremal function f(z) given by (10)

5. A set of Closure Theorem:

Here, we shall prove that the class T (p, A, B, α , c, δ) is closed under arithmetic mean and under Convex linear combinations.

Theorem (5): Let
$$f_j(z) = z^p - \sum_{p+1}^{\infty} a_{n,j} z^n$$
 (25)
 $(a_n \ge 0, p \in \mathbb{N}, j = 1, 2, ..., m).$ If $f_j(z) \in T(p, A, B, \alpha, c, \delta)$ $(j = 1, 2, ..., m),$
then the function $g(z) = z^p - \sum_{n=p+1}^{\infty} b_n z^n$

also belongs to the class $T(p, A, B, \alpha, c, \delta)$, where $b_n = \frac{1}{m} \sum_{j=1}^m a_{n,j}$.

Proof: Since $f_j(z) \in T(p, A, B, \alpha, c, \delta)$ (j=1,2,...,m), It follows from Theorem (1) that

$$\sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)] (\frac{c+p}{c+n})^{\delta} a_{n,j} \le p(A-B)(p-\alpha), j = 1, 2, \dots, m$$

Therefore, we have

~

$$\sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta} b_n$$

=
$$\sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta} \left\{ \frac{1}{m} \sum_{j=1}^m a_{n,j} \right\}$$

=
$$\frac{1}{m} \sum_{j=1}^m \sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta} a_{n,j} \le p(A-B)(p-\alpha)$$

Hence by ,Theorem (1) , $g(z) \in T(p, A, B, \alpha, c, \delta)$,which completes the proof of Theorem(5).

Theorem (6): $T(p, A, B, \alpha, c, \delta)$ is closed under convex linear combination. **Proof:** Let the function $f_j(z)(j=1,2)$ defined by (25) be in the class $T(p, A, B, \alpha, c, \delta)$ it is sufficient to show that the function h(z) defined by

 $h(z) = \gamma f_1(z) + (1 - \gamma) f_2(z), (0 \le \gamma \le 1)$

is in the class $T(p, A, B, \alpha, c, \delta)$ since for $(0 \le \gamma \le 1)$.

$$h(z) = z^{p} - \sum_{n=p+1}^{\infty} [\gamma a_{n,1} + (1-\gamma)a_{n,2}]z^{n}$$

By applying Theorem(1), we have

$$\begin{split} &\sum_{n=p+1}^{\infty} \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right](\frac{c+p}{c+n})^{\delta}}{p(A-B)(p-\alpha)} [\gamma a_{n,1} + (1-\gamma)a_{n,2}] \\ &= \gamma \sum_{n=p+1}^{\infty} \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]}{p(A-B)(p-\alpha)} a_{n,1} + (1-\gamma) \sum_{n=p+1}^{\infty} \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]}{p(A-B)(p-\alpha)} a_{n,2} \le 1. \end{split}$$

Which implies that h(z) is in $T(p, A, B, \alpha, c, \delta)$ and this completes the proof. **Theorem (7):** Let $f_p(z)=z^p$ and

$$f_n(z) = z^p - \frac{p(A-B)(p-\alpha)}{[(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta}} z^n, n \ge p+1.$$

Then $f(z) \in T(p, A, B, \alpha, c, \delta)$ if and only if it can be expressed in the form:

$$f(z) = \lambda_p f_p(z) + \sum_{n=p+1}^{\infty} \lambda_n f_n(z), \text{ also } (\lambda_n \ge 0, \lambda_p + \sum_{n=p+1}^{\infty} \lambda_n = 1)$$

Proof: Assume that

$$f(z) = \lambda_p f_p(z) + \sum_{n=p+1}^{\infty} \lambda_n f_n(z)$$
$$= z^p - \sum_{n=p+1}^{\infty} \frac{p(A-B)(p-\alpha)}{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right] \left(\frac{c+p}{c+n}\right)^{\delta}} \lambda_n z^n$$

Then, since

$$\sum_{n=p+1}^{\infty} [(1-B)(n-p) + p(A-B)(p-\alpha)] (\frac{c+p}{c+n})^{\delta} \cdot \frac{p(A-B)(p-\alpha)}{[(1-B)(n-p) + p(A-B)(p-\alpha)] (\frac{c+p}{c+n})^{\delta}} \lambda_n$$

$$= p(A-B)(p-\alpha)\sum_{n=p+1}^{\infty}\lambda_n \leq p(A-B)(p-\alpha),$$

we conclude that $f(z) \in T(p, A, B, \alpha, c, \delta)$, by virtue of Theorem (1). Conversely, let $f(z) \in T(p, A, B, \alpha, c, \delta)$. It follows then from Corollary (1) that

$$a_n \le \frac{p(A-B)(p-\alpha)}{[(1-B)(n-p) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta}}, n \ge p+1.$$

Setting

$$\lambda_n = \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+n}\right)^{\delta}}{p(A-B)(p-\alpha)}a_n$$

and

 $\lambda_p = 1 - \sum_{n=p+1}^{\infty} \lambda_n ,$ we have $f(z) = \lambda_p f_p(z) + \sum_{n=p+1}^{\infty} \lambda_n f_n(z)$,

which completes the proof of Theorem (7).

6. Convolution Property:

Here, we prove the convolution result for functions belongs to the class $T(p, A, B, \alpha, c, \delta)$.

Theorem (8): Let $f(z) = z^{p} - \sum_{n=p+1}^{\infty} a_{n} z^{n}$ and $g(z) = z - \sum_{n=p+1}^{\infty} b_{n} z^{n}$ belong to $T(p, A, B, \alpha, c, \delta)$, then $(f * g)(z) \in T(p, A, B, \alpha, c, \delta)$, where

$$c_{1} < \inf_{n} \left[\frac{n \left[\frac{[(1-B) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{2\delta}}{p(A-B)(p-\alpha)} \right] - p}{1 + \left[\frac{[(1-B) + p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{2\delta}}{p(A-B)(p-\alpha)} \right]} \right]$$

Proof: By the hypothesis, we can write

$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n}\right)^{\delta}}{p(A-B)(p-\alpha)} \right] a_n < 1$$

and
$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n}\right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n < 1$$

and by applying the Cauchy-Schwarz inequality, we have

$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] \sqrt{a_n b_n} \\ \leq \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] a_n \right)^{\frac{1}{2}} \cdot \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{\delta}}{p(A-B)(p-\alpha)} \right] b_n \right)^{\frac{1}{2}} + \left(\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p($$

However, we obtain

$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] (\frac{c+p}{c+n})^{\delta}}{p(A-B)(p-\alpha)} \right] \sqrt{a_n b_n} < 1.$$

$$(26)$$

Now, we want to prove

$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] (\frac{c_1+p}{c_1+n})^{\delta}}{p(A-B)(p-\alpha)} \right] a_n b_n < 1.$$
(27)

Let (27) holds true .Then we have

$$\sum_{n=p+1}^{\infty} \left[\frac{\left[(1-B)(n-p)+p(A-B)(p-\alpha)\right]}{p(A-B)(p-\alpha)} \right] \sqrt{a_n b_n} \left(\frac{c+p}{c+n}\right)^{\delta} \sqrt{a_n b_n} \frac{\left(\frac{c_1+p}{c_1+n}\right)^{\delta}}{\left(\frac{c+p}{c+n}\right)^{\delta}} < 1.$$
(28)

Therefore (28)(consequently (27))holds true if

$$\sqrt{a_n b_n} < \frac{\left(\frac{c+p}{c+n}\right)^{\delta}}{\left(\frac{c_1+p}{c_1+n}\right)^{\delta}}$$
(29)

but from (26) we conclude that

$$\sqrt{a_n b_n} < \frac{p(A-B)(p-\alpha)}{\left[(1-B)(n-p) + p(A-B)(p-\alpha)\right]\left(\frac{c+p}{c+n}\right)^{\delta}}$$
(30)

In view of (30) the inequality (29) holds true if

$$\frac{p(A-B)(p-\alpha)}{[(1-B)(n-p)+p(A-B)(p-\alpha)](\frac{c+p}{c+n})^{\delta}} < \frac{\left(\frac{c+p}{c+n}\right)^{\delta}}{\left(\frac{c_1+p}{c_1+n}\right)^{\delta}}$$

or equivalently $c_1 < \frac{nY^{\frac{1}{\delta}} - p}{1 + Y^{\frac{1}{\delta}}}$, where

$$Y = \frac{\left[(1-B)(n-p) + p(A-B)(p-\alpha) \right] \left(\frac{c+p}{c+n} \right)^{2\delta}}{p(A-B)(p-\alpha)}$$

and this inequality gives the required result.

References

[1] Y.Komatu, On analytic prolongation of family of operators, mathematica (Cluj), 39(55) (1990), 141-145.

[2] J.L.Liu, On a class of p-valent analytic functions, Chinese Quar.J.Math, 15(4) (2000), 27-32.

1

[3] M.Nunokawa, On the theory of multivalent functions, Tsukuba J. Math., 11(1987), 273-286.