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1. Introduction : 

Let   denote the class  of functions f(z) of the from :  
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which are analytic and meromorphic univalent in the punctured unit disk  

  U
*
={z:z   and 0< z  <1} = U\ {0}.      

Consider a subclass M of functions of the form : 
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We aim to study the class ),,,( H  consisting of functions Mf   

and satisfying :  
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for 10,10,10   and  





1

)(
1

)(
n

n

nn zDa
z

zfD                (4) 

                                                        

mailto:Waggashnd@yahoo.com
mailto:**Rafidhb@yahoo.com


 2 

(Ruscheweyh derivative of f of order   [6]) , where 
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Some another classes studied by S.M. Khairnar and Meena more [4], W.G. 

Atshan and S.R. Kulkarni [2], S.R. Kulkarni; and Mrs. S.S. Joshi [5] , N.E. 

Cho et al. [3], M.K. Aouf [1] and H.M. Srivastava and S. Owa [7] consisting 

of meromorphic univalent or meromorphic multivalent functions.  

 

2.Coefficient estimates  

In the following theorem , we obtain a coefficient inequality for functions in  

H( ),,,  .  

Theorem 1 : A function f(z) defined by (2) belongs to the class 

H ),,,(   if and only if 
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The result is sharp.  

Proof : Assume that the inequality (5) holds true and let ,1z then from 

(3), we have.  
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Hence by the principle of maximum modulus , f(z) H ),,,(  . 

Conversely, suppose that f(z) defined by (2) is in the class H ),,,(  , 

then from (4), we have  

(6) 
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Since zz )Re( for all z , we have  
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Choose the value of z on the real axis so that 
)(

))((
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 is real. Upon 

clearing the denominator of (6) and letting z1 through real values , we 

get  
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which implies the inequality(5). Sharpness of the result follows by setting  
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Corollary 1 : Let f(z) ),,,( H . Then  
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where .1  10,10,10   and   
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3. Distortion and Growth Theorems  

In the following theorems, we prove distortion and growth bounds 

associated with the class introduced in (3).  

Theorem 2: Let the function f(z) defined by (2) be in the class 

).,,,( H  Then  
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The equality in (8) is attained by the function f(z) given by  
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Proof: Since the function f(z) defined by (2) in the class ),,,( H , we 

have from Theorem 1,  
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Theorem 3 : Let the function f(z)  defined by (2)be  in the class  

),,,( H and  
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with equality for  
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Proof: Theorem 3 can be proved easily by following lines similar to 

Theorem 2.  

4.Closure Theorems  

In the next theorem, we obtain extreme points for our class ),,,( H .  

Theorem 4 : Let f0(z)=
z
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is given by ( ). Then f(z) is in the class ),,,( H if and only if it can be 

expressed in the form  
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Proof: Let  
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Using Theorem 1, we easily obtain f(z) ).,,,( H  

Conversely , let f(z) ),,,( H is of the form (2).  

Then  
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Now , we shall prove that the class ),,,( H  is closed under arithmetic 

mean and convex linear combinations.  

Let the function ),...,2,1)(( mkzfk  be defined by  
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Theorem 5 : Let the functions fk(z) defined by (9) be in the class  

),,,( H  for every k=1,2,...,m.  

Then the arithmetic mean of fk(z) (k=1,...,m) is defined by  
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Proof : Since fk(z) ),,,( H , therefore from Theorem 1, we get 
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(by (10)) which shows that g(z) ),,,( H  and this completes the 

proof .  

Theorem 6 : The class ),,,( H is closed under convex linear 

combination.  

Proof : Let the function fk(z) (k=1,2) defined by (9) be in the class 

),,,( H . We show the function.  
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Therefore by Theorem 1, we have  
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Hence by Theorem 1 , we get g(z)  ),,,( H .  

Theorem 7 : Let the function fk(z) defined by (9) be in the class 

),,,( kH 10,1 0,1 0(  k   and  nn ,1  N for each׀

k=1,2,...,m. Then the function g(z) defined by  
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Proof : Since fk(z)  ),,,( kH for each k=1,2,…,m, we note that  
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Thus , we get  
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Hence, by Theorem 1 , we have g(z)  ),,,( H , where  is given by 

(11). This completes the proof of Theorem 7.  

Theorem 8: Let the function fk(z) defined by (9) be in the class 

),,,( H  for every k=1,2,...,m. Then the function g(z) defined by  
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Proof : By definition of g(z) , we have  
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Since fk(z) are in ),,,( H  for every k=1,2,…,m, we get  
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for every k=1,2,...,m. Hence we can see that  
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