The relation between equivalent measures and the bipolar theorem Shymaa Farhan Muter Department of mathematics Collage of computer Science and mathematics University of AL-Qadisiya Diwaniya – Iraq

<u>Abstract :</u>

In this paper *if* we have Q and P are equivalent measures on the δ -field F and $C \subseteq L^{\circ}_{+}(\Omega, F, P)$. We define the polar of Cwith respect to Q, denoted by C(Q), and define bipolar $C^{\circ}(Q)$ of C with respect to Q. In this paper we study the relation between equivalent measures (p and Q) and bipolar $C^{\circ\circ}$ of C. Also we prove $C^{\circ}(Q) = C^{\circ}(P)$.

<u>1. Introduction :</u>

Bipolar theorem which states that the bipolar of subset of a locally convex vector space equals its closed convex hull [4]. Let (Ω, F, P) be a probability space and denote by $L^{\circ}(\Omega, F, P)$ the linear space of equivalent classes of IR – Valued random variables on (Ω, F, P) with the topology of convergence in measure . although this space fails to be locally convex i.e it hasn't a neighborhood base at 0 consisting of convex sets[2] the bipolar theorem can be obtained for subsets of $L^{\circ}(\Omega, F, P)$. Let *P* and *Q* be two probability measures on (Ω, F) then we say *P* equivalent to *Q* denoted by $P \approx Q$ if they have the same null – set . in this paper we study the bipolar theorem when we replace P by an equivalent measure *Q* and define the polar of subset of $L^{\circ}(\Omega, F, P)$ with respect to *Q*. we prove the bipolar with respect to *Q* and prove the bipolar with respect to *Q* coincides with the bipolar with respect to P.

2. Elementary definitions and concepts :

In this section we introduce some basic definitions in functional analysis which we need it in this paper :

<u>2.1 Definition</u> [1]. A collection *F* of subsets of a non–empty set Ω is called σ –field or σ – algebra on Ω if

1.
$$\Omega \in F$$
.

2. if $A \in F$ then $A^c \in F$.

3. if $\{A_n\}$ is a sequence of sets in *F* then $\bigcup_{n=1}^{\infty} A_n \in F$.

<u>2.2. Definition</u> [1]. A measurable space is a pair (Ω, F) where Ω is a non-empty set and *F* is a δ -field on Ω .

<u>2.3 Definition</u> [1]. any member of δ -field *F* is called a measurable set or (measurable with respect to the δ -field *F*).

<u>**2.4 Definition**</u>[6]. A measure on a δ -field *F* is a non-negative extended real valued function μ on *F*.

such that whenever A₁, A₂, A₃, ... Form a finite or countably infinite collection of disjoint sets in *F*, We have $\mu(\bigcup_n A_n) = \sum \mu(A_n)$.

If $\mu(\Omega) = 1$, μ is called a probability measure .a measure space is a triple (Ω, F, μ) Where Ω is a set, *F* is a δ -field of subsets of Ω , and μ is a measure on *F*. if μ is a probability measure on *F* then the triple (Ω, F, μ) is called probability space.

<u>**2.5 Definition**</u> [6]. let (Ω_1, F_1) and (Ω_2, F_2) be two measureable spaces a function $f: \Omega_1 \to \Omega_2$ is said to be measureable function (relative to F_1 and F_2) if $f^{-1}(B) \in F_1 \quad \forall B \in F_2$.

we say f is Borel measureable function on (Ω_1, F_1) if F_2 is the set of all open set on Ω_2 .

<u>2.6 Definition</u> [6]. let *P* and *Q* be a probability measure on measureable space (Ω, F) then we say *P* equivalent to *Q*, denoted by $P \approx Q$ if they have the same null – set i.e P(A) = 0*iff* $Q(A)=0 \ \forall A \in F$. <u>2.7Definition</u>. [6] A random variable X on a probability space (Ω, F, P) is a borel measurable function from Ω to *IR*. $X: \Omega \to IR$ is random variable iff $\forall a \in IR, \{X \le a\} \in F$.

<u>**2.8Definition</u></u>. [6] A sequence \{x_n\} of random variable is said to be converge Almost every where(surely) to a random variable x, written x_n \xrightarrow{a.s} x or x_n \xrightarrow{a.e} x if P\{\lim_{n \to \infty} x_n = x\} = 1.</u>**

<u>2.9 Definition</u>. [1] Let *F* be a δ – field of subsets of a set Ω and μ satisfy

1. $0 \le \mu(A) \le +\infty$ for every $A \in F$. 2. if $A_n \in F$, n=1,2,... and $A_i \cap A_j = 0$, $i \ne j$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

3. there is a sequence T_n , n=1,2,... in F such that $\Omega = \bigcup_{n=1}^{\infty} T_n$ and $\mu(T_n) < \infty$, n=1,2,...

then μ is still called a measure on F but the measure space (Ω, F, μ) is called δ -finite.

<u>2.10 Definition.</u> [1] Let Ω be a set and F a δ -field of subsets of Ω and Let μ be a real valued function on F such that if $A_n \in F$, $n=1,2,\ldots$ and $A_i \cap A_j = 0$ whenever $i \neq j$ then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ such a function μ is called a finite signed measure on *F*, and we write (Ω, F, μ) for the signed measure.

<u>2.11Definition</u>. [6] Let (Ω, F) be a measurable space and let μ be a measure on δ -field *F*, and *Q* is a signed measure on *F* we say that *Q* is absolutely continuous with respect to μ (notation $Q << \mu$).iff $\mu(A) = 0$ implies Q(A) = 0 ($A \in F$).

<u>2.12 theorem</u>. [6] Radon – Nikodym theorem

let μ be a δ -finite measure and Q be a signed measure on the δ - field F of subsets of Ω assume that Q is absolutely continuous with respect to μ then there is Borel measureable function f on Ω such that $Q(A) = \int_{A} f d\mu, A \in F$ if g is another such function, then $f=g a.e[\mu]$.

The function f is called the radon – Nikodym derivative or density of Q with respect to μ and is denoted by $dQ/d\mu$.

<u>**2.13** Definition</u> [7]. let (Ω, F, P) be a probability space a vector space $L^{\circ}(\Omega, F, P)$ is the space of (equivalence classes of) real –

valued measureable functions defined on (Ω, F, P) , which we equip with the topology of convergence in measure i.e. $L^{\circ}(\Omega, F, P) = \{f : \Omega \rightarrow IR, f \text{ measureable function}\}$ with topoLogyconvergence asure $orL^{\circ}(\Omega, F, P) = \{f : \Omega \rightarrow IR, frandom variable\}$

with topology converge in probability Also we denote the positive orthant of $L^0(\Omega, F, P)$ by $L^0_+(\Omega, F, P)$ i.e $L^0_+(\Omega, F, P) = \{f \in L^\circ(\Omega, F, P), f \ge 0\}.$

<u>**2.14 Definition**</u> [5]. $L'(\Omega, F, P)$ or , in short $L'(\Omega)$ the set of all real – valued , *F*- measurable function *f* defined *P*-a.e on Ω such that |f| is *p*-integrable over Ω i.e.

 $L'(\Omega, F, P) = \{f : \Omega \rightarrow IR, f \text{ measurable function } \}$

Such that $\int |f| dp < \infty$

<u>2.15 Definition</u> [5]. Let (Ω, F, P) be a probability space a *f*measurable function *f* defined on Ω is said to be essentially bounded if there exists a constant α such that $|f| < \alpha P$ -a.e now $L^{\infty}(\Omega, F, P)$, or in short, $L^{\infty}(\Omega)$ is the set of all *f*-measurable, essentially bounded functions defined *P*-a.e on Ω .

3. main Result :

Before stating the main result we recall the following definitions and introduce some theorems :

<u>3.1 Definition</u> [3]. let $C \subseteq L_{+}^{\circ}$ we define the polar C° of C by $C^{\circ} = \{ g \in L_{+}^{\circ} : E[f.g] \leq 1 \forall f \in C \}$ and bipolar $C^{\circ \circ}$ of C by $C^{\circ \circ} = \{ f \in L_{+}^{0} : E[f.g] \leq 1 \forall g \in c^{\circ} \}$

<u>3.2 Definition</u>[3]. we call a subset $C \subseteq L_+^\circ$ solid, if $f \in C$ and $0 \le g \le f$ implies that $g \in C$ the set *C* is said to be closed in probability or simply closed, if it is closed with respect to the topology of convergence in probability.

<u>**3.3 Definition**</u>[4]. A set $D \subset L^{\circ}$ is convex if $\lambda f_1 + (1 - \lambda) f_2 \in D \forall f_1, f_2 \in D \text{ and } 0 \leq \lambda \leq 1. \text{ or } D \text{ is convex if}$ $\lambda D + (1 - \lambda) D \subset D \text{ for all } 0 \leq \lambda \leq 1. \text{ for all } f_1, f_2 \in D.$

3.4 Bipolar theorem [7].

For a set $C \subset L^{\circ}_{+}(\Omega, F, P)$ the polar $C^{\circ}(P)$ is a closed, convex, solid subset of $L^{\circ}_{+}(\Omega, F, P)$. The bipolar $C^{\circ\circ}(P)$ is the smallest closed, convex, solid set in $L^{\circ}_{+}(\Omega, F, P)$ containing C. <u>**3.5** Definition</u> [7]. for $A \in F$, where F is a σ -field, we denote by $C \setminus A$ the restriction of C to A, i.e { $\gamma x_A, \gamma \in C$ } with $x_A = 1$ on A and 0 other wise. We denote similarly $P \setminus A$ the restriction of P to A.

<u>3.6 Definition</u> [3]. A subset $C \subseteq L^{\circ}(\Omega, F, P)$ is bounded in probability if , for all $\in >0$, there is M > 0 such that $P[||f|| > M] <\in$ for $f \in C$.

<u>3.7 Definition</u> [7]. we say that *C* is hereditarily unbounded on a set $B \in F$ if, for every $A \subset B$ with p(A) > 0, the restriction of *C* to A fails to be bounded in probability.

<u>**3.8** *Lemma*</u> [7]. Let C be a convex subset of $L^{\circ}_{+}(\Omega, F, P)$. There exists a partition of Ω in to disjoint sets Ωu , $\Omega_b \in F$ such that :

- 1. *C* is hereditarily unbounded in probability on Ω_u .
- 2. the restriction $C \setminus \Omega_u$ of C to Ω_u is bounded in probability. The partition { Ω_u, Ω_b } is the unique partition of Ω satisfying (1) and (2).

<u>3.9 theorem</u> [7].let C be a convex set in $L_{+}^{\circ}(\Omega, F, Q')$ such that $Q' = Q \setminus \Omega_{b}$.

- 1. If $p(\Omega_b) > 0$ then there exists probability measure *P* equivalent to *Q*' such that *C* is bounded in $L'(\Omega, F, P)$.
- 2. Let *D* be a smallest closed, convex solid set containing *C* then $D = D \setminus \Omega_b \oplus L^{\circ}_+(\Omega, F, Q) \setminus \Omega_a$.

We now introduce the main result in this paper theorem(3-11) and to prove it we need the following lemaa:

<u>3.10 lemaa</u>. if $Q \approx P$ are equivalent probability measure and h = dQ/dp is the radon – Nikodym derivative of Q with respect to P then $E_p[f.g] = E_Q[f.h^{-1}g]f, g \in L_+^\circ$.

Proof:

Since
$$h = dQ/dp \Longrightarrow dQ = hdp$$

 $E_p[f.g] = \int f.g \, dp = \int f.h.h^{-1}g \, dp = \int f.h^{-1}.g \, dQ = E_Q[f.h^{-1}.g]$
 $henceE_p[f.g] = E_Q[f.h^{-1}.g]$

<u>3.11theorem</u>. let Q be an equivalent measure to P and let $C \subseteq L_+^\circ$ and let h = dQ/dp is radon – Nikodym derivative then the polar of C with respect to Q is $C^\circ(Q) = h^{-1}C^\circ(p) = \{ h^{-1}g \in L_+^\circ : E[h^{-1}.g.f] \le 1 \forall f \in C(Q) \}$

and it is closed, convex, solid subset of L°_{+} and the bipolar of C with respect to Q is

$$C^{\circ\circ}(Q) = C^{\circ\circ}(P) = \{ f \in L_+^\circ : E[h^{-1}.g.f] \le 1 \forall h^{-1}g \in C^{\circ}(Q) \}$$

Is the smallest closed , convex , solid set in L_{+}° containing *C* . **proof** :

To prove $C^{\circ}(Q) = h^{-1}C^{\circ}(P)$, by using lemaa (3.10) since $C^{\circ}(P) = \left\{ g \in L_{+}^{\circ} : E_{p}[f.g] \leq 1 \forall f \in C \right\}$ $= \left\{ g.h.h^{-1} \in L_{+}^{\circ} : E_{p}[f.h.h^{-1}.g] \leq 1 \forall f \in C \right\}$ $= h\left\{ g.h^{-1} \in L_{+}^{\circ} : E_{Q}[f.h^{-1}.g] \leq 1 \forall f \in C \right\}$ $= hC^{\circ}(Q)$

Hence
$$C^{\circ}(P) = hC^{\circ}(Q)$$
 then $C^{\circ}(Q) = h^{-1}C^{\circ}(P)$.

Now to prove $C^{\circ}(Q)$ closed subset of L_{+}° let { τ_n } be a sequence in $C^{\circ}(Q)$ such that $\tau_n = h^{-1}g_n$ and $g \in L_{+}^{\circ}$, such that $\tau_n \to \tau and\tau = h^{-1}g$, then there exists subsequence $\{\tau_{nm}\} = \{h^{-1}g_{nm}\}inC^{\circ}(Q)$ such that $\tau_{nm} \to \tau a.e$. Hence $E[f \tau_{nm}] \to E[f\tau]$ a.e since $\{\tau_n\}$ in $C^{\circ}(Q)$ then $E[f\tau_{nm}] \leq 1 \quad \forall f \in C$ hence $E[f \tau] \leq 1 \quad \forall f \in C$ then we get

 $\tau \in C^{\circ}(Q)$ closed . hence $C^{\circ}(Q)$ is closed .

Now to prove $C^{\circ}(Q)$ is convex subset of L_{+}° let $h_1, h_2 \in C^{\circ}(Q)$ and $0 \le \lambda \le 1$.

such that $h_1 = h^{-1}g_1$ and $h_2 = h^{-1}g_2$

$$\lambda h_1 + (1 - \lambda)h_2 = \lambda h^{-1}g_1 + (1 - \lambda)h^{-1}g_2$$

= $\lambda h^{-1}g_1 + h^{-1}g_2 - \lambda h^{-1}g_2$
= $\lambda h^{-1}(g_1 - g_2) + h^{-1}g_2$

Since

$$g_1, g_2 \in L_+^{\circ} \Longrightarrow g_1 - g_2 \in L_+^{\circ} \Longrightarrow$$

$$\lambda h^{-1}(g_1 - g_2) \in L_+^{\circ} \text{ then } \lambda h^{-1}(g_1 - g_2) \in C^{\circ}(Q) \text{ and } h^{-1}g_2 \in C^{\circ}(Q).$$

then $\lambda h^{-1}(g_1 - g_2) + h^{-1}g_2 = \lambda h_1 + (1 - \lambda)h_2 \in C^{\circ}(Q)$ Hence $C^{\circ}(Q)$

is convex Subset of L_+°

To prove $C^{\circ}(Q)$ is solid subset of L_{+}° let $h_{1} = h^{-1} f \in C^{\circ}(Q)$ such that $h_{2} \leq h_{1}, h_{2} = h^{-1} g$ since $h_{1} \in C^{\circ}(Q) \Longrightarrow E[h_{1}.h] \leq 1 \forall h \in C$ and $h_{2} \leq h_{1}$ hence $E[h_{2}.h] \leq E[h_{1}.h] \leq 1 \forall h \in C$

$$\therefore h_2 \in C^{\circ}(Q) \Longrightarrow C^{\circ}(Q)$$

solid subset of L_{+}°

Now to prove $C^{\circ\circ}(Q) = C^{\circ\circ}(P)$ by using lemaa (3.10)

$$C^{\circ\circ}(P) = \{ f \in L_{+}^{\circ} : Ep[f.g] \le 1 \ \forall g \in C^{\circ}(P) \}$$
$$= \{ f \in L_{+}^{\circ} : E_{Q}[f.h^{-1}g] \le 1 \ \forall h^{-1}g \in C^{\circ}(Q) \}$$
$$= C^{\circ\circ}(Q)$$

Hence we get the bipolar of C with respect to Q is coincide to the bipolar of C with respect to P.

Now To prove $C^{\circ\circ}(Q)$ is the smallest closed, convex, solid set containing C, Since $C^{\circ\circ}(Q) = (C^{\circ}(Q))^{\circ}$ is the polar of $C^{\circ}(Q)$, then $C^{\circ\circ}(Q)$ is closed, convex, solid set in L°_{+} containing C.

Let *B* be a smallest closed , convex , solid in $L^{\circ}_{+}(\Omega, F, Q)$ containing *C*. then $B \subseteq C^{\circ\circ}(Q)$. To prove $C^{\circ\circ}(Q) \subseteq B$, we will prove by the contradiction method, let $f_{\circ} \in C^{\circ\circ}(Q)$ Such that $f_{\circ} \notin B$, if $P(\Omega_{b}) > 0$ then by theorem 3.9 there exists probability measure μ equivalent to $\mu' = Q \setminus \Omega_{b}$ such that *B* is bounded in $L'(\Omega, F, \mu)$.

Now let $B_b = \{f \setminus \Omega b : f \in B\}$ then $B_b \subset B$, B_b closed, bounded and convex set in $L_+^{\circ}(\Omega, F, \mu)$ Put

$$B_{b}^{*} = \{K \in L_{+}^{1}(\Omega, F, \mu) : \exists g \in B_{b} \text{ s.t } K \leq g \ \mu - a.s\}$$

Then $B_{+}^{*} \subset B, B_{b}^{*}$ closed , convex in $L_{+}^{1}(\Omega, F, \mu)$ put
 $f_{b} = f_{\circ} \setminus \Omega_{b}$ To prove $f_{b} \in B($ equivalently in B_{b} or $B_{b}^{*})$.
Let $f_{b} \in L_{+}^{1}(\Omega, F, \mu)$ But $f_{b} \in B_{b}^{*}$, Since B_{b}^{*} closed , convex in
 $L_{+}^{1}(\Omega, F, \mu)$ then we get $I \in L_{+}^{\infty}(\Omega, F, \mu)$ and $I = h^{-1}J$ such that
 $E[f_{b}.I] > 1$ but $E[K.I] \leq 1 \quad \forall K \in B_{b}^{*}$, $C \subseteq B_{b}^{*}$ to prove that let
 $f \in C$, since $C \subset B \Rightarrow f \in B$ then $f \setminus \Omega_{b} \in B_{b}$ and since
 $f \leq f \setminus \Omega_{b}$ then $f \in B_{b}^{*}$ then

 $E[I.n] \le 1 \quad \forall n \in C(Q), I \ge 0$ considering I as an element of $L^{\circ}_{+}(\Omega, F, Q)$ we therefore have that $I \in C^{\circ}(Q)$ and this contradiction $E[f_b.I] > 1$ then $f_b \notin C^{\circ\circ}(Q)$ then $f_{\circ} \notin C^{\circ\circ}(Q)$ and this contradiction.

References :

- 1. C.Goffman and G. pedrick " first course in functional analysis"1993.
- 2. E.W.packel "functional analysis a short course "1974.
- 3. G. Zitkovic "Afiltered version of the bipolar theorem of Brannath and Schachermayer" 2001, pp. 1-20.
- 4. J.B.Conway " A course in functional analysis " second edition, 1990.
- 5. K. Yosida " functional analysis " sixth edition , 1980 .
- 6. R. B.Ash "Real analysis and probability "1972.
- S.Farhan "Bipolar theorem in non-locally convex Space" MSC.Thesis2005.