The relation between equivalent measures and the bipolar

theorem

Shymaa Farhan Muter

Department of mathematics

Collage of computer Science and mathematics
University of AL-Qadisiya
Diwaniya - Iraq

Abstract:

In this paper if we have Q and P are equivalent measures on the δ-field F and $C \subseteq L_{+}^{\circ}(\Omega, F, P)$. We define the polar of C with respect to Q, denoted by $C(Q)$, and define bipolar $C^{\circ \circ}(Q)$ of C with respect to Q.In this paper we study the relation between equivalent measures (p and Q) and bipolar $C^{\circ \circ}$ of C . Also we prove $C^{0 \circ}(Q)=C^{\circ \circ}(P)$.

1. Introduction :

Bipolar theorem which states that the bipolar of subset of a locally convex vector space equals its closed convex hull [4].

Let (Ω, F, P) be a probability space and denote by $L^{\circ}(\Omega, F, P)$ the linear space of equivalent classes of $I R-$ Valued random variables on (Ω, F, P) with the topology of convergence in measure . although this space fails to be locally convex i.e it
hasn't a neighborhood base at 0 consisting of convex sets[2] the bipolar theorem can be obtained for subsets of $L^{\circ}(\Omega, F, P)$. Let P and Q be two probability measures on (Ω, F) then we say P equivalent to Q denoted by $P \approx Q$ if they have the same null set . in this paper we study the bipolar theorem when we replace P by an equivalent measure Q and define the polar of subset of $L^{\circ}(\Omega, F, P)$ with respect to Q. we prove the bipolar with respect to Q. and prove the bipolar with respect to Q coincides with the bipolar with respect to P .

2. Elementary definitions and concepts:

In this section we introduce some basic definitions in functional analysis which we need it in this paper :
2.1 Definition [1]. A collection F of subsets of a non-empty set Ω is called σ-field or σ - algebra on Ω if

1. $\Omega \in F$.
2. if $A \in F$ then $A^{c} \in F$.
3. if $\left\{A_{n}\right\}$ is a sequence of sets in F then ${\underset{n=1}{\infty} A_{n} \in F \text {. } . . . \text {. }}^{\infty}$
2.2. Definition [1]. A measurable space is a pair (Ω, F) where Ω is a non-empty set and F is a δ-field on Ω.
2.3 Definition [1]. any member of δ - field F is called a measurable set or (measurable with respect to the δ - field F).
2.4 Definition [6] . A measure on a δ - field F is a non-negative extended real valued function μ on F.
such that whenever $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ Form a finite or countably infinite collection of disjoint sets in F, We have $\mu\left(\cup_{n} A_{n}\right)=\sum \mu\left(A_{n}\right)$.

If $\mu(\Omega)=1, \mu$ is called a probability measure .a measure space is a triple (Ω, F, μ) Where Ω is a set , F is a δ-field of subsets of Ω, and μ is a measure on F. if μ is a probability measure on F then the triple (Ω, F, μ) is called probability space.
2.5 Definition [6]. let $\left(\Omega_{1}, F_{1}\right)$ and $\left(\Omega_{2}, F_{2}\right)$ be two measureable spaces a function $f: \Omega_{1} \rightarrow \Omega_{2}$ is said to be measureable function (relative to F_{1} and F_{2}) if $f^{-1}(B) \in F_{1} \forall B \in F_{2}$. we say f is Borel measureable function on $\left(\Omega_{1}, F_{1}\right)$ if F_{2} is the set of all open set on Ω_{2}.
2.6 Definition [6]. let P and Q be a probability measure on measureable space (Ω, F) then we say P equivalent to Q, denoted by $P \approx Q$ if they have the same null - set i.e $P(A)=0$ iff $Q(A)=0 \quad \forall A \in F$.
2.7Definition. [6] A random variable X on a probability space (Ω, F, P) is a borel measurable function from Ω to $I R$. $\mathrm{X}: \Omega \rightarrow I R$ is random variable iff $\forall a \in I R,\{X \leq a\} \in F$.
2.8Definition. [6] A sequence $\left\{x_{n}\right\}$ of random variable is said to be converge Almost every where(surely) to a random variable x, written $x_{n} \xrightarrow{a . s} x$ or $x_{n} \xrightarrow{a . e} x$ if $P\left\{\lim _{n \rightarrow \infty} x_{n}=x\right\}=1$.
2.9 Definition. [1] Let F be a δ-field of subsets of a set Ω and μ satisfy

1. $0 \leq \mu(A) \leq+\infty$ for every $A \in F$.
2. if $\quad A_{n} \in F, \quad \mathrm{n}=1,2, \ldots \quad$ and $\quad A_{i} \cap A_{j}=0, \quad i \neq j, \quad$ then

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

3. there is a sequence $T_{n}, \mathrm{n}=1,2, \ldots$ in F such that $\Omega=\bigcup_{n=1}^{\infty} T_{n}$ and

$$
\mu\left(T_{n}\right)<\infty, \mathrm{n}=1,2, \ldots
$$

then μ is still called a measure on F but the measure space (Ω, F, μ) is called δ-finite.
2.10 Definition. [1] Let Ω be a set and F a δ-field of subsets of Ω and Let μ be a real valued function on F such that if $A_{n} \in F, \quad \mathrm{n}=1,2, \ldots \quad$ and $A_{i} \cap A_{j}=0 \quad$ whenever $i \neq j$ then
$\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ such a function μ is called a finite signed measure on F, and we write (Ω, F, μ) for the signed measure.
2.11Definition. [6] Let ($\Omega, F)$ be a measurable space and let μ be a measure on δ-field F, and Q is a signed measure on F we say that Q is absolutely continuous with respect to μ (notation $Q \ll \mu)$.iff $\mu(\mathrm{A})=0$ implies $Q(\mathrm{~A})=0 \quad(\mathrm{~A} \in F)$.
2.12 theorem \cdot [6] Radon-Nikodym theorem
let μ be a δ-finite measure and Q be a signed measure on the δ - field F of subsets of Ω.assume that Q is absolutely continuous with respect to μ.then there is Borel measureable function f on Ω such that $Q(A)=\int_{A} f d \mu, A \in F$ if g is another such function, then $f=g$ a.e $[\mu]$.

The function f is called the radon - Nikodym derivative or density of Q with respect to μ and is denoted by $d Q / d \mu$.
$\underline{\text { 2.13 Definition [7]. let }(\Omega, F, P) \text { be a probability space a vector }}$ space $L^{\circ}(\Omega, F, P)$ is the space of (equivalence classes of) real -
valued measureable functions defined on (Ω, F, P), which we equip with the topology of convergence in measure i.e. $L^{\circ}(\Omega, F, P)=\{f: \Omega \rightarrow I R, f$ measureable function $\}$ with topoLogyconvergein measure $\operatorname{orL}^{\circ}(\Omega, F, P)=\{f: \Omega \rightarrow I R$, frandomvariable $\}$ with topology converge in probability Also we denote the positive orthant of $L^{0}(\Omega, F, P)$ by $L_{+}^{0}(\Omega, F, P)$ i.e $L_{+}^{0}(\Omega, F, P)=\left\{f \in L^{\circ}(\Omega, F, P), f \geq 0\right\}$.
2.14 Definition [5]. $L^{\prime}(\Omega, F, P)$ or , in short $L^{\prime}(\Omega)$ the set of all real - valued , F - measurable function f defined P-a.e on Ω such that $|f|$ is p-integrable over Ω i.e . $L^{\prime}(\Omega, F, P)=\{f: \Omega \rightarrow I R, f$ measurable function $\}$

Such that $\int|f| d p<\infty$
2.15 Definition [5]. Let (Ω, F, P) be a probability space a f measurable function f defined on Ω is said to be essentially bounded if there exists a constant α such that $|f|<\alpha P$-a.e now $L^{\infty}(\Omega, F, P)$, or in short , $L^{\infty}(\Omega)$ is the set of all f-measurable , essentially bounded functions defined P-a.e on Ω.

3. main Result:

Before stating the main result we recall the following definitions and introduce some theorems :
3.1 Definition [3]. let $C \subseteq L_{+}^{\circ}$ we define the polar C° of C by $C^{\circ}=\left\{g \in L_{+}^{\circ}: E[f . g] \leq 1 \forall f \in C\right\}$ and bipolar $C^{\circ \circ}$ of C by $C^{\infty}=\left\{f \in L_{+}^{0}: E[f . g] \leq 1 \forall g \in c^{\circ}\right\}$
3.2 Definition[3]. we call a subset $C \subseteq L_{+}^{\circ}$ solid, if $f \in C$ and $0 \leq g \leq f$ implies that $g \in C$ the set C is said to be closed in probability or simply closed, if it is closed with respect to the topology of convergence in probability .
3.3 Definition[4]. A set $D \subset L^{\circ}$ is convex if $\lambda f_{1}+(1-\lambda) f_{2} \in D \forall f_{1}, f_{2} \in D$ and $0 \leq \lambda \leq 1$. or D is convex if $\lambda D+(1-\lambda) D \subset D$ forall $0 \leq \lambda \leq 1$. for all $f_{1}, f_{2} \in D$.

3.4 Bipolar theorem [7].

For a set $C \subset L_{+}^{\circ}(\Omega, F, P)$ the polar $C^{\circ}(P)$ is a closed, convex, solid subset of $L_{+}^{\circ}(\Omega, F, P)$. The bipolar $C^{\circ \circ}(P)$ is the smallest closed, convex, solid set in $L_{+}^{\circ}(\Omega, F, P)$ containing C.
3.5 Definition [7]. for $A \in F$, where F is a σ-field, we denote by $C C_{A}$ the restriction of C to A, i.e $\left\{\gamma x_{A}, \gamma \in C\right\}$ with $x_{A}=1$ on A and 0 other wise. We denote similarly $P \backslash A$ the restriction of P to A.
3.6 Definition [3]. A subset $C \subseteq L^{\circ}(\Omega, F, P)$ is bounded in probability if , for all $\in>0$, there is $M>0$ such that $P[\|f\|>M]<\in$ for $f \in C$.
3.7 Definition [7]. we say that C is hereditarily unbounded on a set $B \in F$ if, for every $A \subset B$ with $p(\mathrm{~A})>0$, the restriction of C to A fails to be bounded in probability .
3.8 Lemma [7]. Let C be a convex subset of $L_{+}^{\circ}(\Omega, F, P)$. There exists a partition of Ω in to disjoint sets $\Omega u, \Omega_{b} \in F$ such that :

1. C is hereditarily unbounded in probability on Ω_{u}.
2. the restriction $C \backslash \Omega_{u}$ of C to Ω_{u} is bounded in probability. The partition $\left\{\Omega_{u}, \Omega_{b}\right\}$ is the unique partition of Ω satisfying (1) and (2) .
3.9 theorem [7].let C be a convex set in $L_{+}^{\circ}\left(\Omega, F, Q^{\prime}\right)$ such that $Q^{\prime}=Q \backslash \Omega_{b}$.
3. If $p\left(\Omega_{b}\right)>0$ then there exists probability measure P equivalent to Q^{\prime} such that C is bounded in $L^{\prime}(\Omega, F, P)$.
4. Let D be a smallest closed, convex solid set containing C then $D=D \backslash \Omega_{b} \oplus L_{+}^{\circ}(\Omega, F, Q) \backslash \Omega_{a}$.

We now introduce the main result in this paper

 theorem(3-11) and to prove it we need the following lemaa:3.10 lemaa . if $Q \approx P$ are equivalent probability measure and $h=d Q / d p$ is the radon - Nikodym derivative of Q with respect to P then $E_{p}[f . g]=E_{Q}\left[f . h^{-1} g\right] f, g \in L_{+}^{\circ}$.

Proof :

Since $h=d Q / d p \Rightarrow d Q=h d p$
$E_{p}[f \cdot g]=\int f \cdot g d p=\int f \cdot h \cdot h^{-1} g d p=\int f \cdot h^{-1} \cdot g d Q=E_{Q}\left[f \cdot h^{-1} \cdot g\right]$ hence $E_{p}[f . g]=E_{Q}\left[f . h^{-1} . g\right]$
3.11theorem. let Q be an equivalent measure to P and let $C \subseteq L_{+}^{\circ}$ and let $h=d Q / d p$ is radon - Nikodym derivative then the polar of C with respect to Q is $C^{\circ}(Q)=h^{-1} C^{\circ}(p)=\left\{h^{-1} g \in L_{+}^{\circ}: E\left[h^{-1} . g . f\right] \leq 1 \forall f \in C(Q)\right\}$
and it is closed, convex, solid subset of L_{+}° and the bipolar of C with respect to Q is

$$
C^{\circ \circ}(Q)=C^{\circ \circ}(P)=\left\{f \in L_{+}^{\circ}: E\left[h^{-1} \cdot g . f\right] \leq 1 \forall h^{-1} g \in C^{\circ}(Q)\right\}
$$

Is the smallest closed, convex, solid set in L_{+}° containing C.

proof :

To prove $C^{\circ}(Q)=h^{-1} C^{\circ}(P)$, by using lemaa (3.10) since $C^{\circ}(P)=\left\{g \in L_{+}^{\circ}: E_{p}[f . g] \leq 1 \forall f \in C\right\}$
$=\left\{g . h . h^{-1} \in L_{+}^{\circ}: E_{P}\left[f . h . h^{-1} \cdot g\right] \leq 1 \forall f \in C\right\}$
$=h\left\{g . h^{-1} \in L_{+}^{\circ}: E_{Q}\left[f . h^{-1} . g\right] \leq 1 \quad \forall f \in C\right\}$
$=h C^{\circ}(Q)$
Hence $C^{\circ}(P)=h C^{\circ}(Q)$ then $C^{\circ}(Q)=h^{-1} C^{\circ}(P)$.
Now to prove $C^{\circ}(Q)$ closed subset of L_{+}° let $\left\{\tau_{n}\right\}$ be a sequence in $C^{\circ}(Q)$ such that $\tau_{n}=h^{-1} g_{n}$ and $g \in L_{+}^{\circ}$, such that $\tau_{n} \rightarrow \tau$ and $\tau=h^{-1} g$, then there exists subsequence $\left\{\tau_{n m}\right\}=\left\{h^{-1} g_{n m}\right\}$ in $C^{\circ}(Q)$ such that $\tau_{n m} \rightarrow \tau$ a.e.

Hence $E\left[f \tau_{n m}\right] \rightarrow E[f \tau]$ a.e since $\left\{\tau_{n}\right\}$ in $C^{\circ}(Q)$ then
$E\left[f \tau_{n m}\right] \leq 1 \forall f \in C$ hence $E[f \tau] \leq 1 \forall f \in C$ then we get $\tau \in C^{\circ}(Q)$ closed . hence $C^{\circ}(Q)$ is closed.

Now to prove $C^{\circ}(Q)$ is convex subset of L_{+}° let $h_{1}, h_{2} \in C^{\circ}(Q)$ and $0 \leq \lambda \leq 1$.
such that $h_{1}=h^{-1} g_{1}$ and $h_{2}=h^{-1} g_{2}$
$\lambda h_{1}+(1-\lambda) h_{2}=\lambda h^{-1} g_{1}+(1-\lambda) h^{-1} g_{2}$
$=\lambda h^{-1} g_{1}+h^{-1} g_{2}-\lambda h^{-1} g_{2}$
$=\lambda h^{-1}\left(g_{1}-g_{2}\right)+h^{-1} g_{2}$
Since
$g_{1}, g_{2} \in L_{+}^{\circ} \Rightarrow g_{1}-g_{2} \in L_{+}^{\circ} \Rightarrow$
$\lambda h^{-1}\left(g_{1}-g_{2}\right) \in L_{+}^{\circ}$ then $\lambda h^{-1}\left(g_{1}-g_{2}\right) \in C^{\circ}(Q)$ and $h^{-1} g_{2} \in C^{\circ}(Q)$.
then $\lambda h^{-1}\left(g_{1}-g_{2}\right)+h^{-1} g_{2}=\lambda h_{1}+(1-\lambda) h_{2} \in C^{\circ}(Q)$
HenceC ${ }^{\circ}(Q)$
is convex Subset of L_{+}°
To prove $C^{\circ}(Q)$ is solid subset of L_{+}° let $h_{1}=h^{-1} f \in C^{\circ}(Q)$ such that $h_{2} \leq h_{1}, h_{2}=h^{-1} g$ since $h_{1} \in C^{\circ}(Q) \Rightarrow E\left[h_{1} . h\right] \leq 1 \forall h \in C$ and $h_{2} \leq h_{1}$ hence
$E\left[h_{2} . h\right] \leq E\left[h_{1} . h\right] \leq 1 \quad \forall h \in C$
$\therefore h_{2} \in C^{\circ}(Q) \Rightarrow C^{\circ}(Q)$
solid subset of L_{+}°
Now to prove $C^{\circ \circ}(Q)=C^{\circ \circ}(P)$ by using lemaa (3.10)

$$
\begin{aligned}
C^{\circ \circ}(P) & =\left\{f \in L_{+}^{\circ}: E p[f . g] \leq 1 \forall g \in C^{\circ}(P)\right\} \\
& =\left\{f \in L_{+}^{\circ}: E_{Q}\left[f . h^{-1} g\right] \leq 1 \quad \forall h^{-1} g \in C^{\circ}(Q)\right\} \\
& =C^{\circ \circ}(Q)
\end{aligned}
$$

Hence we get the bipolar of C with respect to Q is coincide to the bipolar of C with respect to P.

Now To prove $C^{\circ \circ}(Q)$ is the smallest closed, convex, solid set containing C , Since $C^{\circ \circ}(Q)=\left(C^{\circ}(Q)\right)^{\circ}$ is the polar of $C^{\circ}(Q)$, then $C^{\circ \circ}(Q)$ is closed, convex, solid set in L_{+}° containing C.
Let B be a smallest closed , convex , solid in $L_{+}^{\circ}(\Omega, F, Q)$ containing $\quad C$. then $B \subseteq C^{\circ \circ}(Q)$. To prove $C^{\circ \circ}(Q) \subseteq B$, we will prove by the contradiction method, let $f_{\circ} \in C^{\circ \circ}(Q)$ Such that $f_{\circ} \notin B$, if $P\left(\Omega_{b}\right)>0$ then by theorem 3.9 there exists probability measure μ equivalent to $\mu^{\prime}=Q \backslash \Omega_{b}$ such that B is bounded in $L^{\prime}(\Omega, F, \mu)$.

Now let $B_{b}=\{f \backslash \Omega b: f \in B\}$ then $B_{b} \subset B, B_{b}$ closed, bounded and convex set in $L_{+}^{\circ}(\Omega, F, \mu)$ Put

$$
B_{b}^{*}=\left\{K \in L_{+}^{1}(\Omega, F, \mu): \exists g \in B_{b} \text { s.t } K \leq g \mu-a . s\right\}
$$

Then $B_{+}^{*} \subset B, B_{b}^{*}$ closed, convex in $L_{+}^{1}(\Omega, F, \mu)$ put $f_{b}=f_{\circ} \backslash \Omega_{b}$ To prove $f_{b} \in B$ (equivalently in B_{b} or $\left.B_{b}^{*}\right)$.

Let $f_{b} \in L_{+}^{1}(\Omega, F, \mu)$ But $f_{b} \in B_{b}^{*}$, Since B_{b}^{*} closed, convex in $L_{+}^{1}(\Omega, F, \mu)$ then we get $I \in L_{+}^{\infty}(\Omega, F, \mu)$ and $I=h^{-1} J$ such that $E\left[f_{b} . I\right]>1$ but $E[K . I] \leq 1 \quad \forall K \in B_{b}^{*}, C \subseteq B_{b}^{*}$ to prove that let $f \in C, \quad$ since $\quad C \subset B \Rightarrow f \in B$ then $\quad f \backslash \Omega_{b} \in B_{b}$ and since $f \leq f \backslash \Omega_{b}$ then $f \in B_{b}^{*}$ then
$E[I . n] \leq 1 \quad \forall n \in C(Q), I \geq 0$ considering I as an element of $L_{+}^{\circ}(\Omega, F, Q)$ we therefore have that $I \in C^{\circ}(Q)$ and this contradiction $E\left[f_{b} . I\right]>1$ then $f_{b} \notin C^{\circ \circ}(Q)$ then $f_{\circ} \notin C^{\circ \circ}(Q)$ and this contradiction .

References:

1. C.Goffman and G. pedrick " first course in functional analysis"1993.
2. E.W.packel " functional analysis a short course " 1974 .
3. G. Zitkovic "Afiltered version of the bipolar theorem of Brannath and Schachermayer" 2001, pp. 1-20 .
4. J.B.Conway " A course in functional analysis " second edition, 1990 .
5. K. Yosida " functional analysis " sixth edition, 1980 .
6. R. B.Ash " Real analysis and probability " 1972.
7. S.Farhan " Bipolar theorem in non-locally convex Space" MSC.Thesis2005.
