On The λ- Choquet Integral with Respect to λ- Fuzzy Measure By Asraa Abd Zed Al-Qadisiya University College of Computer Science and Mathematic Department of Mathematics

Abstract

We define the λ - fuzzy measure and the λ - Choquet integral for a measurable function with respect to λ - fuzzy measure. Also the relation between this integral and plausibility (belief) measure was given. In addition we explain every λ - fuzzy measure is fuzzy measure.

1-Introduction

The Choquet integral [4] for a non-negative measurable function can be taken with respect to λ - fuzzy measure. The term \Im is referred to a δ -algebra on a set X, where (X, \Im) a measurable space.

We say that $f: X \rightarrow [0,\infty]$ is measurable [5] with respect to \Im if For any $r \in [0,\infty)$

 $f^{-1}([r,\infty)) = \{x \in X; f(x) \ge r\} \in \mathfrak{I}$

If (X, \mathfrak{I}) a measurable space, a function $\beta:\mathfrak{I} \rightarrow [0,1]$ is called to be belief measure[2] if it verifying the following properties:

 $1 - \beta(\phi) = 0.$

 $2-\beta(x)=1.$

 $3 - \beta(A \cup B) \ge \beta(A) + \beta(B), \forall A, B \in \mathfrak{I}$

A function $p: \Im \rightarrow [0,1]$ is called to be plausibility measure[2] if it verifying the following properties:

$$1 - p(\phi) = 0.$$

$$2 - p(X) = 1.$$

$$3 - p(A \cup B) \le p(A) + p(B), \forall A, B \in \mathfrak{I}$$

2-Main results

Definition 2.1 [2]. A collection of subset of a set X is called a δ -algebra (algebra) on X if: $1 - X \in \mathfrak{J}$.

$$2 - If \quad A \in \Im then \quad A^c \in \Im.$$

$$3 - If \quad A_i \in \Im then \quad \bigcup_{i=1}^{\infty} A_i \in \Im(\bigcup_{i=1}^n A_i \in \Im) i = 1, 2, \dots$$

Definition 2.2 [2]. A measurable space is a pair (X, \mathfrak{I}) where X is a non-empty set and \mathfrak{I} is a δ -algebra on X. A subset A of X is called measurable if $A \in \mathfrak{I}$. i.e. any number of \mathfrak{I} is called a measurable set.

Definition 2.3 [5]. Let(X₁, \mathfrak{I}_1) and (X₂, \mathfrak{I}_2) be two measurable spaces .A function f:X₁ \rightarrow X₂ is called measurable (relative to \mathfrak{I}_1 and \mathfrak{I}_2) if

 $f^{-1}(B) \in \mathfrak{I}_1, \quad \forall B \in \mathfrak{I}_2.$

Definition2.4 [4].Let (X, \mathfrak{I}) be a measurable space. A fuzzy measure μ is an extended real valued set function, $\mu: \mathfrak{I} \to \mathfrak{R}^+$ with the following properties: 1- $\mu(\phi)=0$. 2- $\mu(A) \leq \mu(B)$ whenever $A \subseteq B$, where $A, B \in \mathfrak{I}$ and $\mathfrak{R}^+=[0,\infty]$.

Definition 2.5. Let(X, \mathfrak{I}) be a measurable space. A λ -fuzzy measure is an extended real valued set function, $\lambda:\mathfrak{I} \to \mathfrak{R}^+$ with the following properties: $1 - \lambda(\phi) = 0.$ $2 - A \subseteq B \quad implies\lambda(A) \leq \lambda(B).$ $3 - \lambda(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \lambda(A_i).$

Proposition 2.6. Every λ -fuzzy measure is fuzzy measure. **Proof.** It is follows by definition 2.5 and definition 2.4.

Definition 2.7 [5]. let A_1, A_2, \dots be subsets of a set X . If $A_1 \subset A_2 \subset \dots$ and

$$\bigcup_{n=1}^{\infty} A_n = A$$

we say that the A_n form an increasing sequence of sets with limit A, or that the A_n increase to A, we write $A_n \uparrow A$.

Definition 2.8[3]. A fuzzy measure $\mu: \mathfrak{T} \to \mathfrak{R}^+$ is called lower continuous if $A_n \uparrow A, (A_n) \subset A, A \in \mathfrak{T} \Rightarrow$, and denote it by $\bigvee_{n=1}^{\infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$, where $\bigvee_{n=1}^{\infty} \mu(A_n) = \mu(A)$ $\mu(A_n) \uparrow \mu(A)$.

Definition 2.9. A λ -fuzzy measure, $\lambda: \mathfrak{I} \to \mathfrak{R}^+$ is called lower continuous if $A_n \uparrow A$, $(A_{n} \subset A, A \in \mathfrak{I} \Longrightarrow \lambda(A_n) \uparrow \lambda(A)$.

Definition 2.10[3].A fuzzy measure $\mu: \mathfrak{I} \to \mathfrak{R}^+$ is called a belief measure if for any $n \in \mathbb{N}$ and any $A_1, A_2, \ldots, A_n \in \mathfrak{I}$

$$\mu(\bigcup_{i=1}^{n} A_{i}) \leq \sum_{I} (-1)^{|I|+1} \mu(\bigcap_{i \in I} A_{i})$$

Where the summations is taken over all non-empty subsets I of $\{1,2,3,\ldots n\}$ and |I| denotes the cardinal number of I.

Definition 2.11. A λ - fuzzy measure λ : $\Im \rightarrow \Re^+$ is called a belief measure if for any $n \in \mathbb{N}$ and any $A_1, A_2, \dots, A_n \in \mathfrak{I}$

$$\lambda(\bigcup_{i=1}^{n} A_{i}) \leq \sum_{I} (-1)^{|I|+1} \lambda(\bigcap_{i \in I} A_{i})$$

Definition 2.12[3]. A fuzzy measure $\mu: \mathfrak{I} \to \mathfrak{R}^+$ is called a plausibility measure if for any $n \in N$ and any $A_1, A_2, \dots, A_n \in \mathfrak{I}$

$$\mu(\bigcap_{i=1}^{n} A) \le \sum_{I} (-1)^{|I|+1} \mu(\bigcup_{i \in I} A_{i})$$

Definition 2.13. A λ - fuzzy measure $\lambda:\mathfrak{I} \to \mathfrak{R}^+$ is called a plausibility measure if for any $n \in N$ and any $A_1, A_2, \dots, A_n \in \mathfrak{I}$

$$\lambda(\bigcap_{i=1}^{n} A) \leq \sum_{I} (-1)^{|I|+1} \lambda(\bigcup_{i \in I} A_{i})$$

Definition 2.14. Let $f: (X, \mathfrak{T}) \to \mathfrak{R}^+$ be a measurable function, $\lambda: \mathfrak{T} \to \mathfrak{R}^+$ be a λ -fuzzy measure and $A \in \mathfrak{I}$, then we define the λ – Choquet integral

 $(C) \int_{A} f d\mathcal{X}$ By the formula

$$(C)\int_{A} f d\lambda = \int_{0}^{\infty} \lambda(\{x \in A, f(x) > r\}) dr$$
$$= \int_{0}^{\infty} \lambda(A \cap \{x \in X, f(x) > r\}) dr.$$

Definition 2.15 [1]. A non-negative finite –valued function f(x), taking only a finite number of different values, is called a simple function .If a₁,a₂...a_m are the distinct values taken by f and $A_i = \{x \mid f(x) = a_i\}$, then

.And the integral of f with respect to μ is given by

$$f(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)$$

$$\int f d\mu = \sum_{i=1}^m a_i \mu(A_i).$$

Theorem 2.16.let f be anon-negative real measurable function with respect to a measurable space (X, \mathfrak{I}), X $\in \mathfrak{I}$, $\lambda: \mathfrak{I} \rightarrow \mathfrak{R}^+$ be a λ -fuzzy measure. Define g: $\mathfrak{I} \to \mathfrak{R}^+$ by the formula

$$g(A) = (C) \int_{A} f d\lambda.$$

1-g is a λ –fuzzy measure.

2-g is lower continuous, wherever λ is lower continuous.

Then

3-If λ is lower continuous and plausibility measure, then g is plausibility measure, too. 4-If λ is lower continuous and belief measure, then g is belief measure, too.

Proof: (1) $g(\phi) = \int_{0}^{\infty} \lambda(\phi) dr = 0.$ If A \subseteq B, then $g(A) = \int_{0}^{\infty} \lambda(A \cap \{x \in X; f(x) > r\}) dr$ $\leq \int_{0}^{\infty} \lambda(B \cap \{x \in X; f(x) > r\}) dr = g(B).$ $let \quad Ai \in \mathfrak{I}, i = 1, 2, ..., n$ $then \quad g(\bigcup_{i=1}^{n} A_{i}) = \int_{0}^{\infty} \lambda\left((\bigcup_{i=1}^{n} A_{i}) \cap \{x \in X; f(x) > r\}\right) dr$ $= \int_{0}^{\infty} \lambda(\bigcup_{i=1}^{n} (A_{i} \cap \{x \in X, f(x) > r\})) dr$ $\leq \int_{0}^{\infty} \sum_{i=1}^{n} \lambda(Ai \cap \{x \in X; f(x) > r\}) dr$ $= \sum_{i=1}^{n} \int_{0}^{\infty} \lambda(A_{i} \cap \{x \in X; f(x) > r\}) dr$ $= \sum_{i=1}^{n} g(A_{i}).$ (2)

let λ be lower continuous and let $A_n {\uparrow} A$

$$\bigvee_{n=1}^{\infty} g(A_n) = \bigvee_{n=1}^{\infty} \int_{0}^{\infty} \lambda(A_n \cap \{x \in X; f(x) > r\}) dr$$
$$= \int_{0}^{\infty} \bigvee_{n=1}^{\infty} \lambda(A_n \cap \{x \in X; f(x) > r\}) dr$$
$$= \int_{0}^{\infty} \lambda(\bigcup_{n=1}^{\infty} (A_n \cap \{x \in X; f(x) > r\})) dr$$
$$= \int_{0}^{\infty} \lambda((\bigcup_{n=1}^{\infty} A_n) \cap \{x \in X, f(x) > r\}) dr$$
$$= \int_{0}^{\infty} \lambda(A \cap \{x \in X, f(x) > r\}) dr$$
$$.= (C) \int_{A} f d\lambda$$
$$= g(A)$$

(3)

Let λ be lower continuous and plausibility measure. Take simple functions f_n

$$f_n = \sum_{i=1}^m a_i X_{A_i}, 0 = a_0 < a_1 < \dots < a_m, \text{ such that } f_n \uparrow f. \text{Fixed n and put}$$

A_i disjoin .Denote

$$g_n(A) = (C) \int_A f_n d\lambda$$

$$= \int_0^\infty \lambda (A \cap \{x \in X; f_n(x) > r\}) dr$$

$$= \sum_{i=1}^m (a_i - a_{i-1}) \lambda (A \cap (A_i \cup A_{i+1} \dots \cup A_m))$$

$$= \sum_{i=1}^m (a_i - a_{i-1}) \lambda (A \cap B_i);$$
where

$$B_i = A_i \cup A_{i+1} \cup \dots \cup A_m. \quad then$$

$$g_n(\bigcap_{j=1}^k C_j) = \sum_{i=1}^m (a_i - a_{i-1}) \lambda (\bigcap_{j=1}^k C_j \cap B_i)$$

$$\leq \sum_{i=1}^m (a_i - a_{i-1}) \sum_I (-1)^{|I|+1} \lambda (\bigcap_{j=1}^k (\bigcup_{j\in I} C_j) \cap B_i))$$

$$= \sum_I (-1)^{|I|+1} \sum_{i=1}^m (a_i - a_{i-1}) \lambda (\bigcap_{j=1}^k (\bigcup_{j\in I} C_j) \cap B_i))$$

$$= \sum_{I} (-1)^{|I|+1} g_n (\bigcup_{j \in I} C_j),$$

hence

$$g_{n}(\bigcap_{j=1}^{k} C_{j}) \leq \sum_{I} (-1)^{|I|+1} g_{n}(\bigcup_{j \in I} C_{j})$$
(1)

now

$$\sum_{n=1}^{\infty} g_n(A) = \sum_{n=1}^{\infty} (C) \int_A f_n d\lambda$$

$$= \sum_{n=1}^{\infty} \int_0^{\infty} \lambda (A \cap \{x \in X; f_n(x) > r\}) dr$$

$$= \int_0^{\infty} \sum_{n=1}^{\infty} \lambda (A \cap \{x \in X; f_n(x) > r\}) dr$$

$$= \int_0^{\infty} \lambda (A \cap \bigcup_{n=1}^{\infty} \{x \in X; f_n(x) > r\}) dr$$

$$= \int_0^{\infty} \lambda (A \cap \{x \in X; f(x) > r\}) dr$$

$$= g(A). ...(2)$$

hence $g_n(A) \uparrow g(A)$ for every $A \in \mathfrak{I}$.

By (1) and (2) we obtain

$$g(\bigcap_{j=1}^{K} C_j) \leq \sum_{I} (-1)^{|I|+1} g(\bigcup_{j \in I} C_j).$$
(4)

If λ is lower continuous and belief measure. Then

$$g_{n}(\bigcup_{j=1}^{k} C_{j}) = \sum_{i=1}^{m} (a_{i} - a_{i-1})\lambda(\bigcup_{j=1}^{k} C_{j} \cap B_{j})$$

$$\leq \sum_{i=1}^{m} (a_{i} - a_{i-1})\sum_{I} (-1)^{|I|+1}\lambda(\bigcup_{j=1}^{k} ((\bigcap_{j\in I} C_{j}) \cap B_{i})))$$

$$= \sum_{I} (-1)^{|I|+1} \sum_{i=1}^{m} (a_{i} - a_{i-1})\lambda(\bigcup_{j=1}^{k} ((\bigcap_{j\in I} C_{j}) \cap B_{i})))$$

$$= \sum_{I} (-1)^{|I|+1} g_{n}(\bigcap_{j\in I} C_{j}),$$

hence

$$g_{n}(\bigcup_{j=1}^{k} C_{j}) \leq \sum_{I} (-1)^{|I|+1} g_{n}(\bigcap_{j \in I} C_{j});$$
(3)

by (1) and (3) we obtain

$$g(\bigcup_{j=1}^{k} C_{j}) \leq \sum_{I} (-1)^{|I|+1} g(\bigcap_{j \in I} C_{j}).$$

References

[1] G. De Barra," Measure Theory and Integration", (1985).

[2] L. Garmendia, "The Evolution of the concept of fuzzy measure", Spanish Mcyt project BFM University of complutense, Madrid, Spain (2002).

[3] M.Duchon, J.Haluska, and B.Riecan, "on the Choquet integral for Riesz space valued measures" Tatra Mt. Math. Publs. 19 (2000), 75-91.

[4] M.Sugeno, Y.Narukawa, and T.Murofushi, "Choquet Integral and fuzzy measures on locally compact space" fuzzy sets and systems 99 (1998) 205-211.

[5] R. B.Ash, "Real Analysis and probability", university of Illinois, Academic Press (1972).

الخلاصة

تم في هذا البحث تعريف القياس الضبابي λ وتكامل λ- جوكي للدالة القابلة للقياس بعلاقة مع القياس الضبابي λ. واعطيت العلاقة بين هذا التكامل وقياس الامكانية (الاعتقاد). بالاضافة الى ذلك تم توضيح ان كل قياس ضبابي λ هو قياس ضبابي.