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Abstract 

   We define the λ- fuzzy measure and the λ- Choquet integral for a measurable function 

with respect to λ- fuzzy measure.  Also the relation between this integral and plausibility 

(belief) measure was given. In addition we explain every λ- fuzzy measure is fuzzy 

measure. 

 

1-Introduction 

  The Choquet integral [4] for a non-negative measurable function can be taken with 

respect to λ- fuzzy measure.  The term  is referred to a δ-algebra on a set X,       

 where (X,   ) a measurable space.      

We say that ƒ :X→[0,∞]   is measurable [5] with respect to  if  

        For any r [0,)
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  If (X,) a measurable space, a function β:→[0,1]  is called to be belief measure[2] if it 

verifying the following properties: 
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A function  p:  →[0,1] is called to be plausibility measure[2] if it verifying  the 

following properties:  

 

 
2-Main results 

Definition 2.1 [2].A collection of subset of a set X is called a δ-algebra (algebra) on X if: 
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Definition 2.2 [2]. A measurable space is a pair (X,  ) where X is a non-empty set and  

is a δ-algebra on X .A subset A of X is called measurable if A . i.e. any number of  is 

called a measurable set. 
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Definition 2.3 [5]. Let(X1,1 ) and (X2,2 ) be two measurable spaces .A function 

f:X1→ X2  is called measurable (relative to 1 and 2 ) if  

 

 

 
Definition2.4 [4].Let (X,) be a measurable space. A fuzzy measure  is an extended real 

valued set function, µ:
+
 with the following properties:  

  1-()=0. 

 2-(A) (B) whenever AB, where A, B   and 
+
= [0,] .  

 
Definition 2.5.  Let(X,) be a measurable space. A -fuzzy measure is an extended real 

valued set function,:→ 
+
 with the following properties:    
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Proposition 2.6. Every -fuzzy measure is fuzzy measure. 

Proof. It is follows by definition 2.5 and definition 2.4. 

 

Definition 2.7 [5].let A1,A2,…be subsets of a set X . If A1 A2…and  

AAn
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 we say that the An form an increasing sequence of sets with limit A, or that the An 

increase to A, we write  An  A . 

 

Definition 2.8[3]. A fuzzy measure µ:→ 
+
 is called lower continuous if  

An A, (An ) A , A   
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µ (An)  µ (A) . 

 

Definition 2.9.A -fuzzy measure,:→ 
+
 is called lower continuous if 

An A, (An)  A, A   (An)   (A) . 

  

Definition 2.10[3].A fuzzy measure µ:→ 
+
 is called a belief measure if for any nN 

and any A1,A2,…,An    
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Where the summations is taken over all non-empty subsets I of  {1,2,3,…n} and |I| 

denotes the cardinal number of  I . 
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Definition 2.11.A - fuzzy measure λ: → 
+
 is called a belief measure if for any nN 

and any  A1,A2…An   
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Definition 2.12[3]. A fuzzy measure µ:→ 
+
 is called a plausibility measure if for  

any  nN and  any  A1,A2…An   
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Definition 2.13. A -  fuzzy  measure  λ:→  
+
  is called a plausibility measure if for   

  any   n N and any  A1,A2,…,An   
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Definition 2.14. Let  : (X,) 

+
 be a measurable function, λ: → 

+
 be a λ –fuzzy 

measure and A   , then we define the  λ – Choquet integral   
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By the formula 
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Definition 2.15 [1]. A non-negative finite –valued function (x), taking only a finite        

number of different values, is called a simple function .If a1,a2...am  are the distinct values 

taken by   and Ai ={x (x) = ai } , then  

  .And the integral of    with  respect to µ is given by       )()(
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 Theorem 2.16.let  be anon-negative real measurable function with respect to a 

measurable space (X,), X, λ:→ 
+
   be a  -fuzzy measure. 

 Define g:→
 
 

+
 by the formula  

 

 

Then   

1-g is a  –fuzzy measure. 

2-g is lower continuous, wherever λ is lower continuous. 

3-If λ is lower continuous and plausibility measure, then g is plausibility measure, too. 

4-If λ is lower continuous and belief measure, then g is belief measure, too. 
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Proof: 

 (1) 
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(2) 

let λ  be lower continuous and let AnA      
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(3) 
Let λ   be lower continuous and plausibility measure. Take simple functions n 
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hence gn(A) g(A) for every A.    

 

)2..().(

});{(

}))(;{(

}))(;{(

}))(;{(

)()(

)1()()1()(

),()1(

0

0 1

0 1

01

11

1

1

1

Ag

drrxfXxA

drrxfXxA

drrxfXxA

drrxfXxA

dfCAg

now

CgCg

hence

Cg

n

n

n
n

n
n

A

n
n

n
n

Ij

jn

I

I
k

j

jn

Ij

jn

I

I

































 



 



















































6 

 

By (1) and (2) we obtain  

).()1()(
1

1


Ij

j

I

I
K

j

j CgCg






  

 

 (4) 
 

 If λ is lower continuous and belief measure. Then 
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by (1) and (3) we obtain 
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 الخلاصة
. λجوكي للدالة القابلة للقياس بعلاقة مع القياس الضبابي  - λ وتكامل λ   تم في هرا البحث تعريف القياس الضبابي 

 هو λبالاضافة الى ذلك تم توضيح ان كل قياس ضبابي . (الاعتقاد)واعطيت العلاقة بين هرا التكامل وقياس الامكانية 

 . قياس ضبابي

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


