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Abstract 

 
The material presented in this paper is the foundation for neural network 

architectures that can perform (Solving linear equations using matrix splitting for 

iterative discrete-time methods in neural networks).As announced a neural network 

consists of many inter connected processing elements (neurons or nodes), I can begins 

with the presentation of a particular neural network is dependent on the training phase 

(specifically the training data used). Matrix splitting solved in several preprocessing 

methods. Many times it’s necessary to processes the training data to extract important 

features from the data can be used to train the network instead of the “raw” data. The 

preprocessing of the training data can therefore, improve the performance of the neural 

network. Then, the convergence is achieved using the Richardson and Gauss-Seidel 

methods, respectively. The same termination criterion was used for both these methods 

in order to properly compare all the results we see that the SOR iterative method gives 

the best results, that is, the fastest convergence. Comparing the SOR results with the 

next-best results (Gauss-Seidel, 1 ); we see that the SOR method is about 10 times 

faster. 

 

Introduction 
 There are four basic iterative discrete-time methods used to solve 

linear equations of the form 

                                       bA                                                                …(1) 

For mnA   that are based on matrix splitting (Golub et al,1996,N. 

Higham,1996,R.S. Varga,1992,D.M.Young,1971,Luenberger,2003,and 

K.E.Atkinson,1989). The solution vector x exists and is unique if and only 

if A in nonsingular. 

 All the methods have the basic form 

                                       bKNxKMx  )()1(                                         …(2) 

Where K is the discrete-time index. We can express matrix A as the matrix 

sum 

                                        FEDA                                                     …(3) 
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Where mnD   is a diagonal matrix, 

  mnmn

nn FandEandaaadiagd   ,,...,, 2211  are, respectively, strictly 

lower and upper triangular matrices. 

 The entries of E and F are the negative of the entries of A 

respectively, below and above the main diagonal of A. The diagonal 

elements of D are all assumed to be nonzero. 

 

Iterative Methods 

 Jacobi iterative method:- 

Substituting (3) into (1) gives 

                                bxFED  )(                                                        …(4) 

This is then split as 

                                bxFEDx  )(                                                       …(5) 

And an iterative scheme can be written from (5) as 

                               bKxFEKDx  )()()1(                                         …(6) 

Therefore, according to (2), M=D and N=E+F, since the diagonal elements 

of D are nonzero, we can write (6) as 

                               bDKxFEDKx 11 )()()1(                                       …(7) 

Where )0(,0 xandK   is the given initial- condition vector. This is the 

vector-matrix form of the Jacobi iterative method (Varga,1992), and we 

call the matrix 

                               )(1 FEDB                                                             …(8) 

The Jacobi matrix. The scalar form of (7) is given by 
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)()1(                                       …(9) 

Where )0(,0,1 ixandKni    is the given initial condition. I see from (9) 

that in general all the components of vector )(Kx  must be saved while 

computing the components of vector )1( Kx .However; it seems plausible 

to use the latest estimates  )1( Kxi  of the components ix  of the solution 

vector X in all subsequent computations. This leads to the second method 

in this class. 

Gauss-Seidel iterative method:- 

     Starting with(4), bxFED  )( , we rearrange (i.e., split) this expression 

as 

                    bFxxED  )(                                                        …(10) 
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where (D-E) is a nonsingular lower triangular matrix. An iterative 

scheme can be written from (10) as 

                 bKFxKxED  )()1()(                                           …(11) 

or 

               bEDKFxEDKx 11 )()()()1(                                …(12) 

For )0(,0 xandK   is the given initial-condition vector. Comparing 

(11) with (12) reveals FNandEDM  . This is the vector-matrix form 

of the Gauss-Seidel iterative method (Varga,1992), and the matrix 

FEDC 1)(    is called the Gauss-Seidel matrix. 

     The scalar form of the Gauss-Seidel iterative method can be written 

from bKFxKExKDx  )()1()1( , and is given by  
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     where )0(,0,1 ixandKni   is the given initial condition. 

Successive overrelaxation iterative method:- 

     In the case of the successive overrelaxation (SOR) iterative method, we 

write the split of the A matrix as  

                         FEDNMA                                       …(14) 

where 

                        )(
1

EDM 


                                                    …(15) 

and 

                        FDN 


  )1(
1

                                           …(16) 

the parameter   is called the relaxation factor. Therefore, 

substituting (15) and (16) into (2) gives: 

        bKxFDKxED  )()1(
1

)1()(
1







                         …(17) 

multiplying both sides of (17) by   and then premultiplying both 

sides by 1D  give 

        bDKxFDIKxEDI 111 )()1()1()(                     …(18) 

we now define EDL 1  (strictly lower triangular), and FDU 1  

(strictly upper triangular) and substitute these into (18) to give 

  bDKxUIKxLI 1)()1()1()(    and premultiplying both 

sides by 1)(  LI    yields 

        bDLIKxUILIKx 111 )()()1()()1(              …(19) 
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for )0(0 xandK   is the given initial-condition vector. Equation (19) is the 

vector-matrix form of the SOR iterative method (Varga,1992). The matrix 

                 L  UILI    )1()()( 1                                              …(20) 

is called successive relaxation matrix. If the relaxation factor lies in the 

range 10   , then this is underrelaxation. However, if 1  , this is 

overrelaxation. Note that if the relaxation factor is set to 1 , then (19) 

reverts to the vector-matrix form of the Gauss-Seidel method in(12). The 

scalar form of the SOR iterative method can derived from(17) rewritten as 

bKFxKDxKExKDx   )()()1()1()1( . The scalar form of the 

SOR iterative method is given by 

                 )()1()()1()1(
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         …(21) 

where )0(,0,1 ixandkni   is the given initial condition. Figure (1) 

shows a neural network architecture realization of the SOR iterative 

method. Using the definition of the successive relaxation matrix in (20), 

Equation (19) can be written as : 

                )1(kx  L RbKx )()(                                                         …(22) 

where 11)(  DLIR   .We now define an error vector as: 

                0;)()(  kxkxke                                                       …(23) 

where x  is the unique vector solution of (1). For this error, from (22) we 

can write a homogeneous error difference equation as: 

               )1(ke  L )()( ke                                                                  …(24) 

     The relaxation factor   can be chosen to minimize [r  L )( ]in order 

to make )(kx  converge to x  as rapidly as possible (Atkinson,1989), where 

)(r  is the spectral radius of L )( , we will call the optimal value of the 

relaxation factor   . The calculation of   can be difficult except in simple 

cases. Typically, it is approximation by trying several values of   and 

observing the effect on the speed of convergence. Even with the problem of 

calculating  , the effort is worth it because, of the resulting dramatic 

increase in the speed of convergence of xtokx )( . 

Richardson’s iterative method: 

     Another method that can be considered in this class of iterative 

techniques iterative method (Young,1971). The basic idea is to iterate until 

the negative of the discrete-time approximation to the first derivative of the 

solution reaches zero, that is: 

                                                 …(25) bkAx
xxkx




 )(
)()1(
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    where 0)()(  kandbkAxke . This expression can be rearranged as: 

           bkAxkkxkx  )()()()1(                                                         …(26) 

    where )0(,)( xk   is the given initial-condition vector, and the optimal 

iteration parameter, can be determined from (Cichocki et al,1993, Gill P.E. 

et al,1981,Akaike,H.,1968,Barton, S.A.,1991,and Hertz,J. et al,1991): 

                      
)()(
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                                                   …(27) 

     we can derive the scalar form of Richardson’s iterative method from the 

vector-matrix form given in (26) as: 
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    where )0(,0, ixandknii  is the given initial condition. If we choose 

iia
k 1)(  in (28) we can write the iterative expression as: 
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which in turn can be written as: 
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            where )0(,0,1 ixandkni   is the initial condition. This is 

precisely the Jacobi iterative  method given in (9). 

 

Implementation of Neural Networks and Results 
The following example show how neural networks are adopted in 

solving linear equations using matrix splitting for iterative discrete-time 

methods in neural networks. In this example the Matlab package is used, 

where the neural networks of figure (1), simulated, and the results are 

shown in this section. 

Example1:-This example compares the performance of three of the four 

methods presented in this paper for solving linear equations of the form 

bAx  . In this example the system is given by: 
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x                                                                              …(31) 

 



 84 

Journal of Kirkuk University –Scientific Studies , vol.2, No.3,2007 

 

 

Because the condition number for A  is relatively small  8742.394)( Acond , 

the inv  function in (MATLAB version 5.1) can be used to solve the system 

of equation in (31), the result is given as: 

 

                 





















0000.4

0000.3

0000.2

0000.1

*)( bAinvxM                                                      …(32) 

 

    The successive overrelaxation method requires determining the optimal 

value for the relaxation parameter   . Following the procedure given in 

this paper on the SOR method, the minimum of r [L )( ] as a function of  

  must be found. When we used the range of values for   given by 

5.20   and 
000.10

1  . The well-defined minimum establishes the 

optimal value to use for the relaxation parameter given by 7215.1 .Each 

the three methods uses the same set of initial conditions given 

by  Tx 0351.0,1444.0,0315.0,0118.0)0(  . These initial conditions were 

generated by selecting four random numbers from a Gaussian distribution 

with zero mean and variance of 0.01. The SOR algorithm was run it took 

115 iterations for the algorithm to converge. The termination criterion was 

defined to be when the absolute error is less than 710  (that is, 
7

2
10 MSOR XX ) then, convergence is achieved using the Richardson and 

Gauss-Seidel methods, respectively.  

 

Table-I:-Comparison of simulation (MATLAB version 5.1) results using 

three methods for solving (31). 
Method Absolute error 

2

Mxx   

Relative error 

2

2

M

M

x

xx 
 

Number of 

iterations required 

for convergence 

Successive 

overrelaxation 

( 7215.1 ) 

8101999.2   9100165.4   115 

Gauss-Seidel 8103028.5   9106816.9   1.00 

Richardson 8107619.2   9100426.5   3.400 

Jacobi Diverged Diverged Diverged 
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Figure (1): Shows a neural network architecture realization of the SOR 

iterative method. 

 

Conclusion 
 The same termination criterion was used for both these methods in 

order to properly compare all the results. From Table-I we see that 

SOR iterative method gives that best result, that is, the fastest 

convergence. Comparing the SOR results with the next-best results 

(Gauss-Seidel, 1 ); we see that the SOR method is about 10 times 

faster.  

 The relaxation factor   can be chosen to minimize r [L )( ] in 

order to make )(kx  converge to x  as rapidly as possible, where )(r  

is the spectral radius. 
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معادلات الخطية باستخدام تقييم المصفوفة لطرق تقييم الوقت المتقطع الحل 
 بواسطة الشبكات العصبية

 

 

عيسى إبراهيمعيسى   

 كلية العلوم ـ جامعة كركوك
 

 الخلاصة
 

لــ)المعادتت  أن المادة التي قدمت في هذا البحث هي من اساسيات )معمارية الشبكة العصبية( التي تكون حلا 
الخطية بأستخدام المصفوفة لطرق تقسيم الوقت المتقطع بواسطة الشبكة العصبية(, وكما هو معروف فان الشبكة 

)عقد أو عصبونات( ويمكن عرض جزءاً لهذه الشبكة د من العناصر المترابطة الداخليةالعصبية تتكون من العدي
ب البيانات المستخدمة(,وتقسيم المصفوفة يحل بعدة معالجـت  العصبية اعتماداً على طور التدريب )المحدد لتدري

أولية متعددة.ومن الضروري معالجة هذه الطرق من خلال استخلاص الخصائص المهمة للبيانات المسـتخدمة  
يمكن أن تحسـن أداء  على هيئة "سطر". وهذه المعالجة الأولية لها لتدريب الشبكة عليها بدتً من أستخدام البيانات 

على التوالي بنفس معيـار  اتنهـاء   (Richardson and Ganss Seidel)الشبكة العصبية والتقارب المنجز بطريقتي
المكررة تعطـي نتـائج ذات تقـارب    (SOR), وبمقارنة جميع النتائج ظهر أن طريقة المستخدم لكلا الطريقتين

1 (أفضل (لـ –ادم مع )نتائج الق(SOR)أفضل وأسرع. وبمقارنة نتائج  (Gauss-Seidel   ترى ان طريقة
 اسرع بعشر مرات.(SOR)الـ


