(2006/12/4 2006/6/19)

)

(Microwaves)

.(220, 360, 600) Watt

(...

(Reform)

(Octane No.)

.

.

. (600) Watt

(93) (43.6)

·

•

Molecular Reform of Hydrocarbonic Liquid by Microwaves

Anwar M. Al-Faydhi

Hazim S. Al-Hadidi

Department of Physics College of Science Mosul University

ABSTRACT

In this work, the effect of microwaves on the hydrocarbonic liquid was studied. Small amounts of hydrocarbonic liquid were irradiated by microwave with different applied powers (220, 360, 600) Watt. Through tests and physical calculations of the irradiated samples of the hydrocarbonic liquid with different surface area, a major difference was found compared with the control samples. Carbon sediments were also noticed. The most important result is that each test revealed major differences that the octane No.(R+m/2). change from (43.6) to (93) at (600) Watt operated power. This indicates that molecular reform of hydrocarbonic liquid using microwave is a new and original method to enhance the octane No. This scientific fact which is not mentioned in any previous researches was explained throughout former researches dealing with the effect of microwaves, keeping in mind that the expected heat effect was studied by repetition of all the measurements under heat effect only.

.(Hobson, 1973)

(Gasoil)

.(1986)

(400)

.

-3

 $M = 0.785 \frac{1000 W_2}{W_1 * \Delta T} \dots (4)$

. . .

: 1

						(220)	Watt	
σ (cm2)	Т (оК)	ρ (gm/cm3)	(K * 10-4) Cal/gm. cm .Ko	CP (Cal/gm .Ko)	Δm gm	γ (gm/sec2)	()	α%
38.465	389	0.8364	3.345	0.7809	9.2486	25.819	1.6	36
23.746	383	0.8342	3.354	0.7767	6.4344	26.058	1.0	23
17.340	378	0.8332	3.358	0.7727	4.6270	26.333	0.8	18
14.514	372	0.8322	3.62	0.7679	3.834	27.219	0.6	9

Watt

.(1) (600)

(Absorption)

(Wave Length)

.(2)

(IR Spectrophotometer)

(Abs) : 2

		. (360)Watt				
λnm	$\sigma = 38.465$ cm2	$\sigma = 23.746$ cm2	$\sigma = 17.340$ cm2	$\sigma = 14.514$ cm2		
	Abs.	Abs.	Abs.	Abs.		
400	1.177	1.177	1.175	1.172		
500	1.179	1.179	1.179	1.178		
600	1.180	1.180	1.163	1.113		
660	1.181	1.178	1.095	0.965		
700	1.181	1.175	1.080	0.945		
800	1.180	1.164	1.045	0.924		
900	1.166	1.113	0.885	0.703		
1000	1.152	1.083	0.862	0.696		

(Electrical Heater) ()

(220, 360 and 600) Watt

:

50

. . .

: 3

.(220 W)

S (cm2)	T (Ko)	(ρ) (gm/cm3)	(K * 10-4) (Cal/ gm. cm. Ko)	(CP) (Cal /gm .Ko)	Δm (gm)	(γ) (gm/sec2)
38.465	389	0.8356	3.349	0.7813	1.4428	23.0312
23.746	383	0.8351	3.351	0.7762	1.0189	23.1708
17.340	378	0.8343	3.354	0.7722	0.982	23.3019
14.514	372	0.8268	3.384	0.7705	0.5809	23.3401

.(2)

•

51

(220, 360, 600) Watt

•

Spectrophotometer (APEL-PD 303)

(4)

λnm	$\sigma = 38.465$ cm2	$\sigma = 23.746$ cm2	$\sigma = 17.340$ cm2	$\sigma = 14.514$ cm2
	Abs.	Abs.	Abs.	Abs.
400	1.152	1.150	1.150	1.149
500	0.811	0.668	0.669	0.630
600	0.222	0.166	0.159	0.151
660	0.075	0.048	0.041	0.038
700	0.212	0.194	0.189	0.198
800	0.364	0.357	0.354	0.355
900	0.176	0.171	0.170	0.172
1000	0.257	0.252	0.253	0.255

.

:(IROX -2000)

(IROX -2000)

(Octane No.)

(Absorption)

.

(Normal Heating)

•

•

Control Sample		t = 1h	t = 2h	t = 3h	t = 4h
λnm	Abs.	Abs.	Abs.	Abs.	Abs.
400	1.217	1.223	1.226	1.225	1.247
500	0.457	0.474	0.470	0.466	0.528
600	0.093	0.125	0.119	0.111	0.146
660	0.082	0.103	0.097	0.078	0.121
700	0.242	0.255	0.249	0.242	0.271
800	0.425	0.436	0.436	0.430	0.452
900	0.292	0.304	0.298	0.292	0.309

...

(IROX- 2000) (4h, 3h, 2h, 1h)

.

:(6)

•	6
•	υ

(220	W)
 	/

	Standard		1 h		2 h		3 h		4 h	
Substance	Vol	Mas	Vol	Mas	Vol	Mas	Vol	Mas	Vol	Mas
	%	s %	%	s %	%	s %	%	s %	%	s %
M-Xylene	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5		
O- Xylene	0.4	0.4	0.6	0.6	0.6	0.7	0.4	0.4	0.4	0.4
P- Xylene	0.6	0.6	0.5	0.5	0.4	0.4	0.5	0.5	0.5	0.5
Ethylbenzen	2.1	2.2	1.9	2.0	1.9	2.1	1.9	2.0	1.9	2.0
2- Ethyltoluene	3.2	3.4	4.3	4.5	4.3	4.7	3.9	4.1	3.8	4.0
3- Ethyltoluene			1.2	1.2	1.1	1.2	0.6	0.6	1.1	1.1
4- Ethyltoluene	3.6	3.7	4.2	4.3	4.2	4.5	4.0	4.1	4.0	4.1
Mesitylene	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7
Pseudocumene	2.7	2.8	2.7	2.8	2.7	2.9	2.4	2.5	2.4	2.5
Isoduren	5.1	5.4	4.3	4.5	4.1	4.6	4.4	4.7	4.5	4.8
Naphthalene	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1
Aromatics	43.8	46.3	49.4	52.2	50.0	54.9	46.6	49.0	44.1	46.3
Olefins	1.8	1.6	2.4	2.0	3.6	3.2	3.0	2.6	3.0	2.6
Saturates	54.4	52.1	47.7	45.8	46.4	41.9	50.4	48.4	52.9	51.1

(7) (P =220 W)

	_	
•	1	
•	/	

	•		: /
T (Ko)	(Hour)	(Hour)	(R + m)/2
335	4.54	1	79.9
339	9.09	2	78.7
361	13.6	3	79.7
383	18.18	4	78.3

.

(Octane No.)

(8)

.(IR Spectrophotometer)

•

•

(Abs)

Control S	ample	T = 335 Ko	T = 339 Ko	T = 361 Ko	T = 383 Ko
λnm	Abs.	Abs.	Abs.	Abs.	Abs.
350	1.212	1.212	1.212	1.213	1.212
450	0.803	0.820	0.812	0.811	0.828
550	0.323	0.330	0.321	0.323	0.339
600	0.073	0.074	0.070	0.073	0.080
640	0.031	0.026	0.025	0.028	0.025
700	0.198	0.201	0.199	0.201	0.197
750	0.416	0.399	0.397	0.398	0.394
800	0.402	0.396	0.391	0.391	0.392
850	0.299	0.305	0.302	0.300	0.299

: 9

.(360 W)

Time (hour)	T (Ko)	Mass of Sediment (M) gm	α%	(R + m)/2
1	369	0.2095	12.04	94.4
2	385	0.2147	12.34	92.8
3	401	0.2333	13.41	93.0
4	459	0.2545	14.60	92.7

•

• • •

(10)

(Abs) : 10

•

Control Sample		t = 1h	t = 2h	t = 3h	$\mathbf{t} = \mathbf{4h}$	
λnm	Abs.	Abs.	Abs.	Abs.	Abs.	
400	1.217	1.251	1.248	1.267	1.280	
500	0.457	0.516	0.510	0.912	1.280	
550	0.309	0.349	0.335	0.617	1.178	
600	0.093	0.126	0.106	0.285	0.873	
650	0.082	0.099	0.084	0.167	0.639	
700	0.242	0.247	0.233	0.292	0.616	
750	0.419	0.429	0.413	0.449	0.679	
800	0.425	0.413	0.417	0.439	0.627	
850	0.338	0.343	0.329	0.342	0.494	
900	0.292	0.294	0.281	0.289	0.413	
950	0.344	0.342	0.329	0.334	0.435	

(IROX 2000) (4h, 3h, 2h, 1h)

.(11)

56

•	1	1
•	T	T

	: (500 11)									
	Stan	dard	1	h	2	h	3	h	4 h	
Substance	Vol	Mas	Vol	Mas	Vol	Mas	Vol	Mas	Vol	Mas
	%	s %	%	s %	%	s %	%	s %	%	s %
M-Xylene	0.6	0.6								
O- Xylene	0.4	0.4	0.3	0.3	0.2	0.2	0.4	0.4	0.3	0.3
P- Xylene	0.6	0.6	0.5	0.5	0.6	0.6	0.4	0.4	0.5	0.5
Ethylbenzen	2.1	2.2	2.0	2.1	2.3	2.4	1.8	1.8	2.2	2.3
2- Ethyltoluene	3.2	3.4	3.4	3.6	3.7	3.9	4.1	4.3	3.5	3.7
3- Ethyltoluene							1.1	1.1		
4- Ethyltoluene	3.6	3.7	3.6	3.7	3.9	4.0	4.0	4.1	3.8	3.9
Mesitylene	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.6	0.6
Pseudocumene	2.7	2.8	2.2	2.3	2.3	2.4	2.3	2.4	2.2	2.3
Isoduren	5.1	5.4	4.0	4.3	4.2	4.5	4.3	4.5	4.1	4.4
Naphthalene	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2
Aromatics	43.8	46.3	47.8	50.6	42.8	45.3	48.7	50.7	48.2	50.8
Olefins	1.8	1.6	3.8	3.4	2.8	2.4	3.0	2.6	2.2	2.0
Saturates	54.4	52.1	48.4	46.0	54.4	52.3	48.3	46.7	49.6	47.2
Toluene			0.2	0.2						

(360 W)

(12)

.(

(IR Spectrophotometer)

(P = 360 W)

(13)

•

.

(13)

			•	_	_	
Control S	ample	T =369 Ko	T = 358 Ko	T = 401 Ko	T = 459 Ko	
λnm	Abs.	Abs.	Abs.	Abs.	Abs.	
350	1.212	1.214	1.214	1.215	1.222	
450	0.803	0.827	0.836	0.851	1.177	
550	0.323	0.320	0.324	0.333	0.587	
600	0.073	0.074	0.077	0.086	0.261	
640	0.031	0.027	0.030	0.036	0.166	
700	0.198	0.197	0.196	0.204	0.282	
750	0.416	0.418	0.414	0.424	0.475	
800	0.402	0.401	0.402	0.407	0.446	
850	0.299	0.298	0.302	0.304	0.334	

• • •

.(R+m/2)

: 13

: 12

T (ko)	(Hour)	(Hour)	(R + m)/2
369	2.7	1	77.6
385	5.5	2	78.0
401	8.33	3	75.8
459	11.11	4	76.3

.(600 W)

: 14

Time (hour)	T (ko)	Ratio of Sediments %	α%	(R + m)/2
1	422	0.225	6.47	93.0
2	431	0.3288	9.45	93.4
3	453	0.6296	18.1	94.1
4	495	0.644	18.5	92.9

(15)

.(Spectrophotometer)

					•
Control S	Control Sample		$\mathbf{t} = 2\mathbf{h}$	t = 3h	t = 4h
λnm	Abs.	Abs.	Abs.	Abs.	Abs.
400	1.217	1.241	1.298	1.295	1.250
500	0.457	0.775	1.298	1.303	1.140
550	0.309	0.526	1.299	1.269	0.935
600	0.093	0.243	1.299	1.071	0.562
650	0.082	0.172	1.296	0.835	0.420
700	0.242	0.300	1.285	0.756	0.462
750	0.419	0.457	1.269	0.777	0.571
800	0.425	0.454	1.232	0.691	0.453
850	0.338	0.361	1.162	0.564	0.435
900	0.292	0.309	1.085	0.500	0.375
950	0.344	0.360	1.057	0.489	0.412

(IROX 2000)

(4h, 3h, 2h, 1h)

•

.(16)

: 15

(Abs)

(600 W)

	Stan	dard	1	h	2	h	3	h	4	h
Substance	Vol	Mas								
	%	s %	%	s %	%	s %	%	s %	%	s %
M-Xylene	0.6	0.6	0.6	0.6	0.7	0.7	0.5	0.6	0.6	0.6
O- Xylene	0.4	0.4	0.6	0.6	0.6	0.6	0.5	0.6	0.5	0.5
P- Xylene	0.6	0.6	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.6
Ethylbenzen	2.1	2.2	1.8	1.9	1.8	1.9	1.9	2.2	2.2	2.3
2- Ethyltoluene	3.2	3.4	4.3	4.5	4.3	4.6	4.1	4.8	3.5	3.7
3- Ethyltoluene			1.2	1.2	1.2	1.2	1.0	1.2		
4- Ethyltoluene	3.6	3.7	4.3	4.4	4.2	4.4	4.1	4.7	3.7	3.8
Mesitylene	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.6
Isoduren	5.1	5.4	4.2	4.4	4.0	4.3	4.3	5.1	4.3	4.6
Naphthalene	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3
Aromatics	43.8	46.3	49.9	52.2	45.5	48.2	48.1	56.6	49.2	51.8
Olefins	1.8	1.6	3.0	2.6	3.6	3.2	3.2	3.2	2.2	2.0
Saturates	54.4	52.1	47.1	45.2	50.9	48.6	48.7	40.2	48.6	46.2

(18)

.(

(IR Spectrophotometer)

(600) Watt

.

(19)

.

.(19)

• • •

(A	bs)
(1)	.03)

.

: 18

)

Control Sample		T = 422 Ko	T = 431 Ko	T = 453 Ko	T = 495 Ko
λnm	Abs.	Abs.	Abs.	Abs.	Abs.
350	1.212	1.220	1.221	1.224	1.229
450	0.803	0.920	0.955	1.106	1.237
550	0.323	0.370	0.384	0.500	0.727
600	0.073	0.102	0.115	0.198	0.363
640	0.031	0.043	0.052	0.119	0.238
700	0.198	0.209	0.214	0.254	0.330
750	0.416	0.407	0.413	0.435	0.487
800	0.402	0.403	0.404	0.419	0.455
850	0.299	0.306	0.311	0.325	0.351

T (ko)	(Hour)	(Hour)	(R + m)/2
422	1.66	1	78.4
431	3.33	2	75.1
453	5.0	3	75.4
495	6.66	4	78.2

(IROX- 2000)

.

(Zeltex 101C)

•

.(93)

•

:

(Dehydrogenation)

:

:

•

•

.

•

.(Jose, 2004)

. . .

.2006

.(Gasoil)

•

.1986

- Book of ASTM, 1969. Standards with Related Materials, Am. Soc. For Testing and Materials, 2nd Edition, Vol. 17, D-288.
- Dean, J.A., 1978. Lange's Hand Book of Chemistry, McGraw-Hill Book Company, Newyork.
- Hobson, G.D., 1973. Modern Petroleum Technology, Applied Science Publishers LTD, Britain, 4th Edition, , pp. (186, 187, 199, 430-431).
- Jose T.S. and Luiz A.J., 2004. Microwave Chemistry A fertile Field for Scientific Research and Industrial Applications. Journal of Microwave and Optoelectronics, Vol. 3, No. 5, July, 8p.

•