The Wiener Polynomial of The Tensor Product

Ali. A. Ali Walid. A. Saeed
Department of Mathematics
College of Computer and Mathematical Science Mosul University

(Received 1999/10/16 , Accepted 1999/11/28)

Abstract

Let $G 1$ and $G 2$ be vertex disjoint connected graphs such that each edge of $G 1$ and $G 2$ is a triangle edge. In this paper, the coefficients of the Wiener polynomial of the tensor product $G 1 \otimes G 2$ are determined in terms of the coefficients of $W(G 1 ; x)$ and $W(G 2 ; x)$. The Wiener polynomial of the tensor product of a path graph and an odd cycle graph is also obtained.

متحدة حود وبنر الجداء التنسري

Abstract

ليكن G1 و G2 بيانين متصلين وليس بينهما رلس مشترك وان كل حلفة فيهما فقع في مثلث. تم في هذا البحث تححيد معلملات متعدة حدود وينر للجداء التنسري G1®G2 بدلالة معلملات متعد1حتي حدود وينر W(G1;x) وW(G2;x) . واليضا تضمن البحث اليجاد متعدة حدود وينر للجداء التنسري لبيان درب مع بيلن دارة فرحية.

المالخص

INTRODUCTION

In this paper, we consider finite connected undirected graphs without loops or multiple edges. For undefined terms, see (Chartrand and Lesniak, 1986) or (Buckley and Harary, 1990).

Let G be a connected non-trivial graph with p vertices and q edges. By the distance $d(u, v)$ between the two distinct vertices u and v of G, we mean the length of a shortest path connecting u and v. The diameter, δ, of G is the maximal distance between two of its vertices, that is

$$
\delta=\max _{u, v \in V(G)} d(u, v) .
$$

Let $d(G, k)$ be the number of pairs of vertices in G that are distance k apart, $k=0,1$, \ldots, δ.

It is clear that

$$
d(G, 0)=p, \quad d(G, 1)=q, \quad \text { and } \quad \sum_{k=0}^{\delta} d(G, k)=\binom{p+1}{2}
$$

The Wiener polynomial of G is defined as

$$
\begin{equation*}
W(G ; x)=\sum_{k=0}^{\delta} d(G, k) x^{k} \tag{1.1}
\end{equation*}
$$

(Hosoya, 1988). The name chosen for $W(G ; x)$ honours the physical chemist Harold Wiener who studied distances in graphs and established some of their chemical applications (Wiener, 1947). In the mathematical chemistry literatures, the sum of all distances in a graph $G, \sum_{k=1}^{\delta} k d(G, k)$, is referred to as the Wiener index (or number) and is traditionally denoted by $W(\mathrm{G})$.

In 1993, Gutman established some properties of the Wiener polynomial, and obtained formulas for the Wiener polynomials of the compound graphs G1•G2 and G1:G2, where G1 and G2 are vertex-disjoint connected graphs. Recently, in 1996, Sagan, Yeh and Zhang described the Wiener polynomials of compound graphs obtained by wellknown graph operations such as the join, cartesian product, composition, disjunction, and symmetric difference.

The tensor product of the vertex-disjoint connected graphs $G 1=(\mathrm{V} 1, \mathrm{E} 1)$ and $G 2=$ $(V 2, E 2)$ is the graph $G 1 \otimes G 2$ defined as
$V(G 1 \otimes G 2)=V 1 \times V 2$,
$E(G 1 \otimes G 2)=\{(u 1, v 1)(u 2, v 2) \mid u 1 u 2 \in E 1$ and $v 1 v 2 \in E 2\}$.
It seems that it is difficult to find $W(G 1 \otimes G 2 ; x)$ in terms of $W(G 1 ; x)$ and $W(G 2 ; x)$.
In this paper, we obtain a necessary and sufficient condition for $G 1 \otimes G 2$ to be connected. Then we study the Wiener polynomial of $G 1 \otimes G 2$, and find a formula for $W(G 1 \otimes G 2 ; x)$ when each edge of $G 1$ and $G 2$ is a triangle edge.

Finally, we obtain the Wiener polynomial of the tensor product of a path graph and an odd cycle graph.

THE CONNECTIVITY OF G1 \otimes G2

From the definition of tensor product one can easily see that $G 1 \otimes G 2$ may not be connected. For example, $P 3 \otimes C 4$ is disconnected while $P 3 \otimes C 5$ is connected. Therefore, we need to find a necessary and sufficient condition on $G 1$ and $G 2$ such that $G 1 \otimes G 2$ is connected.

Proposition 1 :

If neither $G 1$ nor $G 2$ contains an odd cycle, then $G 1 \otimes G 2$ is disconnected.

Proof:

Let $u 1 u 2 \in E 1$ and $v \in V 2$. We show by contradiction that there is no path joining the two vertices $(u 1, v),(u 2, v)$, in $G 1 \otimes G 2$. If
$P:(u 1, v),(x 1, y 1),(x 2, y 2), \ldots,(x r-1, y r-1),(u 2, v)$ is a $(u 1, v)-(u 2, v)$ path in $G 1 \otimes G 2$, then
$Q: u 1, x 1, x 2, \ldots, x r-1, u 2$ is a $u 1-u 2$ walk in $G 1$ of odd length r, for otherwise Q with the edge $u 1 u 2$ forms an odd closed walk, which implies the existence of an odd cycle in $G 1$. Thus
$R: v, y 1, y 2, \ldots, y r-1, v$
is an odd closed $v-v$ walk in $G 2$, this means that $G 2$ contains an odd cycle, a contradiction.

Proposition 2:

If either $G 1$ or $G 2$ contains an odd cycle, then $G 1 \otimes G 2$ is connected.

Proof:

We may assume that $G 1$ contains an odd cycle C.
Let $(u 1, v 1)$ and $(u 2, v 2)$ be any two distinct vertices in $G 1 \otimes G 2$. We consider three cases:
(a) If $u 1 \neq u 2$ and $v 1 \neq v 2$, then let $P 1$ be a $u 1-u 2$ path in $G 1$ and $P 2$ be a $v 1-v 2$ path in G2 such that the difference between their lengths is even. Without loss of generality, let $l(P 1)=t, l(P 2)=s, t \geq s$, and
$P 1: u 1=x 0, x 1, \ldots, x t=u 2$,
P2: $v 1=y 0, y 2, \ldots, y s=v 2$.
Then $\quad P:(x 0, y 0),(x 1, y 1), \ldots,(x s, y s),(x s+1, y s-1),(x s+2, y s), \ldots,(x t, y s)$, is a $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$.

If the difference between the length of every $u 1-u 2$ path in $G 1$ and every $v 1-v 2$ path in $G 2$ is odd, then using the odd cycle C we can find a $u 1-u 2$ walk $W 1$ in $G 1$ such $|l(W 1)-l(P 2)|$ is even. Therefore, there is a $(u 1, v 1)-(u 2, v 2)$ walk in $G 1 \otimes G 2$; and so there is a $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$ (Chartrand and Lesniak, 1986).
(b) If $u 1 \neq u 2$ and $v 1=v 2$, let y be any vertex adjacent with $v 1$, then, replacing $P 2$ by the walk
$W 2: v 1,, y, v 2$,
We can show, as in Case (a), that there is a $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$.
(c) If $u 1=u 2$ and $v 1 \neq v 2$, let x be any vertex adjacent with $u 1$, then, replacing $P 1$ by the walk $W 1: u 1, x, u 1$,

We can find, as in Case (a), a $(u 1, v 1)-(u 1, v 2)$ path in $G 1 \otimes G 2$.
Hence, in all cases and for all pairs of vertices ($u 1, v 1$) and ($u 2, v 2$) in $G 1 \otimes G 2$, there is a $(u 1, v 1)-(u 2, v 2)$ path. Therefore, $G 1 \otimes G 2$ is connected.
From Propositions 1 and 2, we obtain the following important theorem.

Theorem 3:

Let $G 1$ and $G 2$ be disjoint nontrivial connected graphs. Then, $G 1 \otimes G 2$ is connected if and only if either $G 1$ or $G 2$ contains an odd cycle.

THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT
In this section, the two graphs $G 1$ and $G 2$ are assumed to be nontrivial, connected, disjoint, and either $G 1$ or $G 2$ contains an odd cycle.

Lemma 1:

For each pair $(u 1, v 1),(u 2, v 2)$ of vertices in $G 1 \otimes G 2$, we have $d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right) \geq \max \left\{d_{G_{1}}\left(u_{1}, u_{2}\right), d_{G_{2}}\left(v_{1}, v_{2}\right)\right\}$.

Proof:

Suppose that $d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=t$,
and let $Q:(x 0, y 0),(x 1, y 1),(x 2, y 2), \ldots,(x t, y t)$,
be a shortest $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$, in which
$u 1=x 0, v 1=y 0, u 2=x t, v 2=y t$.
Then, the $x 0-x t$ walk $x 0, x 1, \ldots, x t$ contains a $u 1-u 2$ path of length $\leq t$ in $G 1$, and the $y 0-y t$ walk $y 0, y 1, \ldots, y t$ contains a $v 1-v 2$ path of length $\leq t$ in G2. Thus $d_{G_{1}}\left(u_{1}, u_{2}\right) \leq t$, and $d_{G_{2}}\left(v_{1}, v_{2}\right) \leq t$.

This completes the proof.

Definition 2:

An edge e in a graph G is called a triangle edge if there is a cycle of length 3 in G containing e.

Lemma 3:

Let each edge of $G 2$ be a triangle edge. If $d_{G_{1}}\left(u_{1}, u_{2}\right) \geq 2$, and $d_{G_{1}}\left(u_{1}, u_{2}\right) \geq d_{G_{2}}\left(v_{1}, v_{2}\right)$, then
$d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right) \leq d_{G_{1}}\left(u_{1}, u_{2}\right)$.

Proof:

It is obvious that $u 1 \neq u 2$. Let

$$
d_{G_{1}}\left(u_{1}, u_{2}\right)=t, \quad d_{G_{2}}\left(v_{1}, v_{2}\right)=s,
$$

and let

$$
Q 1: x 0, x 1, x 2, \ldots, x t \text {, where } \quad x 0=u 1, x t=u 2 \text {, }
$$

$$
Q 2: y 0, y 1, y 2, \ldots, y s \text {, where } \quad y 0=v 1, y s=v 2 \text {, }
$$

be a shortest $u 1-u 2$ path in $G 1$ and a shortest $v 1-v 2$ path in $G 2$, respectively. We consider two cases:

Case I:

$t-s$ is even.
If $s>0$, then

$$
(x 0, y 0),(x 1, y 1), \ldots,(x s, y s),(x s+1, y s-1),(x s+2, y s), \ldots,(x t, y s)
$$

is a $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$ of length t.
If $s=0$, that is $y 0=v 1=v 2$, then let y be any vertex adjacent to $v 1$. Then

$$
(x 0, y 0),(x 1, y),(x 2, y 0),(x 3, y), \ldots,(x t-1, y),(x t, y 0)
$$

is a $(u 1, v 1)-(u 2, v 1)$ path in $G 1 \otimes G 2$ of length t.

Case II:

$t-s$ is odd.
If $s>0$, let $y 0 y 1 z$ be the triangle containing the edge $y 0 y 1$ in G2. Then

$$
(x 0, y 0),(x 1, z),(x 2, y 1), \ldots,(x s, y s-1),(x s+1, y s),(x s+2, y s-1),(x s+3, y s), \ldots,(x t, y s)
$$

is a $(u 1, v 1)-(u 2, v 2)$ path in $G 1 \otimes G 2$ of length t.
If $s=0$, then t is odd and $t \geq 3$. In this case, let $v 1 y z$ be the triangle containing vertex $v 1$ (=y0).
Then

$$
(x 0, y 0),(x 1, y),(x 2, z),(x 3, y 0),(x 4, y),(x 5, y 0), \ldots,(x t, y 0)
$$

is a $(u 1, v 1)-(u 2, v 1)$ path of length t in $G 1 \otimes G 2$.
Therefore, in all cases, $\quad d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right) \leq t$.
Hence, the proof is completed.
Similarly, we can prove that if each edge of G1is a triangle edge, and

$$
d_{G_{2}}\left(v_{1}, v_{2}\right) \geq 2,
$$

and

$$
d_{G_{1}}\left(u_{1}, u_{2}\right) \leq d_{G_{2}}\left(v_{1}, v_{2}\right)
$$

then $\quad d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right) \leq d_{G_{2}}\left(v_{1}, v_{2}\right)$.
Moreover, if each edge of $G 1$ and $G 2$ is a triangle edge, then

$$
d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v\right),\left(u_{2}, v\right)\right)=2 \quad \text { if } \quad u_{1} u_{2} \in E_{1},
$$

and $\quad d_{G_{1} \otimes G_{2}}\left(\left(u, v_{1}\right),\left(u, v_{2}\right)\right)=2$ if $\quad v_{1} v_{2} \in E_{2}$.
Hence, by Lemmas 1 and 3 , we have the following theorem.

Theorem 4:

Let $G 1$ and $G 2$ be nontrivial disjoint connected graphs such that each edge of G1 and $G 2$ is a triangle edge, then

$$
d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left\{\begin{array}{l}
2, \text { when }\left(u_{1}=u_{2} \text { and } v_{1} v_{2} \in E_{2}\right) \text { or }\left(v_{1}=v_{2} \text { and } u_{1} u_{2} \in E_{1}\right) \\
\max \left\{d_{G_{1}}\left(u_{1}, u_{2}\right), d_{G_{2}}\left(v_{1}, v_{2}\right)\right\}, \text { otherwise }
\end{array}\right.
$$

Corollary 5:

If each edge of $G 1$ and $G 2$ is a triangle edge, then $\operatorname{diam}\left(G_{1} \otimes G_{2}\right)=\left\{\begin{array}{l}\max \left\{\operatorname{diam} G_{1}, \quad \operatorname{diam} G_{2}\right\}=\delta, \text { when } \delta \geq 2 \\ 2, \text { when } G_{1} \text { and } G_{2} \text { are complete graphs. }\end{array}\right.$
The proof follows from Theorem 4.

Theorem 6:

Let $G 1$ and $G 2$ be nontrivial disjoint graphs which are not both complete graphs. If each edge of $G 1$ and $G 2$ is a triangle edge, and

$$
W\left(G_{1} ; x\right)=\sum_{i=0}^{\delta_{1}} a_{i} x^{i}, \quad W\left(G_{2} ; x\right)=\sum_{i=0}^{\delta_{2}} b_{i} x^{i}
$$

in which $\delta 1=\operatorname{diamG1}$ and $\delta 2=\operatorname{diamG2}$,
then

$$
W\left(G_{1} \otimes G_{2} ; x\right)=\sum_{i=0}^{\delta} c_{i} x^{i}
$$

where

$$
\delta=\max \{\delta 1, \delta 2\}
$$

```
\(c 0=a 0 b 0\),
\(c 1=2 a 1 b 1\),
\(c 2=a 0(b 1+b 2)+a 1(b 0+2 b 2)+a 2(b 0+2 b 1+2 b 2)\),
```

and for $k \geq 3$,

$$
c \mathrm{k}=a \mathrm{k}(b 0+2 b 1+\ldots+2 b k-1+b k)+b k(a 0+2 a 1+\ldots+2 a k-1+a k) .
$$

Proof:

Let ($u 1, v 1$), $(u 2, v 2)$ be two vertices of $G 1 \otimes G 2$ that are distance $k(\geq 3)$ apart. Then by Theorem 3.4 either
(1) $d_{G_{1}}\left(u_{1}, u_{2}\right)=k$ and $0 \leq d_{G_{2}}\left(v_{1}, v_{2}\right) \leq k$, which gives $a k(b 0+b 1+\ldots+b k)$ such pairs;
or
(2) $d_{G_{2}}\left(v_{1}, v_{2}\right)=k$ and $0 \leq d_{G_{1}}\left(u_{1}, u_{2}\right) \leq k$,
which gives $b k(a 0+a 1+\ldots+a k)$ such pairs.
Moreover, if $u 1 \neq u 2$ and $v 1 \neq v 2$, then
$d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d_{G_{1} \otimes G_{2}}\left(\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right)\right)$.
Thus, the total number of pairs of vertices that are distance $k(\geq 3)$ apart is
$c k=a k(b 0+2 b 1+2 b 2+\ldots+2 b k-1+b k) \quad+b k(a 0+2 a 1+$ $2 a 2+\ldots+2 a k-1+a k)$.
For $k=2$, we have
$c 2=a 2(b 0+2 b 1+b 2)+b 2(a 0+2 a 1+a 2)+a 0 b 1+a 1 b 0$
$=a 0(b 1+b 2)+a 1(b 0+2 b 2)+a 2(b 0+2 b 1+2 b 2)$,
which completes the proof.

Corollary 7:

If $K_{p_{1}}$ and $K_{p_{2}}$ are disjoint complete graphs with $p 1, p 2 \geq 3$, then

$$
W\left(K_{p_{1}} \otimes K_{p_{2}} ; x\right)=\frac{1}{2} p 1 p 2\{2+(p 1-1)(p 2-1) x+(p 1+p 2-2) x 2\} . \square
$$

THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT OF A PATH AND AN ODD CYCLE

Consider the tensor product of the path Pn, $n \geq 2$, and the odd cycle $C 2 m+1, m \geq 1$. By Theorem 2.3, the graph $G=P n \otimes C 2 m+1$ is connected.

Let

$$
V(P n)=\{u 0, u 1, u 2, \ldots, u n-1\}, V(C 2 m+1)=\{v 0, v 1, v 2, \ldots, v 2 m\} .
$$

(See Figure 1)
It is clear that

$$
d(u i, u j)=|j-i|, \text { and } d(v i, v j)=\min \left\{|j-i|, 2 m+1\left|{ }_{i-i}\right|\right\}
$$

Figure 1

From Lemma 1:
$d G((u i, v s),(u j, v t)) \geq \max \{d(u i, u j), d(v s, v t)\} . \quad \ldots .$.
Thus, if
$R=|d(u i, u j)-d(v s, v t)|$
is even, then as in Case I of the proof of Lemma 3.3,
$d G((u i, v s),(u j, v t))=\max \{d(u i, u j), d(v s, v t)\}$.
But, if R is odd, then
$|d(u i, u j)-\{2 m+1-d(v s, v t)\}|$
is even. Hence,
$d G((u i, v s),(u j, v t)) \leq \max \{d(u i, u j), 2 m+1-d(v s, v t)\}$
Now, let (ui,vs),(x1,y1), ...,(xh,yh),(uj,vt) be a shortest (ui,vs)- (uj,vt) path in $P n \otimes C 2 m+1$, then the walks:
$F 1: u i, x 1, \ldots, x h, u j$ in Pn,
and
$F 2$: vs, $y 1, \ldots, y h, v t$ in $C 2 m+1$,
have the same length. Let Q1 be the ui-uj path in Pn, and let Q2 be the vs-vt path in $C 2 m+1$ which is contained in $F 2$. Then $l(F 1)-l(Q 1)$ is an even integer because $P n$ is acyclic graph. Also, $l(F 2)-l(Q 2)$ is an even integer because $F 2$ contains no cycles. (If $F 2$ contains $C 2 m+1$ itself, then the inequality (5) holds immediately). Therefore $l(Q 1)-l(Q 2)$ is an even integer. Obviously,
$l(Q 1)=d(u i, u j)$.
Because R is odd, then
$l(Q 2) \neq d(v s, v t)$, which means that $l(Q 2)=(2 m+1)-d(v s, v t)$.
Thus
$d G((u i, v s),(u j, v t)) \geq \max \{d(u i, u j), 2 m+1-d(v s, v t)\} \ldots$
Hence, from (4.3), (4.4), and (4.5), we have the following result.

Proposition 1:

Let $\mathrm{G}=\mathrm{Pn} \otimes \mathrm{C} 2 \mathrm{~m}+1, \mathrm{n} \geq 2, \mathrm{~m} \geq 1$, then

$$
\begin{aligned}
& d\left(\left(u_{i}, v_{s}\right),\left(u_{j}, v_{t}\right)\right)=\left\{\begin{array}{l}
\max \left\{d\left(u_{i}, u_{j}\right), d\left(v_{s}, v_{t}\right)\right\}, \text { if } R \text { is even; } \\
\max \left\{d\left(u_{i}, u_{j}\right), 2 m+1-d\left(v_{s}, v_{t}\right)\right\}, \text { if } R \text { is odd. } \text { in which } \\
R=|d(u i, u j)-d(v s, v t)| . \square
\end{array}\right.
\end{aligned}
$$

Corollary 2:

$\operatorname{diam}\left(P_{n} \otimes C_{2 m+1}\right)=\max \{n-1,2 m+1\}$.

Proof:

From Proposition 4.1, for each pair (ui,vs), ($u j, v t$)
$d G((u i, v s),(u j, v t)) \leq \max \{n-1,2 m+1\}$,
and
$d G((u 0, v s),(u n-1, v s)=\max \{n-1,2 m+1\}$,
when n is even. Thus if n is even, then
$\operatorname{diam}(\mathrm{Pn} \otimes C 2 m+1)=\max \{n-1,2 m+1\}$.
If n is odd, then $n-1$ is even, and
$d G((u 0, v s),(u n-1, v s)=n-1$, and
$d G((u 0, v s),(u 1, v s)=2 m+1$
Hence, the proof follows from (4.6).
By Theorem $1.2(5,6)$ of (Sagan, Yeh and Zhang, 1996).

$$
W\left(C_{2 m+1} ; x\right)=(2 m+1) \sum_{i=0}^{m} x^{i}
$$

and

$$
W\left(P_{n} ; x\right)=\sum_{i=0}^{n-1}(n-i) x^{i}
$$

Let

$$
\delta=\max \{n-1,2 m+1\}, \text { and }
$$

$$
W\left(P_{n} \otimes C_{2 m+1} ; x\right)=\sum_{i=0}^{\delta} c_{i} x^{i},
$$

then

$$
c 0=n(2 m+1) ; \quad c 1=2(n-1)(2 m+1)
$$

To find $c i$ for $2 \leq i \leq \delta$, we consider several cases.

Proposition 3:

$$
c_{\delta}=(2 m+1)\left\{\begin{array}{l}
(2 m+1)^{2}, \text { when } n-1 \geq 2 m+1 ; \\
\left(\frac{n}{2}\right)^{2}, \quad \text { when } n-1<2 m+1 \text { and } n \text { is even; } \\
\frac{1}{4}\left(n^{2}-1\right), \text { when } n-1<2 m+1 \text { and } n \text { is odd. }
\end{array}\right.
$$

Proof:

If $n-1 \geq 2 m+1$, then $\delta=n-1$, and a pair in $P n \otimes C 2 m+1$ is of distance $n-1$ apart if and only if it is of the form ($u 0, v s$), (un-1,vt) for each pair $u s, v t \in V(C 2 m+1)$ including the cases when vs=vt. Thus, the total number of such pairs is $(2 m+1) 2$.

If $(n-1)<(2 m+1)$, then a pair in $P n \otimes C 2 m+1$ is of distance $(2 m+1)$ apart if and only if it is of the form (ui,vs), (uj,vs) for which $d(u i, u j)$ is odd and for all vs $\in V(C 2 m+1)$. When n is even the total number of such pairs is

$$
(2 m+1)[(n-1)+(n-3)+\ldots+1]=(2 m+1)\left(\frac{n}{2}\right)^{2}
$$

And, when n is odd, the total number of pairs is

$$
(2 m+1)[(n-1)+(n-3)+\ldots+2]=(2 m+1)\left(\frac{n^{2}-1}{4}\right)
$$

Hence, the proof is completed.

Theorem 4:

The coefficients, ck $2 \leq k<\delta$, of the Wiener polynomial $W(P n \otimes C 2 m+1 ; x)$ are given by:
(a) if k is even and $k \leq n-1$, then

$$
c k=
$$

$$
(2 m+1)\left(2 n k-\frac{3}{2} k 2\right)
$$

(b) If k is even and $k>n-1$, then

$$
c_{k}=\frac{1}{2}(2 m+1)\left\{\begin{array}{l}
n^{2}, \quad \text { when } n \text { is even } \\
n^{2}+1, \text { when } n \text { is odd }
\end{array}\right.
$$

(c) If k is odd and $k \leq n-1$, then

$$
(2 m+1)\left[2 n k-\frac{1}{2}(3 k 2+1)\right] .
$$

(d) If k is odd and $k>n-1$, then

$$
c_{k}=\frac{1}{2}(2 m+1)\left\{\begin{array}{l}
n^{2}, \text { when } n \text { is even } \\
n^{2}-1, \text { when } n \text { is odd }
\end{array}\right.
$$

Proof:

Case (a):

We have two possibilities:
(i) $k \leq m$, and
(ii) $k>m$.
(i) If $k \leq m$, then by Proposition 4.1, a pair (ui,vs), ($u j, v t$) of $P n \otimes C 2 m+1$ is of distance k apart in the following two subcases:
(1) $d(u i, u j)=k$, and $d(v s, v t)$ is even with $d(v s, v t) \leq k$.
(2) $d(v s, v t)=k$, and $d(u i, u j)$ is even with $d(u i, u j)<k$.

Thus, the total number of such pairs in the two subcases is

$$
\begin{aligned}
& (n-k)(2 m+1)(k+1)+(2 m+1)[n+2(n-1)+2(n-4)+\ldots+2(n-(k-2))] \\
& =(2 m+1)\left(2 n k-\frac{3}{2} k 2\right)
\end{aligned}
$$

(ii) If $k>m$, then by Proposition 4.1, a pair (ui,vs), ($u j, v t)$ of $P n \otimes C 2 m+1$ is of distance k apart in the following three subcases:
(1) $d(u i, u j)=k, d(v s, v t) \leq m$ and $d(v s, v t)$ is even.
(2) $d(u i, u j)=k, 2 m+1-k<d(v s, v t) \leq m$ and $d(v s, v t)$ is odd.
(3) $d(u i, u j)<k, d(v s, v t)=2 m+1-k$ and $d(u i, u j)$ is even.

Hence, the total number of such pairs in the three subcases is

$$
\begin{aligned}
& (n-k)(2 m+1)\left\{\begin{array}{l}
(m+1), \text { when } m \text { is even, } \\
m, \text { when } m \text { is odd. }
\end{array}\right. \\
& +2(n-k)(2 m+1)\left[\frac{k-m}{2}\right] \\
& +(2 m+1)[n+2(n-2)+2(n-4)+\ldots+2(n-(k-2))] \\
& =(n-k)(2 m+1)(k+1)+(2 m+1)\left[n+2\left(\frac{2 n-k}{2}\right)\left(\frac{k-2}{2}\right)\right]
\end{aligned}
$$

$$
=(2 m+1)\left(2 n k-\frac{3}{2} k 2\right)
$$

This completes the proof of Case (a).

Case (b):

As in Case (a), we have two possibilities:
(i) If $k \leq m$, then by Proposition 4.1, a pair ($u i, v s$), ($u j, v t$) is of distance k apart if and only if $d(u i, u j) \leq n-1, d(u i, u j)$ even and $d(v s, v t)=k$.
The number of such pairs is given by

$$
(2 m+1)\left\{\begin{array}{l}
{[n+2(n-2)+\ldots+2(n-(n-2)), \text { when } n \text { is even, }} \\
{[n+2(n-2)+\ldots+2(n-(n-1)), \text { when } n \text { is odd. }}
\end{array}\right.
$$

$$
=\frac{1}{2}(2 m+1)\left\{\begin{array}{l}
n^{2}, \\
\left(n^{2}+1\right), \text { when } n \text { is even } \\
n \text { is odd }
\end{array}\right.
$$

(ii) If $k>m$, then a pair ($u i, v s$), ($u j, v t$) is of distance k apart if and only if $2 m+1-d(v s, v t)$ $=k, d(u i, u j)$ is even, and $d(u i, u j) \leq n-1$.
Thus, the number of such pairs is exactly that given in (i) of this case.
This completes the proof of Case (b).

Case (c):

We have two possiblities:
(i) If $k \leq m$, then a pair ($u i, v s$), ($u j, v t$) of $P n \otimes C 2 m+1$ is of distance k apart in the following two subcases:
(1) $d(u i, u j)=k, \quad d(v s, v t) \leq k$ and $d(v s, v t)$ is odd.
(2) $d(v s, v t)=k, \quad d(u i, u j)<k$ and $d(u i, u j)$ is odd.

Therefore, the total number of such pairs is given by:

$$
\begin{gathered}
(n-k)(2 m+1)(k+1)+(2 m+1)(2)[(n-1)+(n-3)+\ldots+(n-(k-2))] \\
=(2 m+1)\left[\left(2 n k-\frac{1}{2}(3 k 2+1)\right]\right.
\end{gathered}
$$

(ii) If $k>m$, then a pair ($u i, v s$), ($u j, v t$) of $P n \otimes C 2 m+1$ is of distance k apart in the following subcases:
(1) $d(u i, u j)=k, \quad d(v s, v t) \leq m$ and $d(v s, v t)$ is odd.
(2) $d(u i, u j)=k, \quad 2 m+1-k<d(v s, v t) \leq m$ and $d(v s, v t)$ is even.
(3) $d(u i, u j)<k, \quad d(v s, v t)=2 m+1-k$ and $d(u i, u j)$ is odd.

Hence, the total number of such pairs is given by

$$
\begin{aligned}
& 2(n-k)(2 m+1)\left\{\begin{array}{l}
\frac{m}{2}, \text { when } m \text { is even, } \\
\left(\frac{m+1}{2}\right), \text { when } m \text { is odd. }
\end{array}\right. \\
& +2(n-k)(2 m+1)\left[\frac{k-m}{2}\right] \\
& +(2 m+1)[2(n-1)+2(n-3)+\ldots+2(n-(k-2))]
\end{aligned}
$$

$$
\begin{aligned}
& =(n-k)(2 m+1)(k+1)+2(2 m+1)\left[\left(\frac{2 n-k+1}{2}\right)\left(\frac{k-1}{2}\right)\right] \\
& =(2 m+1)\left[2 n k-\frac{1}{2}(3 k 2+1)\right] .
\end{aligned}
$$

This completes the proof of Case (c).

Case (d):

Here, also we consider two possibilities:
(i) If $k \leq m$, then a pair ($u i, v s$), ($u j, v t$) is of distance k apart if and only if $d(u i, u j) \leq n-1$, $d(v s, v t)=k$, and $d(u i, u j)$ is odd.
Thus, the number of such pairs is given by

$$
\begin{aligned}
& (2 m+1)(2)\left\{\begin{array}{l}
{[(n-1)+(n-3)+\ldots+(n-(n-1))] \text {, when } n \text { is even, }} \\
{[(n-1)+(n-3)+\ldots+(n-(n-2))], \text { when } n \text { is odd. }}
\end{array}\right. \\
& =\frac{1}{2}(2 m+1)\left\{\begin{array}{l}
n^{2}, \quad \text { when } n \text { is even, } \\
\left(n^{2}-1\right), \text { when } n \text { is odd. }
\end{array}\right.
\end{aligned}
$$

(ii) If $k>m$, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if $d(v s, v t)=$ $2 m+1-k, d(u i, u j) \leq n-1$, and $d(u i, u j)$ is odd.
Thus, the number of such pairs is given by:
$(2 m+1)(2)\left\{\begin{array}{l}{[(n-1)+(n-3)+\ldots+(n-(n-1))] \text {, when } n \text { is even, }} \\ {[(n-1)+(n-3)+\ldots+(n-(n-2))] \text {, when } n \text { is odd. }}\end{array}\right.$
$=\frac{1}{2}(2 m+1)\left\{\begin{array}{l}n^{2}, \quad \text { when } n \text { is even, } \\ \left(n^{2}-1\right), \text { when } n \text { is odd. }\end{array}\right.$
This completes the proof of Case (d).
Hence, the proof of theorem.

REFERENCES

Buckley, F. and Harary, F., 1990. Distance in Graphs, Addison-Wesley, Redwood.
Chartrand, G. and Lesniak, L., 1986. Graphs and Digraphs, 2nd ed., Wadsworth and Brooks/ Cole, California.
Gutman, I., 1993. Some properties of the Wiener polynomial, Graph Theory Notes of New York, XXV, The New York Academy of Sciences, pp.13-18.
Hosoya, H., 1988. On some counting polynomials in chemistry, Discrete Applied Math., Vol.19, pp.239-257.
Sagan, B.E., Yeh, Y.N. and Zhang, P., 1996. The Wiener polynomial of a graph, international J. Quantum Chem., Vol. 60, No.5, pp.959-969.
Wiener, H., 1947. Structural determination of paraffin boiling points, J. Amer. Chem. Soc., Vol. 69, pp.17-20.

