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ABSTRACT
Let G1 and G2 be vertex disjoint connected graphs such that each edge of G1 and
G2 is a triangle edge. In this paper, the coefficients of the Wiener polynomial of the
tensor product G1®G2 are determined in terms of the coefficients of W(G1;x) and
W(G2;x). The Wiener polynomial of the tensor product of a path graph and an odd cycle
graph is also obtained.

G2 G1
1 G1®G2
- W(G2;x) W(G1;x)

INTRODUCTION

In this paper, we consider finite connected undirected graphs without loops or
multiple edges. For undefined terms, see (Chartrand and Lesniak, 1986) or (Buckley and
Harary, 1990).

Let G be a connected non-trivial graph with p vertices and q edges. By the distance
d(u,v) between the two distinct vertices u and v of G, we mean the length of a shortest
path connecting u and v. The diameter, o, of G is the maximal distance between two of its
vertices, that is

o= max d(u,v).

u,veV(G)

Let d(G,k) be the number of pairs of vertices in G that are distance k apart, k =0, 1,

ey O.
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It is clear that

dGO)=p, dGl)=q, and id(G,k)z(p;Fl].
k=0

The Wiener polynomial of G is defined as

W(G; X) = id(@, Kxk, (1.1).
k=0

(Hosoya, 1988). The name chosen for W(G;x) honours the physical chemist Harold
Wiener who studied distances in graphs and established some of their chemical

applications (Wiener, 1947). In the mathematical chemistry literatures, the sum of all
5

distances in a graph G, de(G,k), is referred to as the Wiener index (or number) and is
k=1
traditionally denoted by W(G).

In 1993, Gutman established some properties of the Wiener polynomial, and
obtained formulas for the Wiener polynomials of the compound graphs GleG2 and
G1:G2, where G1 and G2 are vertex-disjoint connected graphs. Recently, in 1996, Sagan,
Yeh and Zhang described the Wiener polynomials of compound graphs obtained by well-
known graph operations such as the join, cartesian product, composition, disjunction, and
symmetric difference.

The tensor product of the vertex-disjoint connected graphs G1=(V1,E1) and G2=
(V2,E2) is the graph G1®G2 defined as

V(G1®G2) =V1xV2,

E(G1®G2) ={(ul,vl1) (u2,v2) | ulu2eE1 and viv2eE2}.

It seems that it is difficult to find W(G1®G2;x) in terms of W(G1;x) and W(G2;x).

In this paper, we obtain a necessary and sufficient condition for G1®G2 to be
connected. Then we study the Wiener polynomial of G1®G2, and find a formula for
W(G1®G2;x) when each edge of G1 and G2 is a triangle edge.

Finally, we obtain the Wiener polynomial of the tensor product of a path graph and
an odd cycle graph.

THE CONNECTIVITY OF G1®G2
From the definition of tensor product one can easily see that G1®G2 may not be
connected. For example, P3®C4 is disconnected while P3®CS5 is connected. Therefore,
we need to find a necessary and sufficient condition on G1 and G2 such that G1®G2 is
connected.

Proposition 1 :
If neither G1 nor G2 contains an odd cycle, then G1® G2 is disconnected.

Proof:
Let ulu2 €E1 and veV2. We show by contradiction that there is no path joining the
two vertices (ul,v), (u2,v), in G1® G2. If
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P: (ul,v), (x1,y1), (x2,y2),...,(xr-1,yr-1), (u2,v) is a (ul,v) — (u2,v) path in G1®G2,
then

Q: ul, x1, x2, ..., xr-1, u2is a ul-u2 walk in G1 of odd length r, for otherwise Q
with the edge ulu2 forms an odd closed walk, which implies the existence of an odd
cycle in G1. Thus

R:v,yl,y2,....yr-1, v
is an odd closed v-v walk in G2, this means that G2 contains an odd cycle, a
contradiction.

Proposition 2:
If either G1 or G2 contains an odd cycle, then G1®G2 is connected.

Proof:
We may assume that G1 contains an odd cycle C.
Let (ul,v1) and (u2,v2) be any two distinct vertices in G1®G2. We consider three cases:
(@  Ifulzu2 and v1=v2, then let P1 be a ul-u2 path in G1 and P2 be avl-v2 path
in G2 such that the difference between their lengths is even. Without loss of
generality, let I(P1) =t, I(P2) =s,t>s, and
P1:ul=x0,x1, ..., xt=u2,
P2:vl1=y0,Vy2,...,ys = V2.

Then P: (x0,y0), (x1,y1), ..., (xs,ys), (xs+1,ys-1), (Xxs+2,ys), ..., (Xt,ys), is a
(ul,vl) — (u2,v2) path in G1® G2.

If the difference between the length of every ul-u2 path in G1 and every v1-v2
path in G2 is odd, then using the odd cycle C we can find a ul-u2 walk W1 in G1
such \I(Wl) - I(PZ)\ is even. Therefore, there is a (ul,vl) — (u2,v2) walk in
G1l®G2; and so there is a (ulyvl) — (u2,v2) path in G1®G2 (Chartrand and
Lesniak, 1986).

(b) Iful=u2andvl=v2, let y be any vertex adjacent with v1, then, replacing P2 by
the walk
W2:vl,,y, v2,
We can show, as in Case (a), that there is a (ul,v1) — (u2,v2) path in G1®G2.
(c) Iful =u2andvl=v2, letx be any vertex adjacent with ul, then, replacing P1 by
the walk
W1: ul, x, ul,

We can find, as in Case (a), a (ul,vl) — (ul,v2) path in G1® G2.

Hence, in all cases and for all pairs of vertices (ul,vl) and (u2,v2) in G1®G2,
there is a (ul,v1)—(u2,v2) path. Therefore, G1®G2 is connected.

From Propositions 1 and 2, we obtain the following important theorem.

Theorem 3:

Let G1 and G2 be disjoint nontrivial connected graphs. Then, G1®G2 is connected
if and only if either G1 or G2 contains an odd cycle.

THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT
In this section, the two graphs G1 and G2 are assumed to be nontrivial, connected,
disjoint, and either G1 or G2 contains an odd cycle.
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Lemma 1:
For each pair (ul,vl), (u2,v2) of vertices in G1 ® G2, we have

dg,@a, ((U1,V1), (Uz,V7)) 2 max{dg, (u3,up) dg, (Vi,V2)}-

Proof:

Suppose that dg g, (U, V1), (U2,V3)) =t,
and letQ: (x0,y0), (x1,y1), (x2,y2), ...,(xt,yt),
be a shortest (ul ,v1)-(u2,v2) path in G1 ® G2, in which

ul=x0,vl=y0, u2=xt, v2=yt.

Then, the xO—xt walk x0, x1,..., xt contains a ul-u2 path of length <t in G1, and
the yO-yt walk y0, yi1,..., yt contains a vl1-v2 path of length < t in G2. Thus
dGl (Ul,Uz) <t, and dG2 (V1!V2) <t.

This completes the proof.

Definition 2:
An edge e in a graph G is called a triangle edge if there is a cycle of length 3in G
containing e.

Lemma 3:
Let each edge of G2 be a triangle edge. If dg (u;,u;) =2, and

dGl (ul’UZ) > dGZ (Vl,Vz),then
dg, @G, ((U1,vy), (Uz,V2)) <dg, (up,uy).

Proof:
It is obvious that ul = u2. Let

dg, (U1, uz) =t,  dg, (v,v2) =5,
and let

Q1: x0, x1, x2, ..., xt, where x0=ul, xt=u2,

Q2:y0,vy1,vy2, ...,ys, where y0=v1, ys=v2,
be a shortest ul-u2 path in G1 and a shortest v1-v2 path in G2, respectively. We consider
two cases:

Case I:
t-siseven.
If s> 0, then
(x0,y0), (x1,y1), ..., (xs,ys), (xs+1,ys-1), (Xxs+2,y9), ..., (xt,ys)
isa (ul,vl) —(u2,v2) path in G1®G2 of length t.
If s =0, that is yO = vl=v2, then let y be any vertex adjacent to v1. Then
(x0,y0), (x1,y), (x2,y0), (x3,y), ..., (xt-1,y), (xt,y0)
isa (ul,vl) —(u2,vl) path in G1®G2 of length t.

Case I1:
t-sisodd.

If s >0, let yOy1z be the triangle containing the edge yOy1l in G2. Then
(x0,y0),(x1,2),(x2,y1),...,(xs,ys-1),(xs+1,ys),(xs+2,ys-1), (xs+3,yS),...,(Xt,ys).
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isa (ul,vl) —(u2,v2) path in G1®G2 of length t.

Ifs=0,thentis odd andt> 3. In this case, letvlyz be the triangle containing vertex
vl (=y0).

Then

(x0,y0), (x1,y), (x2, 2), (x3,y0), (x4,y), (x5,y0),..., (xt,y0)
isa (ul,vl) — (u2,vl) path of length t in G1®G2.
Therefore, in all cases, dg,®c, ((U1,v1),(Up,vy)) <t

Hence, the proof is completed.
Similarly, we can prove that if each edge of Glis a triangle edge, and
dg, (v1,v2) 2 2,

and  dg, (ug,up) <dg, (vq,V2),

then dg, ec, (U1, V1), (U2,V2)) <dg, (v1,V2).
Moreover, if each edge of G1 and G2 is a triangle edge, then
dg, @G, (U1,V), (Uz,v)) =2 if uu, e Ey,
and  dg e, (U,v1),(U,vp)) =2 if vivy € Ey.
Hence, by Lemmas 1 and 3, we have the following theorem.

Theorem 4:
Let G1 and G2 be nontrivial disjoint connected graphs such that each edge of G1
and G2 is a triangle edge, then

2 , when(u; =u, andwv, €E,) or (v, =v, and uu, €E;)
dg s, (U1, V1), (U2, V2))=

max{dg (U, Up),dg, (v1,V5)}, otherwise

Corollary 5:
If each edge of G1 and G2 is a triangle edge, then

max {diamG,, diamG,}=0, when ¢ >2

diam(G, ®G,) =
iam(Gy 2) {Z,When G, and G, are complete graphs.

The proof follows from Theorem 4.

Theorem 6:
Let G1 and G2 be nontrivial disjoint graphs which are not both complete graphs. If
each edge of G1 and G2 is a triangle edge, and

i . 0, .
W (Gy;x) =D ajx', W(Gj,;x)=> bix',
i=0 i=0
in which 61 = diamG1 and 62 = diamG2,
then

5 .
W(Gl ®G2, X) = ZCiXI )
i=0
where
o=max {01,02}
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c0=a0b0,
cl=2albl,
c2=a0(b1+b2) + al(b0+2b2) + a2(b0+2b1+2b2),
and for k > 3,
ck=ak(b0+2b1+...+2bk-1+bk)+bk(a0+2al+...+2ak-1+ak).

Proof:
Let (ul,vl), (u2,v2) be two vertices of G1®G2 that are distance k (> 3) apart. Then
by Theorem 3.4 either
(1) dg, (ug,up) =k and 0<dg, (v1,v2) <Kk,
which gives ak(b0 + bl +...+bk) such pairs;
or
(2) dGz (Vl’VZ) =k and 0< dGl (Ul,UZ) < k,

which gives bk(a0 + al + ... +ak ) such pairs.
Moreover, if ul # u2 and vl = v2, then
dg,®c, ((U1,v1),(Uz,V2)) =dg, ®a, ((U1,V2), (Uz, V1))
Thus, the total number of pairs of vertices that are distance k(> 3) apart is
ck =ak(b0 +2bl+2b2+...+ 2bk-1 + bk) + bk(@a0 +2al+
2a2 +...+ 2ak-1 + ak).
For k = 2, we have
c2=a2(b0 +2bl+b2) +b2(al +2al+a2)+albl +alb0
=al0(bl +Db2) +al(b0 +2b2) +a2(b0 +2bl +2b2),
which completes the proof.

Corollary 7:
If KIol and sz are disjoint complete graphs with pl,p2 > 3, then

W( Kp1® sz X) = %p1p2{2+(p1-1)(p2-1)x + (pl+p2-2)x2} .=

THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT OF A PATH AND
AN ODD CYCLE

Consider the tensor product of the path Pn, n > 2, and the odd cycle C2m+1, m > 1.

By Theorem 2.3, the graph G = Pn®C2m+1 is connected.
Let
V(Pn) = {u0,ul,u2, ...,un-1}, V(C2m+1) = {vO,v1,v2, ...,v2m}.

(See Figure 1)
It is clear that

d(ui,uj) = |j-i|, and d(vi,vj) = min {|j-i|, 2m+1 li-i|}
V4
. u.o l:l u:_ ........... _un.:.n l Comey: Vom Ve
Vo V2
Vi

Figure 1
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From Lemma 1:

dG((ui,vs),(uj,vt)) > max {d(ui,uj), d(vs,vt)}. ...... (1)
Thus, if

R = |d(uiuj)-dwsv)| L (2)
is even, then as in Case | of the proof of Lemma 3.3,

dG((ui,vs),(uj,vt)) = max {d(ui,uj), d(vs,vt)}. ...... (3)

But, if R is odd, then

| d(ui,uj)- {2m+1- d(vs,vt)}|
is even. Hence,

dG((ui,vs),(uj,vt)) < max {d(ui,uj), 2m+1- d(vs,vt)}.....(4)

Now, let (ui,vs),(x1,y1), ...,(xh,yh),(uj,vt) be a shortest (ui,vs)- (uj,vt) path in
Pn®C2m+1, then the walks:

F1:ui, x1, ..., xh,uj inPn,
and

F2:vs,y1,...,yh, vt in C2m+1,
have the same length. Let Q1 be the ui-uj path in Pn, and let Q2 be the vs—vt path in
C2m+1 which is contained in F2. Then I(F1)- I1(Q1) is an even integer because Pn is
acyclic graph. Also, I(F2) - I(Q2) is an even integer because F2 contains no cycles. (If F2
contains C2m+1 itself, then the inequality (5) holds immediately). Therefore 1(Q1)-1(Q2)
is an even integer. Obviously,

1(Q1) = d(ui,uj).
Because R is odd, then

1(Q2) = d(vs,vt), which means that 1(Q2) = (2m+1) - d(vs,vt).
Thus

dG((ui,vs),(uj,vt)) > max {d(ui,uj), 2m+1- d(vs,vt)}...  (5)

Hence, from (4.3), (4.4), and (4.5), we have the following result.

Proposition 1:
Let G =Pn®C2m+1,n>2, m >1, then
max{d(u;,u;),d(vs,vi) Hif R is even
d((ui,vs),(Uj,vp))= . o L in which
max{d (uj,u;),2m+1-d(vg,vy)}if R is odd.

R = | d(ui,uj)- d(vs,vt) | .=

Corollary 2:
diam (P, ® Cpp.q1) = max{n —1,2m +1}.

Proof:
From Proposition 4.1, for each pair (ui,vs), (u j, vt)
dG((ui,vs), (uj, vt)) <max {n-1,2m+1}, ...... (6)
and
dG((u0,vs), (u n-1, vs) = max {n-1,2m+1},
when n is even. Thus if n is even, then
diam(Pn®C2m+1) = max {n-1,2m+1}.
If nis odd, then n-1 is even, and
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dG((u0,vs), (un-1, vs) =n-1, and

dG((u0,vs), (ul, vs) = 2m+1

Hence, the proof follows from (4.6). =

By Theorem 1.2 (5,6) of (Sagan, Yeh and Zhang, 1996).

m
W (Camy1;X) = (2m+2) Y X'
i=0
and

W (P,;X) = n2_1(n —i)x'.

i=0
Let o =max{ n—1,2m + 1}, and

o .
W (PR, ® Copag;X) = D GiX,
i=0
then c0 =n(2m+1); cl=2(n-1)(2m+1).
To find ci for 2 <i< 6, we consider several cases.

Proposition 3:

(2m +1)2, when n-1>2m+1;

2
Cs =(2m +1)s (2) , when n—-1<2m+1 and n is even;

%(n2 —1),when n-1<2m+1 and n is odd.

Proof:

If n-1 > 2m+1, then 6= n-1, and a pair in Pn®C2m+1 is of distance n-1 apart if and
only if it is of the form (uO,vs), (un-1,vt) for each pair  us,vteV(C2m+1) including the
cases when vs=vt. Thus, the total number of such pairs is (2m+1)2.

If (n-1) < (2m+1), then a pair in Pn®C2m+1 is of distance (2m+1) apart if and only
if it is of the form (ui,vs), (uj,vs) for which d(ui,uj) is odd and for all vs € V(C2m+1).
When n is even the total number of such pairs is

2
2m+1) [ (n-1) + (n-3) + ... + 1] = (2m+1) (g] .
And, when n is odd, the total number of pairs is
2
@m+1) [ (n-1) + (n-3) + ... + 2] = (2m+1) {”4‘1)

Hence, the proof is completed. =
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Theorem 4:

The coefficients, ck 2 <k < ¢, of the Wiener polynomial W(Pn®C2m+1;x) are
given by:
(@) ifkisevenandk <n-1, then ck =

3
(2m+1)(2nk - Y k2).
(b) Ifkisevenandk>n-1, then

1 n2, when n is even,
Ck = —(2m + 1) )
2 n-+1when n iIs odd.
(c) Ifkisoddandk <n-1, then ck =

1
(2m+1)[2nk - > (3k2+1)].
(d) Ifkisoddandk > n-1, then

2

Ck:1(2m+1) n2’ when n ?S even,
2 n“—1,when n is odd.

Proof:
Case (a):

We have two possibilities:
(1) k<m, and (ii) k > m.
(i) If k < m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) of Pn®C2m+1 is of distance k

apart in the following two subcases:

(1) d(ui,uj) =k, and d(vs,vt) is even with d(vs,vt) <Kk.
(2) d(vs,vt) =k, and d(ui,uj) is even with d(ui,uj) < k.

Thus, the total number of such pairs in the two subcases is

(n-k)(2m+1)(k+1) + (2m+1)[n+2(n-1)+2(n-4)+...+2(n-(k-2))]

= (2m+1)(2nk - 2— k2).

(if) If k > m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) of Pn®C2m+1 is of distance k
apart in the following three subcases:
(1) d(ui,uj) =k, d(vs,vt) <m and d(vs,vt) is even.
(2) d(ui,uj) =k, 2m+1-k < d(vs,vt) <m and d(vs,vt) is odd.
(3) d(ui,uj) <k, d(vs,vt)=2m+1-k and d(ui,uj) is even.
Hence, the total number of such pairs in the three subcases is
(k)2 + 1){(m +1),when m is even,

m,when m is odd.
+2(n —K)(2m + 1){"_7”‘]

+ (2m+1)[n+2(n-2)+2(n-4)+...+2(n-(k-2))]

= (n-k)(2m+1)(k+1)+(2m+1){n n z(znz— k)(k ; 2):|
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= (2m+1)(2nk - %kZ).

This completes the proof of Case (a).

Case (b):
As in Case (a), we have two possibilities:
(i) If k < m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) is of distance k apart if and only
if d(ui,uj) <n-1, d(ui,uj) even and d(vs,vt) = k.
The number of such pairs is given by

(2m +1) [N+2(N-2)+...+2(n—(n—2)),when n is even,
[n+2(n-2)+..+2(n—(n-1)),when n is odd.
n?>,  when n is even,

~Lom+)
2 (n? +1),when n is odd.

(it) 1f k > m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if 2m+1- d(vs,vt)
=k, d(ui,uj) is even, and d(ui,uj) < n-1.
Thus, the number of such pairs is exactly that given in (i) of this case.
This completes the proof of Case (b).

Case (C):
We have two possiblities:
(i) If k <m, then a pair (ui,vs), (uj,vt) of Pn®C2m+1 is of distance k apart in the following
two subcases:
(1) d(ui,uj) =k, d(vs,vt) <k and d(vs,vt) is odd.
(2) d(vs,vt) =k, d(ui,uj) <k and d(ui,uj) is odd.
Therefore, the total number of such pairs is given by:
(n-k)(2m+1)(k+1) + (2m+21)(2)[(n-1)+(n-3)+...+(n-(k-2))]

= (2m+1)[(2nk - %(3k2+1)].

(ii) If k > m, then a pair (ui,vs), (uj,vt) of Pn®C2m+1 is of distance k apart in the
following subcases:
(1) d(ui,uj) =k, d(vs,vt) <m and d(vs,vt) is odd.
(2) d(ui,uj) =k, 2m+1-k < d(vs,vt) <m and d(vs,vt) is even.
(3) d(ui,uj) <k, d(vs,vt)=2m+1-k and d(ui,uj) is odd.
Hence, the total number of such pairs is given by

m :
—, when m is even,
2(n — k)(2m +1){ 2
(T),when m is odd.

+2(n—k)(2m +1){k _me

+ (2m+D)[2(n-1)+2(n-3)+...+2(n-(k-2))]
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= (n-k)(2Mm+1)(k+1)+2(2m+1) K 2 _zk al 1)( K z_lﬂ

= (2m+1)[2nk - % (3k2+1)].

This completes the proof of Case (c).

Case (d):
Here, also we consider two possibilities:
(i) If k < m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if d(ui,uj) < n-1,
d(vs,vt) = k, and d(ui,uj) is odd.
Thus, the number of such pairs is given by

(2m+1)(2){[(n—1)+(n—3)+---+(n—(n—l))],when n i-s even,
[(n-)+(n-3)+..+(n—(n—2))],when n is odd.
2 :
:£(2m+1) n“, when n is even,
2 (n? —1),when n is odd.

(if) If k > m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if d(vs,vt) =
2m+1- k, d(ui,uj) < n-1, and d(ui,uj) is odd.
Thus, the number of such pairs is given by:

(2m+1)(2){[(n—1)+(n—3)+---+(n—(n—l))],when n i-s even,
[(N-1)+(n=3)+..+(n—(n-2))],when n is odd.
2 .
:£(2m+1) n“,  when n is even,
2 (n?> —1),when n is odd.

This completes the proof of Case (d).
Hence, the proof of theorem.
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