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ABSTRACT 

Let G1  and G2 be vertex disjoint connected graphs such that each edge of G1 and 
G2 is a triangle edge. In this paper, the coefficients of the Wiener polynomial of the 
tensor product G1⊗G2 are determined in terms of the coefficients of W(G1;x) and 
W(G2;x). The Wiener polynomial of the tensor product of a path graph and an odd cycle 
graph is also obtained. 
 ــــــــــــــــــــــــــــــــــــــــــــــــــ

  متعددة حدود وينر للجداء التنسري
  

  الملخص

تم .  بيانين متصلين وليس بينهما رأس مشترك وان كل حافة فيهما تقع في مثلثG2  وG1 ليكن 

دتي 1 بدلالة معاملات متعدG1⊗G2ذا البحث تحديد معاملات متعددة حدود وينر للجداء التنسري في ه

وايضا تضمن البحث ايجاد متعددة حدود وينر للجداء التنسري لبيان . W(G2;x)  وW(G1;x)حدود وينر 

   .درب مع بيان دارة فردية

 ــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

In this paper, we consider finite connected undirected graphs without loops or 
multiple edges. For undefined terms, see (Chartrand and Lesniak, 1986) or  (Buckley and 
Harary, 1990). 

Let G be a connected non-trivial graph with p vertices and q edges. By the distance 
d(u,v) between the two distinct vertices u and v of G, we mean the length of a shortest 
path connecting u and v. The diameter, δ, of G is the maximal distance between two of its 
vertices, that is  

).,(max
)(,

vud
GVvu ∈

=δ  

Let d(G,k) be the number of pairs of vertices in G that are distance k apart, k = 0, 1, 
…, δ. 
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It is clear that 
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The Wiener polynomial of G is defined as  
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kxkGdxGW  

(Hosoya, 1988). The name chosen for W(G;x) honours the physical chemist Harold 
Wiener who studied distances in graphs and established some of their chemical 
applications (Wiener, 1947). In the mathematical chemistry literatures, the sum of all 

distances in a graph G, ,),(
1
∑
=

δ

k
kGkd  is referred to as the Wiener index (or number) and is 

traditionally denoted by W(G). 
In 1993, Gutman established some properties of the Wiener polynomial, and 

obtained formulas for the Wiener polynomials of the compound graphs G1•G2 and 
G1:G2, where G1 and G2 are vertex-disjoint connected graphs. Recently, in 1996, Sagan, 
Yeh and Zhang described the Wiener polynomials of compound graphs obtained by well-
known graph operations such as the join, cartesian product, composition, disjunction, and 
symmetric difference. 

The tensor product of the vertex-disjoint connected graphs  G1=(V1,E1) and G2= 
(V2,E2) is the graph G1⊗G2  defined as  

V(G1⊗G2) =V1×V2, 
E(G1⊗G2) ={(u1,v1) (u2,v2)⏐ u1u2∈E1 and v1v2∈E2}. 

It seems that it is difficult to find W(G1⊗G2;x) in terms of W(G1;x) and W(G2;x). 
In this paper, we obtain a necessary and sufficient condition for G1⊗G2 to be 

connected. Then we study the Wiener polynomial of G1⊗G2, and find a formula for 
W(G1⊗G2;x) when each edge of G1 and G2 is a triangle edge.  

Finally, we obtain the Wiener polynomial of the tensor product of a path graph and 
an odd cycle graph. 

 
THE CONNECTIVITY OF G1⊗G2 

From the definition of tensor product one can easily see that G1⊗G2 may not be 
connected. For example, P3⊗C4 is disconnected while P3⊗C5 is connected. Therefore, 
we need to find a necessary and sufficient condition on G1 and G2 such that G1⊗G2 is 
connected.  

 

Proposition 1 : 
If neither G1 nor G2 contains an odd cycle, then G1⊗ G2 is disconnected. 

 

Proof: 
Let u1u2 ∈E1 and v∈V2. We show by contradiction that there is no path joining the 

two vertices (u1,v), (u2,v), in G1⊗ G2. If  
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P: (u1,v), (x1,y1), (x2,y2),…,(xr-1,yr-1), (u2,v) is a (u1,v) – (u2,v) path in G1⊗G2, 
then 

Q: u1, x1, x2, …,xr-1,  u2 is a u1– u2 walk in G1 of odd length r, for otherwise Q 
with the edge u1u2 forms an odd closed walk, which implies the existence of an odd 
cycle in G1. Thus 

R: v, y1, y2,…,yr-1, v 
is an odd closed v–v walk in G2, this means that G2 contains an odd cycle, a 
contradiction. 
 

Proposition 2: 
If either G1 or G2 contains an odd cycle, then G1⊗G2 is connected. 

 

Proof: 
We may assume that G1 contains an odd cycle C.  

Let (u1,v1) and (u2,v2) be any two distinct vertices in G1⊗G2. We consider three cases: 
(a) If u1≠u2 and v1≠v2, then  let P1 be a u1–u2 path in G1 and  P2  be  a v1–v2  path 

in G2 such that the difference between their lengths is even. Without loss of 
generality, let l(P1) = t, l(P2) = s, t ≥ s, and  

   P1: u1 = x0, x1, …, xt = u2, 
   P2: v1 = y0, y2, …, ys = v2. 

Then P: (x0,y0), (x1,y1), …, (xs,ys), (xs+1,ys-1), (xs+2,ys), …, (xt,ys), is a 
(u1,v1) – (u2,v2) path in G1⊗ G2. 

If the difference between the length of every u1–u2 path in G1 and every v1–v2 
path in G2 is odd, then using the odd cycle C we can find a u1–u2 walk W1 in G1  
such ⏐l(W1) - l(P2)⏐ is even. Therefore, there  is a  (u1,v1) – (u2,v2)  walk  in  
G1⊗G2;   and  so  there  is  a (u1,v1) – (u2,v2) path in G1⊗G2 (Chartrand and 
Lesniak, 1986). 

(b) If u1 ≠ u2 and v1 = v2, let  y  be  any vertex  adjacent  with v1, then, replacing P2 by 
the walk 

         W2: v1,, y, v2, 
We can show, as in Case (a), that there is a  (u1,v1) – (u2,v2) path in G1⊗G2. 

(c) If u1 = u2 and v1 ≠ v2 , let x be any  vertex  adjacent  with u1, then, replacing P1 by 
the walk 

          W1: u1, x, u1, 
We can find, as in Case (a), a  (u1,v1) – (u1,v2) path in G1⊗ G2. 
Hence, in all cases and for all pairs of vertices (u1,v1) and  (u2,v2) in G1⊗G2, 

there is a (u1,v1)–(u2,v2) path. Therefore, G1⊗G2 is connected. 
From Propositions 1 and 2, we obtain the following important theorem. 

 

Theorem 3: 
Let G1 and G2 be disjoint nontrivial connected graphs. Then, G1⊗G2 is connected 

if and only if either G1 or G2 contains an odd cycle. 
 

THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT 
In this section, the two graphs G1 and G2 are assumed to be nontrivial, connected, 

disjoint, and either G1 or G2 contains an odd cycle. 
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Lemma 1: 
For each pair (u1,v1), (u2,v2) of vertices in G1 ⊗ G2, we have 

)}.,(),,(max{)),(),,(( 21212211 2121
vvduudvuvud GGGG ≥⊗  

 

Proof: 
Suppose that tvuvud GG =⊗ )),(),,(( 221121

, 
and let Q: (x0,y0),  (x1,y1), (x2,y2), …,(xt,yt), 
be a shortest (u1 ,v1)–(u2,v2) path in G1 ⊗ G2, in which 

  u1 = x0 , v1 = y0 ,  u2 = xt ,  v2 = yt . 
Then, the x0–xt walk x0, x1,…, xt  contains a u1–u2 path of length ≤ t in G1,  and 

the y0–yt walk y0, y1,…, yt contains a v1–v2 path of length ≤ t in G2. Thus 
,),( 211

tuudG ≤  and tvvdG ≤),( 212
. 

This completes the proof.  
 

Definition 2: 
An edge e in a graph G is called a triangle edge if there is a cycle of length 3 in G 

containing e. 
 

Lemma 3: 
Let each edge of  G2 be a triangle edge. If ,2),( 211

≥uudG and 

),,(),( 2121 21
vvduud GG ≥ then  

).,()),(),,(( 212211 121
uudvuvud GGG ≤⊗  

 

Proof: 
It is obvious that u1 ≠ u2. Let  

  ,),( 211
tuudG =  ,),( 212

svvdG =   
and let 

  Q1: x0, x1, x2, …, xt, where  x0=u1, xt=u2,  
  Q2: y0, y1, y2, …, ys, where  y0=v1, ys=v2, 

be a shortest u1–u2 path in G1 and a shortest v1–v2 path in G2, respectively. We consider 
two cases: 
 

Case I:  
  t - s is even.  

If s > 0, then  
   (x0,y0), (x1,y1), …, (xs,ys), (xs+1,ys-1), (xs+2,ys), …, (xt,ys) 

is a  (u1,v1) – (u2,v2) path in G1⊗G2 of length t. 
If s = 0, that is y0 = v1= v2, then let y be any vertex adjacent to v1. Then  

   (x0,y0), (x1,y), (x2,y0), (x3,y), …, (xt-1,y), (xt,y0) 
is a  (u1,v1) – (u2,v1) path in G1⊗G2 of length t. 
 

Case II:  
  t - s is odd.  

If s > 0, let y0y1z be the triangle containing the edge y0y1 in G2. Then   
  (x0,y0),(x1,z),(x2,y1),…,(xs,ys-1),(xs+1,ys),(xs+2,ys-1), (xs+3,ys),…,(xt,ys). 
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is a  (u1,v1) – (u2,v2) path in G1⊗G2 of length t. 
If s = 0, then t is  odd  and t ≥ 3. In  this  case,  let v1yz be  the  triangle containing vertex 
v1 (=y0). 
Then  

   (x0,y0), (x1,y), (x2, z), (x3,y0), (x4,y), (x5,y0),…, (xt,y0) 
is a (u1,v1) – (u2,v1) path of length t in G1⊗G2. 
Therefore, in all cases, .)),(),,(( 221121

tvuvud GG ≤⊗   
Hence, the proof is completed. 
Similarly, we can prove that if each edge of G1is a triangle edge, and 

 ,2),( 212
≥vvdG   

and   ),,(),( 2121 21
vvduud GG ≤   

then ).,()),(),,(( 212211 221
vvdvuvud GGG ≤⊗   

Moreover, if each edge of G1 and G2 is a triangle edge, then 
  ,2)),(),,(( 1212121

Euuifvuvud GG ∈=⊗   
and  .2)),(),,(( 2212121

Evvifvuvud GG ∈=⊗   
Hence, by Lemmas 1 and 3, we have the following theorem. 

 
Theorem 4: 

Let G1 and G2 be nontrivial disjoint connected graphs such that each edge of G1 
and G2 is a triangle edge, then 

⎪⎩

⎪
⎨
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Corollary  5: 
If each edge of G1 and G2 is a triangle edge, then 

⎪⎩

⎪
⎨
⎧ ≥=

=⊗
.,2

2,},{max
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21 graphscompleteareGandGwhen
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GGdiam

δδ
  

The proof follows from Theorem 4. 
 
Theorem  6: 

Let G1 and G2 be nontrivial disjoint graphs which are not both complete graphs. If 
each edge of G1 and G2 is a triangle edge, and  

,);(,);(
21

0
2

0
1 ∑∑

==
==

δδ

i

i
i

i

i
i xbxGWxaxGW  

in which δ1 = diamG1 and δ2 = diamG2, 
then  

,);(
0

21 ∑
=

=⊗
δ

i

i
i xcxGGW  

where  
δ = max {δ1,δ2}  
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c0=a0b0, 
c1=2a1b1, 

  c2=a0(b1+b2) + a1(b0+2b2) + a2(b0+2b1+2b2), 
and for k ≥ 3, 

ck=ak(b0+2b1+…+2bk-1+bk)+bk(a0+2a1+…+2ak-1+ak). 
 
Proof: 

Let (u1,v1), (u2,v2) be two vertices of G1⊗G2 that are distance k (≥ 3) apart. Then 
by Theorem 3.4 either  
(1) kuudG =),( 211

 and  ,),(0 212
kvvdG ≤≤   

which gives  ak(b0 + b1 +…+bk ) such pairs; 
or        

 (2)   kvvdG =),( 212
 and  ,),(0 211

kuudG ≤≤   
which gives  bk(a0 + a1 + … +ak ) such pairs. 

Moreover, if u1 ≠ u2 and v1 ≠ v2, then 
)).,(),,(()),(),,(( 12212211 2121

vuvudvuvud GGGG ⊗⊗ =   
Thus, the total number of pairs of vertices that are distance k(≥ 3) apart is 

ck = ak(b0   + 2 b1 + 2b2 +…+ 2bk-1 + bk )        +  bk(a0  + 2 a1 + 
2a2 +…+ 2ak-1 + ak ). 
For k = 2, we have 

c2 = a2(b0   + 2 b1 + b2)  + b2(a0 + 2a1 + a2 ) + a0b1 + a1b0 
= a0(b1  + b2)  + a1(b0  + 2b2) +a2(b0  + 2b1 +2b2 ), 

which completes the proof. 
 
Corollary 7: 

If 
1pK  and 

2pK   are disjoint complete graphs with   p1,p2 ≥  3, then 

W(
1pK ⊗

2pK ;x) = 
2
1 p1p2{2+(p1-1)(p2-1)x + (p1+p2-2)x2}.  

 
THE WIENER POLYNOMIAL OF THE TENSOR PRODUCT OF A PATH AND 

AN ODD CYCLE 
Consider the tensor product of the path Pn, n ≥ 2, and the odd cycle C2m+1, m ≥ 1. 

By Theorem 2.3, the graph G = Pn⊗C2m+1 is connected. 
Let 

V(Pn) = {u0,u1,u2, …,un-1}, V(C2m+1) = {v0,v1,v2, …,v2m}. 
(See Figure 1) 
It is clear that  

d(ui,uj) = ⏐j-i⏐, and d(vi,vj) = min {⏐j-i⏐, 2m+1-⏐j-i⏐} 
 
 
 
 
 
 

 
 

Figure 1 

u0 u1 u2 un-2 un-1 
Pn: C2m+1: 

v0 
v1 

v2 

v3 

v4 

v2m 
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From Lemma 1: 
dG((ui,vs),(uj,vt)) ≥ max {d(ui,uj), d(vs,vt)}.    …… (1) 

Thus, if  
R = ⏐d(ui,uj)- d(vs,vt)⏐               …… (2) 

is even, then as in Case I of the proof of Lemma 3.3, 
dG((ui,vs),(uj,vt)) = max {d(ui,uj), d(vs,vt)}.     …… (3) 

But, if R is odd, then 
⏐d(ui,uj)- {2m+1- d(vs,vt)}⏐  

is even. Hence, 
dG((ui,vs),(uj,vt)) ≤ max {d(ui,uj), 2m+1- d(vs,vt)}…..( 4) 
Now, let (ui,vs),(x1,y1), …,(xh,yh),(uj,vt) be a shortest (ui,vs)- (uj,vt) path in 

Pn⊗C2m+1, then the walks: 
F1: ui, x1, …, xh, uj   in Pn, 

and  
F2: vs, y1, …, yh, vt   in C2m+1, 

have the same length. Let Q1 be the ui-uj path in Pn, and let Q2 be the vs–vt path in 
C2m+1 which is contained in F2. Then l(F1)- l(Q1) is an even integer because Pn is 
acyclic graph. Also, l(F2) - l(Q2) is an even integer because F2 contains no cycles. (If F2 
contains C2m+1 itself, then the inequality (5) holds immediately). Therefore l(Q1)-l(Q2) 
is an even integer. Obviously, 

l(Q1) = d(ui,uj). 
Because R is odd, then  

l(Q2) ≠ d(vs,vt), which means that l(Q2) = (2m+1) - d(vs,vt). 
Thus 

dG((ui,vs),(uj,vt)) ≥ max {d(ui,uj), 2m+1- d(vs,vt)}… (5) 
Hence, from (4.3), (4.4), and (4.5), we have the following result. 

 
Proposition 1: 

Let G = Pn⊗C2m+1,n ≥ 2, m  ≥ 1, then 

⎪⎩

⎪
⎨
⎧

−+
=

.)},,(12),,(max{

;)},,(),,(max{
)),(),,((

oddisRifvvdmuud

evenisRifvvduud
vuvud

tsji

tsji
tjsi in which 

R = ⏐d(ui,uj)- d(vs,vt) ⏐.  
 
Corollary  2: 

{ .}12,1max)( 12 +−=⊗ + mnCPdiam mn  
 
Proof:  

From Proposition 4.1, for each pair (ui,vs), (u j, vt)  
dG((ui,vs), (u j, vt)) ≤ max {n-1,2m+1},  ……      (6) 

and 
dG((u0,vs), (u n-1, vs) = max {n-1,2m+1}, 
when n is even. Thus if n is even, then 
diam(Pn⊗C2m+1) = max {n-1,2m+1}. 
If n is odd, then n-1 is even, and 
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dG((u0,vs), (u n-1, vs) = n-1, and 
dG((u0,vs), (u1, vs) = 2m+1 
Hence, the proof follows from (4.6). 
By Theorem 1.2 (5,6) of (Sagan, Yeh and Zhang, 1996).  

 ∑
=
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m xmxCW
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then   c0 = n(2m+1);   c1 = 2(n-1)(2m+1). 
To find ci  for   2 ≤ i ≤ δ, we consider several cases. 

 
Proposition  3: 
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Proof:  

If n-1 ≥ 2m+1, then δ = n-1, and a pair in Pn⊗C2m+1 is of distance n-1 apart if and 
only if it is of the form (u0,vs), (un-1,vt)  for each pair     us,vt∈V(C2m+1) including the 
cases when vs=vt. Thus, the total number of such pairs is  (2m+1)2. 

If (n-1) < (2m+1), then a pair in Pn⊗C2m+1 is of distance (2m+1) apart if and only 
if it is of the form (ui,vs), (uj,vs) for which d(ui,uj) is odd and for all vs ∈ V(C2m+1). 
When n is even the total number of such pairs is 

(2m+1) [ (n-1) + (n-3) + … + 1] = (2m+1) 
2

2
⎟
⎠
⎞

⎜
⎝
⎛ n

. 

And, when n is odd, the total number of pairs is  

(2m+1) [ (n-1) + (n-3) + … + 2] = (2m+1) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
4

12n . 

Hence, the proof is completed.  
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Theorem  4: 
The coefficients, ck  2 ≤ k < δ, of the Wiener polynomial W(Pn⊗C2m+1;x) are 

given by:  
(a) if k is even and k ≤ n-1, then        ck = 

(2m+1)(2nk - 2
3

k2). 

(b) If k is even and k > n-1, then     
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(c) If k is odd and k ≤ n-1, then        ck =  

(2m+1)[2nk - 2
1

 (3k2+1)]. 

(d) If k is odd and k > n-1, then    
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Proof: 
Case (a):  

We have two  possibilities: 
(i) k ≤ m,  and   (ii) k > m. 
(i) If k ≤ m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) of Pn⊗C2m+1 is of distance k 

apart in the following two subcases: 
(1) d(ui,uj) = k, and d(vs,vt) is even with d(vs,vt) ≤ k. 
(2) d(vs,vt) = k, and d(ui,uj) is even with d(ui,uj) < k. 

Thus, the total number of such pairs in the two subcases is  
  (n-k)(2m+1)(k+1) + (2m+1)[n+2(n-1)+2(n-4)+…+2(n-(k-2))] 

 = (2m+1)(2nk - 
2
3

k2). 

(ii) If k > m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) of Pn⊗C2m+1 is of distance k 
apart in the following three subcases: 

(1) d(ui,uj) = k,  d(vs,vt) ≤ m and d(vs,vt) is even. 
(2) d(ui,uj) = k,  2m+1-k < d(vs,vt) ≤ m and d(vs,vt) is odd. 
(3) d(ui,uj) < k,  d(vs,vt)= 2m+1-k and d(ui,uj) is even. 

Hence, the total number of such pairs in the three subcases is  
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+ (2m+1)[n+2(n-2)+2(n-4)+…+2(n-(k-2))] 
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= (2m+1)(2nk - 
2
3

k2). 

This completes the proof of Case (a). 
 
Case (b):  

As in Case (a), we have two possibilities: 
(i) If k ≤ m, then by Proposition 4.1, a pair (ui,vs), (uj,vt) is of distance k apart if and only 

if d(ui,uj) ≤ n-1, d(ui,uj) even and d(vs,vt) = k. 
The number of such pairs is given by  

 
⎩
⎨
⎧

−−++−+
−−++−+

+
.)),1((2...)2(2[
,)),2((2...)2(2[

)12(
oddisnwhennnnn
evenisnwhennnnn

m   

⎪⎩

⎪
⎨
⎧

+
+=

.),1(

,,
)12(

2
1

2

2

oddisnwhenn

evenisnwhenn
m   

(ii) If k > m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if  2m+1- d(vs,vt) 
= k, d(ui,uj) is even, and d(ui,uj) ≤ n-1. 

Thus, the number of such pairs is exactly that given in (i) of this case. 
This completes the proof of Case (b). 

 
Case (c):  

We have two  possiblities: 
(i) If k ≤ m, then a pair (ui,vs), (uj,vt) of Pn⊗C2m+1 is of distance k apart in the following 
two subcases: 
(1) d(ui,uj) = k,   d(vs,vt) ≤ k and d(vs,vt) is odd. 
(2) d(vs,vt) = k,   d(ui,uj) < k and d(ui,uj) is odd. 

Therefore, the total number of such pairs is given by:  
  (n-k)(2m+1)(k+1) + (2m+1)(2)[(n-1)+(n-3)+…+(n-(k-2))] 

    = (2m+1)[(2nk - 
2
1

(3k2+1)]. 

(ii) If k > m, then a pair (ui,vs), (uj,vt) of Pn⊗C2m+1 is of distance k apart in the 
following subcases: 
(1) d(ui,uj) = k,   d(vs,vt) ≤ m and d(vs,vt) is odd. 
(2) d(ui,uj) = k,   2m+1-k < d(vs,vt) ≤ m and d(vs,vt) is even. 
(3) d(ui,uj) < k,   d(vs,vt)= 2m+1-k and d(ui,uj) is odd. 

Hence, the total number of such pairs is given by   
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     + (2m+1)[2(n-1)+2(n-3)+…+2(n-(k-2))] 



The Wiener Polynomial of The  Tensor Product 77

= (n-k)(2m+1)(k+1)+2(2m+1) ⎥
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= (2m+1)[2nk - 
2
1

(3k2+1)]. 

This completes the proof of Case (c). 
 
Case (d): 

Here, also we consider two  possibilities: 
(i) If k ≤ m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if d(ui,uj) ≤ n-1, 

d(vs,vt) = k, and d(ui,uj) is odd. 
Thus, the number of such pairs is given by  
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(ii) If k > m, then a pair (ui,vs), (uj,vt) is of distance k apart if and only if d(vs,vt) = 
2m+1- k, d(ui,uj) ≤ n-1, and d(ui,uj) is odd. 

Thus, the number of such pairs is given by:  
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This completes the proof of Case (d). 
Hence, the proof of theorem. 
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