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ABSTRACT  
The purpose of this paper is to develop a parallel algorithm for solving 

unconstrained optimization problems. This parallel algorithm in which several tasks may 
be executed at the same time in parallel based on the parallel subspaces theorem and it's 
designed to run on MIMD computing systems. 

  ــــــــــــــــــــــــــــــــــــــــــــــــــ

  طريقة أمثلية متوازية مبنية على نظرية الفضاءات الجزئية المتوازية
  

  الملخص

  تم في هذا البحث تطوير خوارزمية متوازية في الأمثلية غير المقيدة أعتمد على نظرية الفضاءات 

   .MIMDاسبات المتوازية من نوع  هذه الخوارزمية مصممة للح. الجزئية المتوازية

  ــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION  

In recent years as microprocessor have become cheaper and technology for 
interconnecting them has improved, it has become possible and practical to build general 
purpose parallel computers containing a large number of processors. There has been burts 
of activity in the developing the hardware, the algorithms and theoretical models to make 
use of parallel computers. 

In this paper we discuss the development of parallel algorithm based on steepest 
descent and parallel subspace algorithms, designed to run on MIMD (Multiple Instruction 
Multiple Data) system. The MIMD system are consisting of several processors where 
each processor can independently run it's own instructions and these processors are 
connected with each other by suitable communication network, for more detail see 
(Khalaf and Hutchison, 1991) and (Khalaf and Hutchison, 1992). 

For minimizing differentiable non-linear functions consider the unconstrained 
optimization problem: 

 
             Minimize              (1)                    x                    ),( nRxf ∈  
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Where )(xf  is objective function, assumed to be continuously differentiable and 
denote to the gradient vector )(xf∇ by ).(xg one of the oldest and most widely known 
methods for solving eq(1) is the method of Steepest Descent (often refered to as the 
gradient method). The method is extremely important from theoretical view point. Since 
it's one of the simplest for which satisfactory analysis exists and it is behavior for general 
function is similar to it's behavior for quadratic function (Luenberger, 1973). 
     The summary of Steepest Descent is given below: 
 
Algorithm (1) (Steepes Descent.algorithm). 
It is assumed that an estimate 0x of a minimizer *x  of f is known and set  
tolearns ε >0  
Step-1: set k = 0 
Step-2: compute kd from 
             (2)                                                                               kk gd −=  
Step-3: compute kα from 
               (3)                                        (min( )) kkkkk dxfdxf αα α +=+  
Step-4: compute 1+kx from 
             (4)                                                                        1 kkkk dxx α+=+  
Step-5: if   ε≤+   1kg ,  stop otherwise 
           Set k = k+ l and go to step 2 
Search direction kddd ,...,, 21 generated by algorithm (1) are downhill also the sequence 
{ }kx  generated by Steepest descent algorithm. Converge to point x at which ).(xg =0. See 
(Wolfe, 1978). 
 
Theorem (1) (Steepest Descent-Quadratic Case) 
For any n

0 R ∈x   algorithm (1) converges to the unique minimum point *x  of f. 
furthermore with 
    )()()( **

2
1 xxQxxxE T −−=  

there holds at every step k 

≤+ )( 1kxE ⎟
⎠
⎞

⎜
⎝
⎛

+
−

aA
aA 2 )( kxE  

Where a and A are respectively the smallest and largest eigenvalues of nxn positive 
definite matrix Q. 
(For proof see Luenberger, 1973). In general the convergent property which is derived for 
quadratic problem in theorem (1) can be translated into similar one for non-quadratic 
problem. (Luenberger, 1973). 
 
1. Parallel subspaces Method: 
      The parallel subspaces algorithms depend upon the parallel subspaces theorem. The 
first algorithm which used this theorem was proposed by Smith (1962), later in 1964 
powell proposed another algorithm based on parallel subspaces theorem. 
Hestenes 1980 re-defined the subspaces theorem in terms of parallel planes, which states 
as follows. 
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Theorem (2): 
Let kx  and kx  be the minimum points of F where F, is a quadric function on two 

distinct parallel (k -1)-planes Π −1k  and 1−Π k . The vector 
(5)                                                          kkk xxd −=     

Is conjugate to these (k-1) planes. The minimum point 1+kx  of F on the 
line kk dxx α+= through kx and −

kx  affords a minimum to F on the 
K-plane Πk = Πk-1 + kdα . spanning 11 & −− ΠΠ kk  . 
for the proof see Hestenes 1980. 
This result is represented schematically in figure (1). 
 
 

 
Figure 1 

 
 

The result described in theorem (2) suggests that the minimum point of f can be 
found by the following procedure. 

Select an initial point 1x and obtain the minimum point 2x of f on a line 
  1Π  through 1x . Next find the minimum point 2X of f on the line 1Π  parallel and distinct 
from 1Π . Then minimize f on the line joining x2 to 2X  to obtain the minimum point x3 of 
f on the 2-plane 2Π  spanning 1Π  and 1Π  . W e proceed by finding minimum point 3X  on 
a 2-plane 2Π parallel to 2Π  and determining the minimum point x4 on the line joining x3 
to 3X . 

The point x4 minimizes f on 3-plane 3Π  spanning 2Π and 2Π . Proceeding in this 
manner we obtain the minimum points x2, x3...xn+1 of f successively on planes 

1Π , 2Π …, nΠ since nΠ is the whole space the minimum point 1+nx  of f on nΠ  is the 
minimum point x* of f. The procedure just described was the method of parallel 
subspaces. 

 
2. New Parallel Optimization Method 
     Steepest Descent and Parallel Subspace methods mentioned earlier can be combined 
in a parallel optimization algorithm to run on machines that have more than one 
processors working on one problem at the same time to reduce the solution time of the 
problem by parallel processing. 
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    We well use some simplifying notations such as k
iX  which means that the value of x in 

processor i at iteration k, similar notation used for gradient vector  for g( k
iX  ) = ∇f ( k

iX  
). We can now summarize the new algorithm as follows select initial points 0

iX , i=1,....., 
m where m is the number of the processors contained in the computer and select an 
arbitrary directions say 0

id  where 0
1d // 0

2d  // ....// 0
md  . To obtain the minimum points 

)1(
iX (i = 1,2,......,m) of the objective function on the parallel and distinct lines iΠ  (i = 

1......... m) see figure ( 2).  
         

 

 
                    Fig.2: The diagram of the new method 
 
 
Next fined new search directions from 
  k

i
k
i gd −=  k > o   …………………..(6) 

perform a line search along the directions k
id  to find new points  

  k
i

k
i

k
i

k
i dxx α+=+1     ............... (7)  

where k
iα optimal step size. For next iteration 

Set 1
12

1
2

1 +
−

++ −= k
i

k
i

k
i xxd  i = 1,......, m/2 ..........(8) 

Then minimize f on the directions 1+k
id  to obtain the minimum points 2+k

iX . 
Proceeding in this manner we obtain the minimum point *

mX  of the objective 
function. The outline of the algorithm given below 
 
 
 

2x
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Algorithm (2)   
set: k = l, 1−k

ix , 1−k
id , ε ,  ( i  =  l, ....., m)  

fined k
ix  (i = 1........ m) from equation (7) 

Step-1: calculate k
ig  and fined k

id  from equ. (6) 
Step-2: use eq (7) to obtain new points 
Step-3: if ║ 1+k

ig ║<ε  for some i, stop. Otherwise continue 
Step-4: use eq. (7) and (8) to find new k

id  and k
iX  i = 1, . . ., m/2  

Step-5: k = k + l, m = m/2 go to step-1 
    The steps (1) to (5) are repeated until the point t

mX  (t >k) is obtained in processor 
pm. If t

mX  is not the minimum point then pm well finds new direction say t
md  and 

sends the value of t
md  to processors p1, ..., pm-1 as initial direction and processes 

repeated. 
   To run the algorithm (2) on parallel computer we must connect the processors as seen 
in figure (3) 
 
 

 
Fig. 3:  The communication path of the processors 

 
Where the processors P1,…, Pm (for no lose of generality we assume m is even ) are 

operating in parallel and computing in two stages : 
First stage: all processors are runs and computes )1(

ix , )1(
ig , )1(

id and )2(
ix , i=1,…,m, if 

convergent is not obtained, then each processor p2i-1 sends values to processor P2i (i = l, 
....... m/2) second stages processor P2i receives values from p2i-1 i = 1,... ...., m/2 to compute 
new directions from eq (8) and new points from eq (7). Then check for convergent 
otherwise processor p2i-2   sends values to P2i. The process repeated until 1+k

mX  obtain in the 
Pm. 
We can formalize this parallel algorithm on MIMD computing systems as follows: 
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P1  P2 To p4 Pm-2 

1- set ε,d,X 0
1

0
1   1- set ε,d,X 0

2
0
2   1- set ε−− ,d,X 0

2m
0

2m  
2- for k≥1 find 

k
1

k
1

k
1 d,g,X  

 2- for k≥1 find 
k
2

k
0

k
2 d,g,X  

 2- for K≥1 find 
k

2m
k

2m
k

2m d,g,X −−−  

3- compute 1k
1X + from 

line search 
 3- compute 1k

2X + from 
line search 

 3- compute 
1k
2mX +

− from line search

4- save 1k
1X +  as 0

1X  
and send the value of 

1k
1X +  to p2 

 4- receive value of  
1k

1X + by P1 and find 
new 1k

2d +  from 
1k

1
1k

2
1k

0 XXd +++ −=  

 4- receive value from 
Pm-3 and find new 

1k
2md +

−  from 
1k
2m

1k
2m

1k
2m XVd +

−
+
−

+
− −=    

5- receive value from 
Pm 

 5- compute 2k
2X + by 

line search 
 5- compute 2k

2mX +
− by 

line search 
6- if convergent is not 
obtained ? go to 2 

 6- save 2k
2X + as 0

2X  
and send the value of 

1k
0X + to P4 

 6- save 2k
2mX +

− as 0
2mX −  

and send the value of 
2k
2mX +

− to Pm 
  7- receive value from 

Pm 
 7- receive value from 

Pm 
  8- if convergent is not 

obtained go to 2 
 8- if convergent is not 

obtained go to 2 
 

From Pm-3 
 

Pm-1  Pm 
1- set ε−− ,d,X 0

1m
0

1m   1- set ε,d,X 0
m

0
m  

2- for K≥1 find k
1m

k
1m

k
1m d,g,X −−−   2- for K≥1 find k

m
k
m

k
m d,g,X  

3- compute 1k
1mX +
− by line search  3- compute 1k

mX + from line search 

4- save 1k
1mX +
− as 0

1mX −  and send the value 
of 1k

1mX +
− to Pm 

 4- receive value from Pm-1 and find 
new 1k

md +  from 1k
1m

1k
m

1k
m xxd +

−
++ −=    

5- receive value from Pm  5- compute 2k
mX + by line search 

6- if convergent is not obtained go to 2  6- if convergent is not obtained find 
new 2k

md + and send the value of 2k
md +  

to processors p1, ……, pm-1 as intial 
direction and go to 2 
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3- Numerical Examples: 
Since the parallel computers are not available, we tried to solve two examples by 

hand, for simplicity we use two processors (m=2).  
 Let us consider the following unconstrained optimization problems (See Mokhtar, 1993). 
 
Example (1): 
Minimize f(X1-X2)=(2X1-X2)2+(X2+1)2 
 

Processor (1)  Processor (2) 

1- set ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
2
5.2

x 0
1

0
1  

 
1- set ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
3
1

x 0
2

0
2  

2- fined 1
1

1
1

1
1 d,g,x   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

5
0

d,
5
0

g,
2
1

x 1
1

1
1

0
1  

 2- fined 1
2

1
2

1
2 d,g,x   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

7
0

d,
7
0

g,
3
5.1

x 1
2

1
2

1
2  

3- from 1
1d  fined 2

1x   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

5.0
0.1

x 2
1  

 3- from 1
2d  fined 2

2x   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
5.1

x 2
2  

4- check for convergent   4- receive value from P1 

5- send value of 2
1x  to P2  5- fined new search direction from 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=

5.0
5.0

xxd 2
1

2
2

2
2  

  6- fined new 3
2x  from 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=α−=
1
5.0

XX 2
2

2
2

3
2  which is true 

minimum for f(X1,X2) 
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Example (2): 
Minimize f(X1-X2)=( X1-2)4+(X1-2X2)2 
 

Processor (1)  Processor (2) 

1- set ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,

0
1

d,
3
0

x 0
1

0
1  

 
1- set ε⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= ,
0
1

d,
2
1

x 0
2

0
2  

2- calculate 1
1x  from 0

1
0
1

0
1

1
1 dxx α+=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==α

3
123.3

x,128.3 1
1

0
1  

 2- calculate  1
2x  from 

0
2

0
2

0
2

1
2 dxx α+=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==α
2

673.0
x,673.1 1

2
0
2  

3- fined ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=−=

488.11
003.0

g,gd,g 1
1

1
1

1
1

1
1  

fined  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=α+=

56437.1
1276.3

x,dxx 2
1

1
1

1
1

1
1

2
1  

 3- fined 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=−=
692.18
001.0

g,gd,g 1
2

1
2

1
2

1
2  fined  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=α+=
2

673.0
x,dxx 2

2
1
2

1
2

1
2

2
2  

4- send value of 2
1x  to processor 2  4- receive value from P1 

  5- fined 2
2d  from 2

1
2
2

2
2 xxd −=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
2278.1
4546.2

d2
2  

  
6- ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=α−=

1
2

dXX 2
2

2
2

2
1

3
2  which is 

true minimum for f(X1,X2) 
 
 
 
 
 

From the solution of the examples (1) and (2) we see that in the first iteration two 
processors are runs and obtains two minimum points 2

1X  in p1 and 2
2X  in p2, then 

processor p1 sends the value of 2
1X  to processor p2 to compute new direction 2

2d  and new 
minimum point 3

2X  which is true minimum point. These examples shows the new 
method reduces the solution time required to solve the problem, clearly the total time 
needed to solve any problem depends on the number of the processors.  
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CONCLUSIONS 
In this paper, we had developed a new method using the theory of steepest descent 

and theory of parallel subspace method. The parallel tasks are illustrated by mean of 
practical examples.  
The expected speed – up factor of the new method is demonstrated.  
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