A Parallel Optimization Method Based on the Theory of Parallel Subspaces

Bashir M. Khalaf
Department of Mathematics
College of Education
Mosul University

Khalil K. Abbo
College of Computer Science
\& Mathematics
Mosul University

(Received 12/8/2001, Accepted 27/10/2001)

Abstract

The purpose of this paper is to develop a parallel algorithm for solving unconstrained optimization problems. This parallel algorithm in which several tasks may be executed at the same time in parallel based on the parallel subspaces theorem and it's designed to run on MIMD computing systems.

طرجقة أمثليةمتوازبةمبنية عل ظاربة الفضاءل الجزئية المتوازية

المالضص

تم في هذا البحث ظووير خوارزمية متوازية في الأمثلية غير المقية أعتمد على ظرية الفضاءات الجزئية المتوازية. هنه الخوارزمية مصممة للحلسبت المتوازية من نوع MIMD .

INTRODUCTION

In recent years as microprocessor have become cheaper and technology for interconnecting them has improved, it has become possible and practical to build general purpose parallel computers containing a large number of processors. There has been burts of activity in the developing the hardware, the algorithms and theoretical models to make use of parallel computers.

In this paper we discuss the development of parallel algorithm based on steepest descent and parallel subspace algorithms, designed to run on MIMD (Multiple Instruction Multiple Data) system. The MIMD system are consisting of several processors where each processor can independently run it's own instructions and these processors are connected with each other by suitable communication network, for more detail see (Khalaf and Hutchison, 1991) and (Khalaf and Hutchison, 1992).

For minimizing differentiable non-linear functions consider the unconstrained optimization problem:

$$
\begin{equation*}
\text { Minimize } f(x), \quad x \in R^{n} \tag{1}
\end{equation*}
$$

Where $f(x)$ is objective function, assumed to be continuously differentiable and denote to the gradient vector $\nabla f(x)$ by $g(x)$. one of the oldest and most widely known methods for solving eq(1) is the method of Steepest Descent (often refered to as the gradient method). The method is extremely important from theoretical view point. Since it's one of the simplest for which satisfactory analysis exists and it is behavior for general function is similar to it's behavior for quadratic function (Luenberger, 1973).

The summary of Steepest Descent is given below:

Algorithm (1) (Steepes Descent.algorithm).

It is assumed that an estimate x_{0} of a minimizer x^{*} of f is known and set
tolearns $\varepsilon>0$
Step-1: $\operatorname{set} \mathrm{k}=0$
Step-2: compute d_{k} from

$$
\begin{equation*}
d_{k}=-g_{k} \tag{2}
\end{equation*}
$$

Step-3: compute α_{k} from

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k)}=\min _{\alpha} f\left(x_{k}+\alpha d_{k)}\right.\right. \tag{3}
\end{equation*}
$$

Step-4: compute x_{k+1} from

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k} \tag{4}
\end{equation*}
$$

Step-5: if $\left\|g_{k+1}\right\| \leq \varepsilon$, stop otherwise
Set $\mathrm{k}=\mathrm{k}+1$ and go to step 2
Search direction $d_{1}, d_{2}, \ldots, d_{k}$ generated by algorithm (1) are downhill also the sequence $\left\{x_{k}\right\}$ generated by Steepest descent algorithm. Converge to point x at which $g(x)$. $=0$. See (Wolfe, 1978).

Theorem (1) (Steepest Descent-Quadratic Case)

For any $x_{0} \in \mathrm{R}^{\mathrm{n}}$ algorithm (1) converges to the unique minimum point x^{*} of f . furthermore with

$$
E(x)=\frac{1}{2}\left(x-x^{*}\right)^{T} Q\left(x-x^{*}\right)
$$

there holds at every step k
$E\left(x_{k+1}\right) \leq\left(\frac{A-a}{A+a}\right)^{2} E\left(x_{k}\right)$
Where a and A are respectively the smallest and largest eigenvalues of nxn positive definite matrix Q .
(For proof see Luenberger, 1973). In general the convergent property which is derived for quadratic problem in theorem (1) can be translated into similar one for non-quadratic problem. (Luenberger, 1973).

1. Parallel subspaces Method:

The parallel subspaces algorithms depend upon the parallel subspaces theorem. The first algorithm which used this theorem was proposed by Smith (1962), later in 1964 powell proposed another algorithm based on parallel subspaces theorem.
Hestenes 1980 re-defined the subspaces theorem in terms of parallel planes, which states as follows.

Theorem (2):

Let x_{k} and \bar{x}_{k} be the minimum points of F where F , is a quadric function on two distinct parallel (k-1)-planes \prod_{k-1} and $\overline{\Pi_{k-1}}$. The vector $d_{k}=x_{k}-\bar{x}_{k}$
Is conjugate to these (k-1) planes. The minimum point x_{k+1} of F on the line $x=x_{k}+\alpha d_{k}$ through x_{k} and x_{k}^{-}affords a minimum to F on the
K-plane $\Pi \mathrm{k}=\Pi \mathrm{k}-1+\alpha d_{k}$. spanning $\Pi_{k-1} \& \overline{\Pi_{k-1}}$.
for the proof see Hestenes 1980.
This result is represented schematically in figure (1).

Figure 1

The result described in theorem (2) suggests that the minimum point of f can be found by the following procedure.

Select an initial point x_{1} and obtain the minimum point x_{2} of f on a line
Π_{1} through x_{1}. Next find the minimum point $\overline{X_{2}}$ of f on the line $\overline{\Pi_{1}}$ parallel and distinct from Π_{1}. Then minimize f on the line joining x_{2} to $\overline{X_{2}}$ to obtain the minimum point x_{3} of fon the 2-plane Π_{2} spanning Π_{1} and $\overline{\Pi_{1}}$. W e proceed by finding minimum point $\overline{X_{3}}$ on a 2-plane $\bar{\Pi}_{2}$ parallel to Π_{2} and determining the minimum point x_{4} on the line joining x_{3} to $\overline{X_{3}}$.

The point x_{4} minimizes f on 3-plane Π_{3} spanning Π_{2} and $\bar{\Pi}_{2}$. Proceeding in this manner we obtain the minimum points $x_{2}, x_{3} \ldots x_{n+1}$ of f successively on planes $\Pi_{1}, \Pi_{2} \ldots, \Pi_{n}$ since Π_{n} is the whole space the minimum point x_{n+1} of f on Π_{n} is the minimum point x^{*} of f. The procedure just described was the method of parallel subspaces.

2. New Parallel Optimization Method

Steepest Descent and Parallel Subspace methods mentioned earlier can be combined in a parallel optimization algorithm to run on machines that have more than one processors working on one problem at the same time to reduce the solution time of the problem by parallel processing.

We well use some simplifying notations such as X_{i}^{k} which means that the value of x in processor i at iteration k , similar notation used for gradient vector for $\mathrm{g}\left(X_{i}^{k}\right)=\nabla \mathrm{f}\left(X_{i}^{k}\right.$). We can now summarize the new algorithm as follows select initial points $X_{i}^{0}, \mathrm{i}=1, \ldots \ldots$, m where m is the number of the processors contained in the computer and select an arbitrary directions say d_{i}^{0} where $d_{1}^{0} / / d_{2}^{0} / / \ldots . / / d_{m}^{0}$. To obtain the minimum points $X_{i}^{(1)}(\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m})$ of the objective function on the parallel and distinct lines $\Pi_{i}(\mathrm{i}=$ 1... \qquad m) see figure (2).

Fig.2: The diagram of the new method

Next fined new search directions from

$$
\begin{equation*}
d_{i}^{k}=-g_{i}^{k} \quad \mathrm{k}>\mathrm{o} \tag{6}
\end{equation*}
$$

perform a line search along the directions d_{i}^{k} to find new points

$$
\begin{equation*}
x_{i}^{k+1}=x_{i}^{k}+\alpha_{i}^{k} d_{i}^{k} \tag{7}
\end{equation*}
$$

where α_{i}^{k} optimal step size. For next iteration
Set $d_{i}^{k+1}=x_{2 i}^{k+1}-x_{2 i-1}^{k+1} \quad \mathrm{i}=1, \ldots \ldots, \mathrm{~m} / 2$
Then minimize f on the directions d_{i}^{k+1} to obtain the minimum points X_{i}^{k+2}. Proceeding in this manner we obtain the minimum point X_{m}^{*} of the objective function. The outline of the algorithm given below

Algorithm (2)

set: $\mathrm{k}=1, x_{i}^{k-1}, d_{i}^{k-1}, \varepsilon,(\mathrm{i}=1, \ldots ., \mathrm{m})$
fined $x_{i}^{k}(\mathrm{i}=1$ \qquad m) from equation (7)

Step-1: calculate g_{i}^{k} and fined d_{i}^{k} from equ. (6)
Step-2: use eq (7) to obtain new points
Step-3: if $\left\|g_{i}^{k+1}\right\|<\varepsilon$ for some i, stop. Otherwise continue
Step-4: use eq. (7) and (8) to find new d_{i}^{k} and $X_{i}^{k} \mathrm{i}=1, \ldots, \mathrm{~m} / 2$
Step-5: $k=k+1, m=m / 2$ go to step- 1
The steps (1) to (5) are repeated until the point $X_{m}^{t}(\mathrm{t}>\mathrm{k})$ is obtained in processor p_{m}. If X_{m}^{t} is not the minimum point then p_{m} well finds new direction say d_{m}^{t} and sends the value of d_{m}^{t} to processors $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}-1}$ as initial direction and processes repeated.
To run the algorithm (2) on parallel computer we must connect the processors as seen in figure (3)

Fig. 3: The communication path of the processors
Where the processors $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}$ (for no lose of generality we assume m is even) are operating in parallel and computing in two stages :

First stage: all processors are runs and computes $x_{i}^{(1)}, g_{i}^{(1)}, d_{i}^{(1)}$ and $x_{i}^{(2)}, \mathrm{i}=1, \ldots, \mathrm{~m}$, if convergent is not obtained, then each processor $\mathrm{p}_{2 \mathrm{i}-1}$ sends values to processor $\mathrm{P}_{2 \mathrm{i}}(\mathrm{i}=1$, $\ldots . . . \mathrm{m} / 2$) second stages processor $\mathrm{P}_{2 \mathrm{i}}$ receives values from $\mathrm{p}_{2 \mathrm{i}-1} \mathrm{i}=1, \ldots \ldots ., \mathrm{m} / 2$ to compute new directions from eq (8) and new points from eq (7). Then check for convergent otherwise processor $\mathrm{p}_{2 \mathrm{i}-2}$ sends values to $\mathrm{P}_{2 \mathrm{i}}$. The process repeated until X_{m}^{k+1} obtain in the P_{m}.
We can formalize this parallel algorithm on MIMD computing systems as follows:

3- Numerical Examples:

Since the parallel computers are not available, we tried to solve two examples by hand, for simplicity we use two processors ($\mathrm{m}=2$).
Let us consider the following unconstrained optimization problems (See Mokhtar, 1993).
Example (1):
Minimize $f\left(X_{1}-X_{2}\right)=\left(2 X_{1}-X_{2}\right)^{2}+\left(X_{2}+1\right)^{2}$

Processor (1)
1- set $\mathrm{x}_{1}^{0}=\binom{2.5}{2}, \mathrm{~d}_{1}^{0}=\binom{1}{0}, \varepsilon$
2- fined $\mathrm{x}_{1}^{1}, \mathrm{~g}_{1}^{1}, \mathrm{~d}_{1}^{1}$
$\mathrm{x}_{1}^{0}=\binom{1}{2}, \mathrm{~g}_{1}^{1}=\binom{0}{5}, \mathrm{~d}_{1}^{1}=\binom{0}{5}$
3- from d_{1}^{1} fined x_{1}^{2} $\mathrm{x}_{1}^{2}=\binom{1.0}{0.5}$
4- check for convergent
5- send value of x_{1}^{2} to P_{2}

Example (2):

Minimize $f\left(X_{1}-X_{2}\right)=\left(X_{1}-2\right)^{4}+\left(X_{1}-2 X_{2}\right)^{2}$

Processor (1)	Processor (2)
$1-\operatorname{set} \mathrm{x}_{1}^{0}=\binom{0}{3}, \mathrm{~d}_{1}^{0}=\binom{1}{0}, \varepsilon$	$1-\operatorname{set} \mathrm{x}_{2}^{0}=\binom{-1}{-2}, \mathrm{~d}_{2}^{0}=\binom{1}{0}, \varepsilon$
2- calculate x_{1}^{1} from $\mathrm{x}_{1}^{1}=\mathrm{x}_{1}^{0}+\alpha_{1}^{0} \mathrm{~d}_{1}^{0}$ $\alpha_{1}^{0}=3.128, x_{1}^{1}=\binom{3.123}{3}$	$\begin{array}{\|ccc} \hline 2-\quad \text { calculate } & x_{2}^{1} & \text { from } \\ \mathrm{x}_{2}^{1}=\mathrm{x}_{2}^{0}+\alpha_{2}^{0} \mathrm{~d}_{2}^{0} & & \\ \alpha_{2}^{0}=1.673, \mathrm{x}_{2}^{1}=\binom{0.673}{-2} & \\ \hline \end{array}$
3- fined $\mathrm{g}_{1}^{1}, \mathrm{~d}_{1}^{1}=-\mathrm{g}_{1}^{1}, \mathrm{~g}_{1}^{1}=\binom{-0.003}{11.488}$ fined $\mathrm{x}_{1}^{2}=\mathrm{x}_{1}^{1}+\alpha_{1}^{1} \mathrm{~d}_{1}^{1}, \mathrm{x}_{1}^{2}=\binom{3.1276}{1.56437}$	3- $\begin{aligned} & \mathrm{g}_{2}^{1}, \mathrm{~d}_{2}^{1}=-\mathrm{g}_{2}^{1}, \mathrm{~g}_{2}^{1}=\binom{-0.001}{-18.692} \text { fined } \\ & \mathrm{x}_{2}^{2}=\mathrm{x}_{2}^{1}+\alpha_{2}^{1} \mathrm{~d}_{2}^{1}, \mathrm{x}_{2}^{2}=\binom{0.673}{-2} \end{aligned}$
4 - send value of x_{1}^{2} to processor 2	4- receive value from P_{1}
	5- fined d_{2}^{2} from $\mathrm{d}_{2}^{2}=\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}$ $\mathrm{d}_{2}^{2}=\binom{-2.4546}{-1.2278}$
	6- $\mathrm{X}_{2}^{3}=\mathrm{X}_{1}^{2}-\alpha_{2}^{2} \mathrm{~d}_{2}^{2}=\binom{2}{1}$ which is true minimum for $\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

From the solution of the examples (1) and (2) we see that in the first iteration two processors are runs and obtains two minimum points X_{1}^{2} in p_{1} and X_{2}^{2} in p_{2}, then processor p_{1} sends the value of X_{1}^{2} to processor p_{2} to compute new direction d_{2}^{2} and new minimum point X_{2}^{3} which is true minimum point. These examples shows the new method reduces the solution time required to solve the problem, clearly the total time needed to solve any problem depends on the number of the processors.

CONCLUSIONS

In this paper, we had developed a new method using the theory of steepest descent and theory of parallel subspace method. The parallel tasks are illustrated by mean of practical examples.
The expected speed - up factor of the new method is demonstrated.

REFERENCES

Hestenes, M.R., 1980. Conjugate Direction Method in Optimization, Spring-Verlage. New York, Heiddberg. Berlin.
Khalaf, B.M. and Hutchison, 1991. Parallel Algorithm for Solving IVPs, J. of Parallel Computing. Vol. 17. 957 p.
Khalaf, B.M. and Hutchison, 1992 Redusing the Solution Time of Liner Meth. Models by Using a Transputer Applications Based System. Parallel Computing and Transputer Applications M. Valero et al (Eds))Barcelona. pp148.
Luenberger, D.C. ,1973. Introduction to Linear and non - Linear Programming. Addison Wesley. Reading. Mass.
Mokhtare, B.S., 1993. Non-Linear Programming Theory and Application, by John Wiley and Sons. Inc. Second Edition.
Powell, M.J.D., 1964. An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives,Computer Journal. Vol. (6).
Smith, C., 1962. The Automatic Computation of Maximum Like-Lihood estimates, Wolfe, A.M., 1978. Numerical Methods for Unconstrained Optimization. An Introduction. By Van Nostrand Company. Englewood Cliffs. N.J. USA.

