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ABSTRACT 

In this paper an hybrid CG direction and a modified direction of the Storey's 
projected version of the BFGS Quasi-Newton (QN) update of optimization is 
investigated theoretically and experimentally. 

The new proposed algorithm is compared with. Storey's projected BFGS method 
on a large number of standard test functions with dimensionality varies between 
4≤n≤1000. The new algorithm is found to be superior to the Storey's projected BFGS 
method overall but it showed a considerable superiority on some of test functions. 
  ـــــــــــــــــــــــــــــــــــــــــــــــــ

    الاسقاطية مع التدرج المترافقBFGSخوارزمية جديدة هجينية لــ 
  

  الملخص

في هذا البحث تم استحداث خوارزمية جديدة في مجال تهجين خط بحث التدرج 

وتم  الاسقاطية BFGSالمترافق المولد مع خط البحث للمصفوفة المستحدثة لمصفوفة 

  .التحقق من الخوارزمية نظرياً و عملياً

  الاسقاطية باستعمال عدد كبيرBFGS مع خوارزمية قترحةتم مقارنة الخوارزمية الم

 نا إن الخوارزمية الجديدة ذات كفاءةدوج n≤1000≥4 من الدوال اللاخطية ذات الابعاد

لمستخدمة في هذا  وهي متفوقة جداً في بعض الدوال ا Story مقارنةً بخوارزميةعالية

  .البحث

 ـــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

The most important algorithms to find the minimum of unconstrained function 
are the Conjugate Gradient (CG) and Quasi-Newton (QN) methods. QN methods 
have the direction dk = -Hk g k  where Hk is k-th approximation matrix to the 
Hessian inverse of  f , and g k  is the gradient vector ∇f . 

There is different ways to obtain H, and the best is the BFGS method. Hu and 
Storey in 1990 developed the BFGS in projected version, where the theoretical 
explanation and numerical experience show that the projected QN method better 
than the QN method, the CG- algorithms have the direction 
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dk=-gk+βkdk........................................................................................... (1) 
where βk, is a scalar obtained by different ways as we will see later. 

On the other hand Buckley in 1978 introduced the idea of interleaving CG-
direction by a QN-direction to accelerate the efficiency of the CG-algorithm. 
Nazareth in 1979 developed a precondition CG to accelerate the standard CG- 
algorithm which has the following direction 

dk=-Hkgk+βkdk………………………………………………… (2) 
k

T
kkk

T
kk gggHg /11 ++=β  

Storey and Touati-Ahmed in (1990) developed the hybrid CG-algorithm by 
choosing a suitable scalar, βk, 

 
CONJUGATE GRADIENT METHODS 

We consider the unconstrained minimization problem 

nRx
xf

∈
)(min ............................................................................... (1) 

where f is twice continuously differentiable function from Rn to R. 
CG methods are iterative methods generates, respectively, three sequences 

{xk}, {gk}, {dk},for k =1,2, .. . .  until termination, where xk estimates a local 
solution x* of equation (IA), g,; is the gradient of f ; and dk is the search direction, 
which has the descent property        

0pk
T
k gd ......................................................................... (2) 

where gk≠0 . 
The original CG-methods proposed by (Fletcher and Reeves, 1964)is given by 

kkk
FR
k ggd β+−= ++ 11 ................................................................. (3) 

kkkk dxx λ+=+1 ...................................................................... (4) 
 Such that dk+1 is "conjugate to" dk in the sense that 

kjforGdd j
T
k ≠= 0 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

where G is the Hessian matrix and kλ  is the step-length parameter, satisfying 

k
T
kkkk dgxfdxf λσλ 1)()( +≤+ ........................................... (6) 

and k
T
kk

T
k dgdg 21 σ≤+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7)  

here 0 < σ1 < σ2 < 1 and where  

2

2
1

k

kFR
k

g

g +=β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (8) 

Other choices of the parameter βk in (3) give rise to distinct algorithms for 
nonlinear problems the most famous of them are 

2
11 )(

k
T
k

kk
T
kHs

k
gd

ggg −
= ++β ............................................... (9) 

which is due to Hestenes and Stiefel (1952). 

2
11 )(

k

kk
T
kFR

k
g

ggg −
= ++β ......................................................... (10) 

which is due to Polak and Ribeier (1969).  
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k
T
k

kD
k gd

g 2
1+−

=β ................................................................................. (11) 

which is due to Dixon (1972).  

k
T
k

kk
T
kBA

k gd
ggg )( 11 −

= ++β ...................................................................... (12) 

which is due to Al-Bayati and A1 Assady (1986) . 
Indeed, extensive numerical experience has shown that the Polak-Ribier method 

is more efficient than the original Fletcher-Reeves method (Polak, 1969). 
There is a theoretical explanation which shows that the PR-formula is better 

than FRformula. On non-quadratic functions it can happen (Fletcher, 1987) that the 
search direction dk becomes almost orthogonal to -gk and hence little progress can be 
made. In this event xk - 1=x k  and gk+1-gk so FR-method then gives 

kkk dgd +−≅ ++ 11 ............................................................................ (13)  
while the PR-method becomes 

11 ++ −≅ kk gd ................................................................................... (14) 
So that in these circumstances the PR-algorithm tends to reset automatically to 

the steepest descent direction, thus, it seems that this formula should be used when 
solving large problems. Indeed CG-algorithms are usually implements errors. 

Fletcher in his standard method suggested to restart his algorithm with the 
steepest descent direction every n or n+l iterations. In (Crowder and Wolfe, 1972) it 
has been shown that if restarting is not employed the convergence of the algorithm 
will be linear only. 
 

PROJECTED QN- METHOD 
The basic method to solve the problem (1) is the Newton's method where the 

search direction is given by 
kkk gGd 1−= .............................................................................. (1) 

where Gk is the Hessian matrix of f at xk. 
If we can afford the computer storage space, QN-methods are generally an 

improvement on the performance of the CG-methods and Newton's method (see 
Beale, 1988 ). 

This type of the method is like Newton's method with line search, except that 
the Hessian matrix Gk is approximated by a symmetric positive definite matrix Hk 
which is corrected from iteration to iteration. Thus the k-th iteration has the 
following basic structure :- 
I ) Set kkk gHd −=  
II ) Do a line search along dk  to get 

kkkk dxx λ+=+1  
III) Update Hk by a correction matrix to get. 

kkk QHH +=+1  
Where Qk is a correction positive definite matrix and satisfies the QN-condition 

that is kkk vyH =+1 ............................................................................. (2) 
where  kkkkkk xxvggy −=−= ++ 11 ; . 
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There are different forms for Hk suggested by different researches and we 
consider some of them latter in this work. 

In the first case, Hk is taken to be always the identity matrix but for Newton's 
method Hk is selected to be the inverse Hessian matrix of the function f(x) at xk . 

From the convergence viewpoint, Newton's method is the ideal in this class 
since it converges quadratically, but it is still requires the inversion of an n x n 
matrix. 

The most general approach is the one published by (Haung, 1970). He 
considered an algorithm with exact line search that uses a general updating formula 
of the form 

)(1 k
T
kkk

T
kkk

T
kkkk

T
kkkk

H
k vyHHyvHyyHvvHH ++++=+ ρπω ......... (3) 

where ωk, πk, ρk  are scalars and different choices of the parameters ωk, πk, and ρk 
will product different QN-algorithms. 

Huang proved that in order to obtain conjugate search directions in n-step 
convergence, for the quadratic case, Hk+l yk has to be multiple of vk. Using this 
condition in formula (3) gives the following updating formula: 

              T
kkk

k
T
k

T
kk

k
kk

T
k

k
T
kkk

k
Hung
k ww

yv
vv

yHy
HyyHHH φθ ++−=+1 ......................... (4a) 

where 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

k
T
k

kk

k
T
k

T
kk

kk
T
kk yy

yH
yv
vvyHyw 2

1

.................................. (4b) 

and θk, φk, are scalars. 
If θk is fixed number, say θ, then for the quadratic case with Hessian G, we 

have Hn=θG-1 For this reason, most of the algorithms derived for use θk = 1 for all k 
to satisfy the exact QN-condition. Formula (4) actually includes all the well-known 
updating formula ; however, the updating formula which is obtained from (4) by 
setting θk = 1and φk= 0 is the DFP-method. Also the very interesting updating 
formula which has discovered independently by Broyden, Fletcher, Goldfart and 
Shanno in 1970 is the BFGS formula which is obtained from (4) by setting θk = 1 
and , φk = 1, we get 

T
kk

k
T
k

T
kk

kk
T
k

k
T
kkk

k
BFGS
k ww

yv
vv

yHy
HyyHHH ++−=+1 .............................. (5) 

where wk is a vector defined in (4b). 
Since QN-methods at the (k+l)-th iteration form an approximation matrix 

Hk+1∈Rn  to the inverse of the Hessian of f at 1+kx , where H 1+k , satisfies the so called 
the exact QN-condition defined in (2) and since (2) alone does not completely 
specify the matrix Hk+1 there is a lot of freedom in choosing it. In order to, restrict 
this freedom, one can require H 1+k , to be symmetric positive definite so that dk+1 will 
be a descent direction. In many practical problems, the evaluation of functions and 
gradients is very expensive so that this part of the calculator overwhelms the routine 
part. To avoid the previous problems Storey in 1990 developed BFGS-update to 
projected version as follows : 
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He used extra restrictions to BFGS-update to reduce the function and gradient 
evaluations therefore he proved that to obtains suitable symmetric QN matrix H k + 1  
it is must be satisfied QN-condition and some previous equation , so that : 

1,.....,2,1

11

1

1

−=
⎪
⎩

⎪
⎨

⎧

=
=
=

++

+

+

ki
HH

yHyH
vyH

k
T
k

ikik

kkk

 ..............................................(6) 

here we assume 1≤k≤n , if we set k k k kv H yη = −  then we can write BFGS-update as 
follows : 

( )1 2

T T T
BFGS Tk k k k k k
k k k kT T

k k k k

v v yH v v
v y v y

η η ηβ +
+

= + − ........................................ (7) 

If we denote 1k kE H H+= −  

0 1,2,......, 1
k k

i
T

Ey
Ey i k
E E

η=⎧
⎪ = = −⎨
⎪ =⎩

................................................. (8) 

Now the solution of the problem 
min

F
E ......................................................................................................... (9) 
Subject to (8) is 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
1

ˆ ˆ ˆ ˆ ˆ ˆ

T T TT
k k k

T T T

y H y vv H H yvvvE
v y v y v y

⎛ ⎞ +
= + −⎜ ⎟

⎝ ⎠
 ......................................(10) 

Where 
F

  is the Frobenius norm and 
1

1

ˆˆ ˆ
ˆ ˆ

Tk
i k

k k iT
i i i

v yy y y
v y

−

=

= −∑ ....................................................................... (11) 

1

1

ˆˆ ˆ
ˆ ˆ

Tk
i k

k k iT
i i i

v vv v v
v y

−

=

= −∑ ........................................................................... (12) 

Clearly this is a projected analogue of the BFGS update.  
 
Algorithm 1:-Projected BFGS algorithm: 
Step 1: Let k = 1 k0= 1,H1 = I 
Step 2: dk =-Hk gk , line search along dk to get xk+1 = xk+λkdk  
Step 3: If at xk+1 the stopping criterion { }5

1 110 max 1,k kg x−
+ +≤ is satisfied, then 

terminate. 
Step 4: From kv̂ , kŷ  using no more than m +1 past vector pairs vi , yi  k-m<i<k, if 

m>n set m=n 
Step 5: If  0ˆˆ <k

T
k yv  then ko= k+l, kkkk yyvv == ˆ,ˆ  

Step 6: Form Hk+1 by (10).  
Step 7: Update Hk+1 with BFGS formula  
Step 8: Set k=k+1 , go to step 2. 
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PRECONDITION CG-METHODS 
In CG methods if we have a quadratic function 

min min( ) 1/ 2( ) ( )Tf x x x G x x= − − ............................................................. (1) 
with gradient g(x) and given point xl we set k=1 and d1=-g1= -g(x1)and then iterate 
on the following steps 

1k k k kx x dλ+ = + ....................................................................... (2a) 

1k k k kd g dβ+ = − + ....................................................................... (2b) 
Here  λk is determined by an exact line search. Now it is well known that this 

algorithm has quadratic termination property, but if d, is not equal to -g, the 
termination property is usually lost .However, a modification of the algorithm (2) if 
equation (4.2) can regain termination for other choices of d 1 , (see Buckley, 1978) 
one choice a positive definite matrix H such that 

H = LLT…………………………………………………………………... (3)  
where L is a real lower triangular and non-singular matrix and define the 
transformation of variables x in X-space to a new vector space Z-space as follows 

x=LZ……………………………………………………………………… (4) 
and then the CG-algorithm is applied in Z- space. Of course, all of the standard 
properties of the CG-algorithm then hold in the Z-space, so in particular finite 
termination still obtains. In this work we have use preconditioned PR-direction 
which is 

1 1
1 1

( )T
k k k k

k k k kT
k k

g H g gd H g d
g g

+ +
+ +

−
= − + ……………………………… (5) 

Here in the preconditioned PR-algorithm does start with a direction different 
from the steepest descent direction -g 1  which is d 1 = -Hg, , now the preconditioned 
PR-algorithm can be outlined as: 
 
Algorithm 2:- (PCG-algorithm): 
Step 1: Defined initial matrix H1=1,and initial point xl ,for k=1,2,3,...... iterate . 
Step 2: Set dk = -HK gk line search along dk to get xk= xk + λkdk 
Step 3: If at xk+1, the stopping criterion 5

1 10kg −
+ ≤  is satisfied, then terminate. 

Step 4: Compute Hk+l =Hk +Qk where Qk is a correction matrix.  
Step5:Check if criterion a general restarting is satisfied then set: 

1k k k k kd H g dβ+ = − +  where βk  is a scalar defined by 1 1( )T
PR k k k k
k T

k k

g H g g
g g

β + + +
=  

else set  1 1k k kd H g+ += −  and continue. 
 

HYBRID CONJUGATE GRADIENT METHOD 
Despite the numerical superiority of PR-method over FR-method the later has 

better theoretical properties than the former Under certain conditions FR-method can 
be shown to have global convergence with exact line search (Powell, 1983 ) and also 
with inexact line search satisfying the strong Wolfe-Powell condition (Al-Baali, 
1985). This anomaly leads to speculation on the best way to choose kβ . 
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Touati-Ahmed and Storey in 1990 proposed the following hybrid method : 
Step 1: If

2 1
1 (2 )k

kgλ µ +
+ ≤ ; with 1/2 >µ >σ  and λ> 0 go to step 2.  

Otherwise set βk=0 . 
Step 2 : If 0PR

kβ <  set  FR
k kβ β=   Otherwise go to step 3. 

Step 3 : If 2 2
1(1/ 2 ) /PR

k k kg gβ µ +≤ . With  µ >σ  , set PR
k kβ β=  

Otherwise set PR
k kβ β= . 

Here µ,σ and λ, user supplied parameters. This hybrid was shown to be 
globally convergent under both exact and inexact line searches and to be quite 
competitive with PR-method and FR-method. . 

The rate this proposed method was investigated by Hu and Storey in 1991 
proved the following result concerning global convergence of conjugate gradient 
methods. 

Suppose that f is twice continuously differentiable with bounded level sets and 
that the string Wolfe-Powell conditions are satisfied. Supposed that βk, for all k , 
satisfies the following conditions : 

There exist constants c > 0 and σ∈(0,1/2) such that 

1

1

2

/

/

FR
k k

kk

i
j i j

FR
i k k

ckσ β β

ζ γ

γ β β

−

= =

≤

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

∑ ∏  

It then follows that inf ( ) 0kx
Lim g x
→∞

=  . 

Notice that this result allows βk to be negative,(see Touati-Ahmed and Storey, 
1990) . 

Algorithm 3:-New hybrid algorithm: 
Step l: Let k=l, k0=1,H1 =I 
Step 2: dk = -Hkgk , line search along d k ; to get xk+1= x kλ k d k   
Step 3: If at xk+1 the stopping criterion 5

1 10kg −
+ ≤   is satisfied, then terminate.  

Step 4: From ˆkv , ˆky  , using no more than m + 1 past vector pairs vi , yi , 
.     k-m<_i<-k, if m>n set m=n 
Step 5: If ˆ ˆ 0T

kv y <  then k0= k+l ,  ˆk kv v= , ˆk ky y=     
Step 6: Form Hk+1 by (18). 
Step 7: Update Hk-1 with BFGS formula 
Step 8: Check if the following switching criterion 
           0.0015 .T

k k k kd y y d<  is satisfied , then go to step 9.  
           else set dk+1 = -Hkgk+1  and go to step (2). 
Step 9: If 2 1

1 (2 )k
kgλ µ +
+ ≤ , with1/2 >µ >σ  and λ> 0  go to step 10. 



Abbas Y. AL-Bayati  and Osama H. Ta'ani 

 

45 

              otherwise set βk=0 . 
Step 10: If 0PR

kβ <  set  FR
k kβ β= . otherwise go to step 11. 

Step 11: If 2 2
1(1/ 2 ) /PR

k k kg gβ µ +≤ . With  µ >σ  , set PR
k kβ β=  

otherwise set PR
k kβ β= . 

Step 12:Compute dk+l = - Hkgk+l + βkdk 
Step 13: Set k=k+l go to step 2. 
 

NUMERICAL COMPARISON 
Forty test functions were tested with a different dimensions (4 ≤n ≤1000 ).Our 

programs were written in Fortran 90 language and for all cases the stopping 
criterion was taken to be 

5
1 1 10kg −
+ ≤ ×  

The line search routine used was a cubic interpolation which uses function and 
gradient values and it is an adaptation of the routine published by Bundey (1984). 

The following two algorithms were tested in tables (l) and (2).The first 
(Storey) corresponds to the projected BFGS-algorithm, the second is the new 
proposed hybrid algorithm. 

The comparative performances for this two algorithms were evaluated by 
considering both the total number of iterations (NOI) and the total number of 
function evaluations (NOF), calls quoted required to reduce the value of f(x) below 
1x10-5 . 

We used in the new hybrid algorithm Dixon. switching criterion defined by 
0.0015 .T

k k k kd y y d<  
to keep the holding of the quadratic termination property . 

In both algorithms and tables we take m=3 where m is the number of past 
vectors pairs of v; and y;. 

  In table (1) we have implemented test functions in low and medium 
dimensions (4 ≤n ≤80). The new algorithm beats Storey's algorithm in 20 over 20 
cases in both NOI and NOF. If we take the Storey's algorithm as 100% NOI and 
NOF , there is an improvement 
of about 62% NOI and 64% NOF in the new hybrid algorithm. 

Table (2) contains the result for the high size test functions (l00≤n ≤1000), we 
have observed that the new hybrid algorithm beats Storey's algorithm in 20 over 20 
cases for both NOI and NOF. taking Storey's algorithm as 100% NOI and NOF , we 
have an improvement of about 24% NOI-and also 24% NOF. Numerical 
experiences show that the best case obtained numerically is when m ≤3 . 
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Table 1: Comparison between Storey's method and new proposed hybrid method 
for 4 ≤n ≤80 

Test 
Function dimension Storey's method Hybrid method 

  NOI NOF NOI NOF 

Powell 4 20 76 12 65 
SUM 4 7 22 1 5 
Wolfe 4 7 19 1 7 
Wood 4 67 236 10 45 
Powell 20 33 105 17 ~ 66 
Dixon 20 23 65 16 33 
SUM 20 102 397 96 346 
Wood 20 276 849 31 93 

Tri 40 37 90 31 63 
Miele 40 30 102 25 86
Powell 40 41 118 31 107 
Wood I 40 I 213 I 660 I 49 I 134 

Wood 60 247 741 63 158 
Miele 60 40 137 25 85 

Central 60 22 108 19 84 

Tri 60 50 121 44 89 

Dixon 80 29 82 23 47 

Miele 80 41 141 25 87 

Wood 80 320 958 66 160 

Tri 80 61 152 55 I11 

Total 1666 5179 640 1871
NOI %100 %38 
NOF %100 %38 
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Table 2: Comparison between Storey's method and new proposed hybrid 
method for 100 ≤  n ≤1000 

Test  Storey's method Hybrid method 

Function dimension NOI NOF NOI NOF 
Miele 100 43 147 36 120 

Central 100 22 108 19 84 
Dixon 100 29 82 23 47 

Tri 100 71 161 65 131 
Wolfe 200 75 153 69 143 

Tri 200 109 219 103 207 
Powel 200 41 114 32 ~ 110 
Dixon 200 29 81 24 49 
Miele 400 40 138 40 126 
Dixon 400 29 84 24 49 
Powell 400 42 123 I 33 115 
Wolfe 400 82 167 32 95 

Dixon 800 29 83 24 49 

Wolfe 800 88 177 30 97 

Central 800 21 105 20 89 
Powell 800 43 117 21 53 

Dixon 1000 29 82 24 49 
Miele 1000 44 148 40 132 

Wolfe 1000 95 191 75 156 

Powell 1000 50 144 37 111 

Total 1011 2624 771 2012 
NOI %100 %76 
NOF %100 %76 
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APPENDIX 
 
Test Functions 

/4
2 2 2 4 2

4 3 4 2 4 1 4 4 1 4 4 9 4 4 2 4 1 4
1

1. :

( ) ( 10 ) 5( ) ( 2 ) 10( ) ( 2 ) )

int :(3,1,0,1,.......................)

n

i i i i i i i i i i i
i

T

Generalized powell function

f x x x x x x x x x x x x

Starting po

− − − − − − −
=

= − + − + − + − + − −∑  

/4
2 2 2 2 2 2 2

4 2 4 3 4 3 4 4 1 4 1
1

2. :

( ) 100( ) (1 ) 90( ) (1 ) 1.0

int : ( 3, 1, 3, 1,...............)

n

i i i i i i
i

T

Generalized Wood function

f x x x x x x x

Starting po

− − − − −
=

= + + − + − + − +

− − − −

∑  

3. Generalized Miele Function: 
/4

2 6 4 8 2
4 3 4 1 4 2 4 1 4 1 4 4 3 4

1
( ) exp( ) 100( ) (tan( )) ( 1)

n

i i i i i i i i
i

f x x x x x x x x x− − − − − −
=

⎡ ⎤= − + − + − + + −⎣ ⎦∑  X0= 

(1,2,2,2,. . .)T  

 4. Generalized Cantrel Function:                                                             

F(X)=∑
=

4

1

n

i

[(exp(X4i-3 )– X4i-2 )4 +100(X4i-2 – X4 i - 1  )6 + (arctan(X4i-1 – X4i ))4 + X4i- 

9
2 2 2 2

1 0 1
2

5. :

( ) (1 ) (1 ) ( )

int : ( 1,......................)

i i
i

T

Dixon function

f x x x x x

Starting po

−
=

= − + − + −

−

∑  

1
2 2 2

1 1 2 1 1 1
1

6. :

( ) ( (3 /2) 2 1) ( (3 (3 /2) 2 1) ( (3 /2 1)
n

i i i i i n n n
i

Welfe function

f x x x x x x x x x x x x
−

− + +
=

= − − + − + − − − + − + − −∑ 7. 

TRI Function : 

     ( )
2

2
0

1
( ) ( 1,...)

n
T

i
i

f x ix x
=

= = −∑  
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