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ABSTRACT 
The aim in this paper is to modify and obtain less execution time of the nonlinear 

shooting method which used to approximate the solution of the nonlinear boundary-value 
problems (BVPs) . 

The modification is due to replacing single  step method (Runge-Kutta for systems) 
by multi-step method (Adam predictor-corrector of order four for systems) which is used 
for solving the initial – value problems (IVPs) . 

  ــــــــــــــــــــــــــــــــــــــــــــــــــ

   في حل مسائل القيم الحدودية غير الخطيةية المستخدمةإسراع طريقة القذف غير الخط

   الملخص

هدفنا في هذا البحث هو التحسين والحصول على أقل زمن تنفيذي لطريقة القذف غير الخطية والتي                

   .(BVPs)تستخدم لتقريب الحل لمسائل القيم الحدودية 

 بطـرق المتعـددة     )وتا للأنظمة ك-رانج(ان هذا التحسين ناتج عن استبدال طريقة الخطوة الواحدة          

       (IVPs)والمصحح للأنظمة والتي تـستخدم لحـل مـسائل القـيم الابتدائيـة              -الخطوات من نوع مخمن   
  ــــــــــــــــــــــــــــــــــــــــــــــــــ

INTRODUCTION 

Problems that frequently arises in applications is a Boundary-value problem 
(Burden and Faires, 1993; Khalaf, 1988; Jain and Iyengar, 1994; Stoer and Bulirsch, 
1980) in which, in addition to the differential equation, information about the solution 
and perhaps some derivative is specified at two different values of the independent 
variables. 

The general two points of boundary-value problems in this paper involve a second-
order differential equation of the form  

( ) (1)..........                                        bxa                               y,y,xfy ≤≤′=′′  
together with the boundary conditions  
 y(a) = α   and    y(b) = β                                                                  ………(2) 

There are common techniques for approximating the solution of the boundary-value 
problem . These techniques are similar to finite difference (See for example,Khalaf, 
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1988; Conte and de Boor, 1980; Fox and Mayers, 1987) and shooting methods (See for 
example Conte and de Boor, 1980; Fox and Mayers, 1987; Al-Assady and Al-Sawoor, 
2000) . 

In this paper we used nonlinear shooting method, i.e we used shooting methods for 
nonlinear differential equation. 

In this paper we will improve and speed-up the nonlinear shooting method which is 
used to approximate the solution of the nonlinear BVPs by replacing single - step method 
(Runge-Kutta for systems) by multi-step method (Adam-Bashforth-Moulton for systems) 
which are used to solve the IVPs where it is well-known that numerical methods for 
solving ordinary differential equations have to face two different kinds of errors . The 
method error (or truncation error) depends on the order of the method and decreases 
when the step size decreases . On the contrary, the round-off error generally increases 
when the stepsize decreases (See Alt and Vignes, 1996), here in this paper we have used 
stepsize h computed by the form  
 h = (b-a) / N 
where a and b are the endpoints of the interval [a,b] and N is the number of subintervals . 
 
1. The Nonlinear Shooting Method  

Al-Assady and Al-Sawoor (2000) have used shooting technique for solving linear 
second-order BVPs where the solution to linear problems can be simply expressed as a 
linear combination of the solutions to two initial-value problems. In this paper, in order to 
obtain the solution of the shooting technique for the nonlinear second-order boundary-
value problem 

( )
( ) ( )   by   ,   ay                                           

(1.1)..........                                               bxa                      y,y,xfy
β=α=

≤≤′=′′
 

we need to use the solutions to a sequence of the initial-value problems of the form  

 
( )

( ) ( )   tay   ,   ay                                           
(1.2)..........                                               bxa                      y,y,xfy

=′α=
≤≤′=′′

 

involving a parameter t, to approximate the solution to our boundary-value problem . 
Note that in this paper we have replaced the Runge-Kutta for systems by Adam 

predictor-corrector for systems to obtain the solutions to a sequence of IVPs . We do so 
to speed-up the performance of the nonlinear shooting method . 
 
 
 

 
 
 

 
 
 
 
 
 

Fig.1: The procedure of firing objects at a stationary target 
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Now we do this by choosing the parameters t=tk in a manner to ensure that  
 ( ) ( ) 1.3).........(                                                              bytb,y lim kk

β==
∞→

 

where y(x,tk) denotes the solution to the initial-value problem (1.2) with t=tk and y(x) 
denotes the solution to the BVP (1.1) . 

This technique is called “Shooting” method, by analogy to the procedure of firing 
objects at a stationary target . (See figure(1)) we start with a parameter t0 that determines 
the initial elevation at which the object is fired from the point (a,α) and along the curve 
described by the solution to the initial-value problem  

 
( )

( ) ( )   tay   ,   ay                                           
(1.4)..........                                               bxa                      y,y,xfy

0=′α=
≤≤′=′′

 

If y(b,t0) is not sufficiently close to β, we attempt to correct our approximation by 
choosing another elevation t1 and so on, until y(b,tk) is sufficiently close to “hitting” β. 
(See figure(2)) . 

To determine the parameters tk, if y(x,t) denotes the solution to the initial-value 
problem (1.2), the problem have been determint so that : 
 y(b,t) - β = 0                                                                      ……….(1.5) 

Since this is a nonlinear equation, a number of methods are available to solve it, eq. 
(1.5) . 

One of these methods is Newton’s method . To use the more powerful Newton’s 
method to generate the sequence {tk}, only one initial-value, t0, is needed. However, the 
iteration has the form  

 ( ) (1.6)..........                                                   
dt/)t,b(dy

t,bytt
1k

1k
1kk

−

−
−

β−
−=  

where ( )
dt

t,bdy
dt/)t,b(dy 1k

1k
−

− ≡ , and requires the knowledge of dt/)t,b(dy 1k−  

 
This presents a difficulty, since an explicit representation for y(b,t) is not known; 

we know only the values y(b,t0),y(b,t1),…,y(b,tk-1) .  
Suppose we rewrite the initial-value problem (1.2), emphasizing that the solution 

depends on both x and t : 

 

( ) ( ) ( )( )
( )
( )

                                        
tta,y                                                     

ta,y                                                     
(1.7)..........                                 bxa            t,xy,t,xy,xft,xy

=′
α=
≤≤′=′′

 

retaining the prime notation to indicate differentiation with respect to x . Since we are 
interested in determining (dy/dt)(b,t) when t=tk-1, we first take the partial derivative of 
(1.7) with respect to t . This implies that  

 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )t,x
t
yt,xy,t,xy,x

y
f             

t,x
t
yt,xy,t,xy,x

y
f

t
xt,xy,t,xy,x

x
f             

t,xy,t,xy,x
t
ft,x

t
y

∂
′∂′

′∂
∂

+

∂
∂′

∂
∂

+
∂
∂′

∂
∂

=

′
∂
∂

=
∂
′′∂
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or , since x and t are independent , 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) (1.8)..........   t,x
t
yt,xy,t,xy,x

y
ft,x

t
yt,xy,t,xy,x

y
ft,x

t
y

∂
′∂′

′∂
∂

+
∂
∂′

∂
∂

=
∂
′′∂  

for a ≤ x ≤ b . The initial conditions give  

 ( ) ( ) 1t,a
t
y    and      0t,a

t
y

=
∂
′∂

=
∂
∂ . 

If we simplify the notation by using z(x,t) to denote (∂y/∂t)(x,t) and assume that the 
order of differentiation of x and t can be reversed, eq.(1.8) becomes the initial-value 
problem  

 
( ) ( )

( ) 1ta,z   ,   0t)z(a,                                                     

(1.9)..........                                  bxa    zy,y,x
y
fzy,y,x

y
fz

=′=

≤≤′′
′∂

∂
+′

∂
∂

=′′
 

Newton’s method therefore requires that two initial-value problems be solved for 
each iteration , eqs. (1.7) and (1.9) . Then from eq. (1.6)    

 ( )
( ) (1.10)..........                                                                 

t,bz
t,bytt

1k

1k
1kk

−

−
−

β−
−=  

In practice, none of these initial-value problems is likely to be solved exactly, 
instead approximation solutions are used . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                
                                                                                                  

 
Fig. 2: Shooting technique after attempting to correct the approximation solution until y 

(b,tk) is sufficiently close to “hitting” β . 
 

   
Buchanan and Turner, 1992; Burden and Faires, 1993 and Ortega and Grimshaw, 

1999. Have used fourth order Runge-Kutta method for systems to approximate both 
solutions required by Newton’s method ,like algorithm (1.1) below . 

In order to speed-up the performance and obtain less time in the execute of 
nonlinear shooting method, we have constructed in this paper an algorithm, algorithm (2) 
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using the Adams-Bashforth and Adams-Moulton predictor-corrector method for systems 
to approximate both solutions required by Newton’s method . 

 
1.1 Algorithm : 

To approximate the solution of the nonlinear boundary-value problem  
 ( ) ( ) ( )

                          
 by   ,   ay             bxa   ,   y,y,xfy β=α=≤≤′=′′  

(Note : Equations (1.7) and (1.9) are written as first order systems and solved.) 
INPUT : endpoints a,b; boundary conditions α, β; number of  subintervals N; tolerance 

Tol; maximum number of iterations M . 
OUTPUT : approximations w1,i to y(xi); w2,i to ( )ixy′  for each i = 0,1,…,N or a message 

that the maximum number of iterations was exceeded . 
Step 1 : set h = (b-a) / N 
                         k = 1 ; 
                         Tk = (β - α) / (b – a)      
Step 2 : while (k ≤ M) do steps 3-10 
Step 3 : set w1,0 = α    (w1,0  represents y(a,t)) 
                     w2,0 = Tk   (w2,0  represents y′ (a,t)) 
                         u1,0 = 0     (u1,0  represents z(a,t)) 
                         u2,0 = 1     (u2,0   represents z′ (a,t)) 
Step 4 : for i = 1,…,N do steps (5) and (6) 
                (Runge-Kutta method for systems is used in steps (5) and (6)) 
Step 5 : set x = a + (i-1) h  
Step 6 : k1,1 = h w2,i-1 
               k1,2 = h f(x , w1,i-1 , w2,i-1) 

                 ⎟
⎠
⎞

⎜
⎝
⎛ += − 2,11i,21,2 k

2
1whk   

                 ⎟
⎠
⎞

⎜
⎝
⎛ +++= −− 2,11i,21,11i,12,2 k

2
1w,k

2
1w,

2
hxhfk  

                 ( )
( )

( )
( ) 6/kk2k2kww

6/kk2k2kww
kw,kw,hxhfk

kwhk

k
2
1w,k

2
1w,

2
hxhfk

k
2
1whk

2,42,32,22,11i,2i,2

1,41,31,21,11i,1i,1

2,31i,21,31i,12,4

2,31i,21,4

2,21i,21,21i,12,3

2,21i,21,3

++++=

++++=

+++=

+=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

⎟
⎠
⎞

⎜
⎝
⎛ +=

−

−

−−

−

−−

−

 

(w1,i and w2,i represent y(xi,t) and y′ (xi,t) respectively for i = 1,…,N which are approximation 
solution of eq. (1.7)) . 
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( ) ( )[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +′+

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +

=′

⎟
⎠
⎞

⎜
⎝
⎛ ′+=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +′+

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +

=′

⎥⎦
⎤

⎢⎣
⎡ ′+=′

′+=′

=′

−−−

−−−

−

−−−

−−−

−

−−−−−−

−

2,21i,21i,21i,1

1,21i,11i,21i,1

2,3

2,21i,21,3

2,11i,21i,21i,1

1,11i,11i,21i,1

2,2

2,11i,21,2

1i,21i,21i,11i,11i,21i,12,1

1i,21,1

k
2
1uw,w,

2
hxyf

k
2
1uw,w,

2
hxfy

hk

k
2
1uhk

k
2
1uw,w,

2
hxyf

k
2
1uw,w,

2
hxfy

hk

k
2
1uhk

uw,w,xyfuw,w,xfyhk
huk

 

            

( )
( )( )
( )( )

[ ]

[ ]2,42,32,22,11i,2i,2

1,41,31,21,11i,1i,1

2,31i,21i,21i,1

1,31i,11i,21i,1
2,4

2,31i,21,4

kk2k2k
6
1uu

kk2k2k
6
1uu

kuw,w,hxyf
kuw,w,hxfy

hk

kuhk

′+′+′+′+=

′+′+′+′+=

⎥
⎦

⎤
⎢
⎣

⎡
′++′+

′++
=′

′+=′

−

−

−−−

−−−

−

 

(u1,i and u2,i represent z(xi,t) and z′ (xi,t) respectively for i = 1,…,N which are 
approximation solution of eq. (1.9)) . 
Step 7 : If Tolw N,1 ≤β−  then do steps (8) and (9) 
Step 8 : for i = 0,1,…,N  
                Set x = a + ih 
                OUTPUT (x,w1,i , w2,i) 
(w1,i and w2,i in this step represent the approximation solutions to y(xi) and y′ (xi) 
respectively for i = 0,…,N ) . 
Step 9 : (procedure is complete .) 
                Stop 
Step 10 : set 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
−= )

u
-w

(TkTk
N,1

N,1  

                  (Newton’s method is used to compute Tk) 
                  k=k+1 
Step 11 : OUTPUT (‘maximum number of iterations exceeded’) 
                  (procedure completed unsuccessfully ) 
                  stop . 
  

Now in order to speed-up the performance of the nonlinear shooting method, we 
have suggested an improved algorithm that is defined as follows : 
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2. The Improved Nonlinear Shooting Algorithm : 
To improve and obtain less time in the execute of the approximation solution of the 

boundary-value problem  
( )

( ) ( )   by   ,   ay                           
bxa   ,   y,y,xfy

β=α=
≤≤′=′′

 

we use linear multi-step methods for systems of predictor-corrector type . 
(Note : Equations (1.7) and (1.8) are written as first-order systems and solved) 
i.e, in order to apply our algorithm we must, first, convert a general 2nd-order differential 
equation of the form  
 ( )y,y,xfy ′=′′  
with initial conditions ( ) ( ) 21 ay   ,   ay α=′α=  into a system of equations in the form 

 
( )

( )212
2

2

211
1

1

u,u,xf
dx

duu

u,u,xf
dx
duu

==′

==′
 

for a ≤ x ≤ b , with initial conditions u1(a) = α1   ,  u2(a) = α2  
Now in general , to convert a general mth-order differential equation of the form 
 ( ) ( ) bxa ,             y,.....,y,y,xfxy )1m()m( ≤≤′= −  
with initial conditions ( ) ( ) ( ) m

)1m(
21 ay,...,ay,ay α=α=′α= −  into a system of equations in 

the form (*) and (**)  

 

( )

( )

( )

(*)..........                               

u,...,u,u,xf
dx

du
u

.

.

.

,u,...,u,u,xf
dx

duu

,u,...,u,u,xf
dx
duu

m21m
m

m

m212
2

2

m211
1

1

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

==′

==′

==′

 

for a ≤ x ≤ b , with the initial conditions  
( ) ( ) ( ) mm2211 au,...,au,au α=α=α=                    ……….(**) 

let ( ) ( ) ( ) ( ) ( ) ( )xyxu,...,xyxu,xyxu )1m(
m21

−=′==  .  
and using this notation, we obtain the first-order system  
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( ) ( )m21
)1m()m(

)1m(
m

m

)2m(
1m

3
2

2
1

u,...,u,u,xfy,.....,y,y,xfy
dx

dy
dx

du and

u
dx

dy
dx

du
.
.
.

u
dx
yd

dx
du

u
dx
dy

dx
du

=′===

==

=
′

=

==

−
−

−
−

 

with initial conditions 
 ( ) ( ) ( ) ( ) ( ) ( ) m

)1m(
m2211 ayau,...,ayau,ayau α==α=′=α== −   

and as a special case, algorithm (2) is done when m = 2, and then the out-line of the 
improved algorithm is as follows : 
INPUT : endpoints a,b; boundary conditions α, β; number of  subintervals N; tolerance 

Tol; maximum number of iterations M . 
OUTPUT : approximations w1,i to y(xi) ; w2,i to ( )ixy′  for each i = 0,1,…,N or a message 

that the maximum number of iterations was exceeded . 
Step 1 : set h = (b-a) / N 
                         k = 1 ; 
                         Tk = (β - α) / (b – a)      
Step 2 : while (k ≤ M) do steps (3)-(16) 
Step 3 : set w1,0 = α    (w1,0  represents y(a,t)) 
                     w2,0 = Tk   (w2,0  represents y′ (a,t)) 
                         u1,0 = 0     (u1,0  represents z(a,t)) 
                         u2,0 = 1     (u2,0   represents z′ (a,t)) 
                         x0 = a 
Step 4 : for i = 1,2,3 do steps (5) and (6) 
                (compute the starting value using Runge-Kutta method for systems) 
Step 5 : k1,1 = h w2,i-1 
               k1,2 = h f(x , w1,i-1 , w2,i-1) 

                 ⎟
⎠
⎞

⎜
⎝
⎛ += − 2,11i,21,2 k

2
1whk   

                 ⎟
⎠
⎞

⎜
⎝
⎛ +++= −− 2,11i,21,11i,12,2 k

2
1w,k

2
1w,

2
hxhfk  
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                 ( )
( )

( )
( ) 6/kk2k2kww

6/kk2k2kww
kw,kw,hxhfk

kwhk

k
2
1w,k

2
1w,

2
hxhfk

k
2
1whk

2,42,32,22,11i,2i,2

1,41,31,21,11i,1i,1

2,31i,21,31i,12,4

2,31i,21,4

2,21i,21,21i,12,3

2,21i,21,3

++++=

++++=

+++=

+=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

⎟
⎠
⎞

⎜
⎝
⎛ +=

−

−

−−

−

−−

−

 

(w1,i and w2,i represent y(xi,t) and y′ (xi,t) respectively which are the approximation 
solution of eq, (1.7) for i = 1,2,3 for Runge-Kutta method for systems) . 

   

( ) ( )[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +′+

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +

=′

⎟
⎠
⎞

⎜
⎝
⎛ ′+=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +′+

⎟
⎠
⎞

⎜
⎝
⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +

=′

⎥⎦
⎤

⎢⎣
⎡ ′+=′

′+=′

=′

−−−

−−−

−

−−−

−−−

−

−−−−−−

−

2,21i,21i,21i,1

1,21i,11i,21i,1

2,3

2,21i,21,3

2,11i,21i,21i,1

1,11i,11i,21i,1

2,2

2,11i,21,2

1i,21i,21i,11i,11i,21i,12,1

1i,21,1

k
2
1uw,w,

2
hxyf

k
2
1uw,w,

2
hxfy

hk

k
2
1uhk

k
2
1uw,w,

2
hxyf

k
2
1uw,w,

2
hxfy

hk

k
2
1uhk

uw,w,xyfuw,w,xfyhk
huk

 

          

( )
( )( )
( )( )

[ ]

[ ]2,42,32,22,11i,2i,2

1,41,31,21,11i,1i,1

2,31i,21i,21i,1

1,31i,11i,21i,1
2,4

2,31i,21,4

kk2k2k
6
1uu

kk2k2k
6
1uu

kuw,w,hxyf
kuw,w,hxfy

hk

kuhk

′+′+′+′+=

′+′+′+′+=

⎥
⎦

⎤
⎢
⎣

⎡
′++′+

′++
=′

′+=′

−

−

−−−

−−−

−

 

(u1,i and u2,i represent z(xi,t) and z′ (xi,t) respectively which are the approximation 
solution of eq. (1.9) for i = 1,2,3 , i.e for Runge-Kutta method for systems) . 
Step 6 : Set x = a + ih 
                OUTPUT (xi,w1,i , w2,i,u1,i,u2,i) 
Step 7 : for i = 4 , …..,N do step (8)-(12) 
Step 8 : set x = a + ih 
Step 9 :  [ ] 24/w9w37w59w55hww 0,21,22,23,23,1i,1 −+−+=   
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( ) ( )
( ) ( )

[ ] 24/u9u37u59u55huu

24/
w,w,xf9w,w,xf37
w,w,xf59w,w,xf55

hww

0,21,22,23,23,1i,1

0,20,101,21,11

2,22,123,23,13
3,2i,2

−+−+=

⎥
⎦

⎤
⎢
⎣

⎡

−+

−
+=

 

                 

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

24/

uu,u,xyfuu,u,xfy9
uu,u,xyfuu,u,xfy37

uu,u,xyfuu,u,xfy59
uu,u,xyfuu,u,xfy55

huu

0,20,20,100,10,20,10

1,21,21,111,11,21,11

2,22,22,122,12,22,12

3,23,23,133,13,23,13

3,2i,2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′+−

′++

′+−

′+

+=  

 (predictor w1,i , w2,i , u1,i , u2,i) 
 (w1,i and w2,i represent y(xi,t) and y′ (xi,t) respectively which are the     approximation 
solution of eq, (1.7) for i = 4,…..,N , by using the predictor form of Adam’s method for 
systems) . 
(u1,i and u2,i represent z(xi,t) and z′ (xi,t) respectively which are the approximation 
solution of eq. (1.9) for i = 4,…..,N , by using the predictor form of Adam’s method for 
systems) . 
       [ ] 24/ww5w19w9hwww 1,22,23,2i,23,1i,1 +−++=   

                 
( ) ( )
( ) ( )

[ ] 24/uu5u19u9huuu

24/
w,w,xfw,w,xf5
w,w,xf19w,w,xf9

hwww

1,22,23,2i,23,1i,1

1,21,112,22,12

3,23,13i,2i,1i
3,2i,2

+−++=

⎥
⎦

⎤
⎢
⎣

⎡

+−

+
+=

 

                 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

24/

uu,u,xyfuu,u,xfy
uu,u,xyfuu,u,xfy5
uu,u,xyfuu,u,xfy19

uu,u,xyfuu,u,xfy9

huuu

1,21,21,111,11,21,11

2,22,22,122,12,22,12

3,23,23,133,13,23,13

i,2i,2i,1ii,1i,2i,1i

3,2i,2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

′++

′+−

′++

′+

+=  

 
(corrector ww1,i , ww2,i , uu1,i , uu2,i) 
(ww1,i and ww2,i represent y(xi,t) and y′ (xi,t) respectively which are the     approximation 
solution of eq. (1.7) for i = 4,…..,N , by using the corrector form of Adam’s method for 
systems) . 
(uu1,i and uu2,i represent z(xi,t) and z′ (xi,t) respectively which are the approximation 
solution of eq. (1.9) for i = 4,…..,N , by using the corrector form of Adam’s method for 
systems) . 
Step 10 : OUTPUT (xi , ww1,i , ww2,i , uu1,i , uu2,i) 
Step 11 : for j = 0,1,2 
          Set xj = xj+1 
                           w1,j = w1,j+1 
     w2,j = w2,j+1 
                       u1,j = u1,j+1 
                       u2,j = u2,j+1 
Step 12 : x3 = x  
                  w1,3 = ww1,i 

                                w2,3 = ww2,i 

                                u1,3 = uu1,i 
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                      u2,3 = uu2,i 

Step 13 : If Tolww N,1 ≤β−  then do steps (14) and (15) 
Step 14 : For i = 0,…..,N 
                      Set x = a + ih 
                      OUTPUT (x , ww1,i , ww2,i) 
Step 15 : (procedure is complete) 
                  Stop . 

Step 16 : ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β−
−=

N,1

N,1

uu
ww

TkTk  

                  (Newton’s method is used to compute Tk) 
                  k=k+1 
Step 17 : OUTPUT (‘maximum number of iterations exceeded’) 
                  (procedure completed unsuccessfully ) 
                  stop . 

Note that : In step (13) the best approximation to β we can expect for ww1,N(tk) is o(hn) . 
 The value t0 selected in step (1) is the slop of the straight line through (a,α) and 
(b,β) . 
If we give a good choice of t0 , the convergence will improve and the procedure will 
work for any problem . 
 
3. Numerical Examples : 

In this section we will present some numerical examples to show that the 
performance of the suggested algorithm is quick and has better performance since it 
requires less time to execute computed by using a program written with a special 
compiler , which had used to compute the time of execution . 

Fortran 90 program is written to carry out the experiment and the programs are 
executed on Pentium (PIT) computers . 

Note that we had used to determine the time of execute by using the compiler : 
Microsoft power station Fortran , and also executed on Pentium (PIT) computers with 
processor speed 133 M.H. 

 
Example 1 : 
 Represent the results of algorithm (1.1) and the results of the improved algorithm 
(2) and the time of the execution , applied to the example : 

 ( ) ( ) 0.05H  ,  20N  ,  12y  ,  
3
21y  ,   2x1 ,         y

2
1y 3 ==−=

−
=≤≤=′′  

where this boundary-value problem has the exact solution  

 
4x

2y
−

=  
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Table  1  a :This table represents some selected results of algorithm (1.1) and the 
improved algorithm (2) applied to example (1) . 

Selected 
value of 

x 

The exact 
value of y(x) 

The value of 
w1,i 
RK 

+nonlinear 
shooting 

The value of 
w1,i Adam+ 
nonlinear 
shooting 

The value of 
w2,i 
R-K 

+nonlinear 
shooting 

The value of 
w2,i Adam+ 
Nonlinear 
shooting 

1.00 -6.6666E-01 -6.6666E-01 -6.6666E-01 -2.222774E-01 -2.222774E-01 
1.05 -6.779661E-01 -6.779622E-01 -6.779622E-01 -2.298740E-01 -2.298740E-01 
1.10 -6.8965517E-01 -6.89654E-01 -6.89654E-01 -2.37867E-01 -2.37867E-01 
1.15 -7.0175438E-01 -7.017559E-01 -7.017559E-01 -2.462845E-01 -2.462845E-01 
1.35 -7.5471698E-01 -7.547296E-01 -7.546958E-01 -2.848549E-01 -2.847551E-01 
1.50 -7.99999E-01 -8.000212E-01 -7.9999720E-01 -3.200583E-01 -3.199530E-01 
1.80 -9.0909090E-01 -9.091309E-01 -9.090474E-01 -4.132915E-01 -4.131646E-01 
1.90 -9.5238095E-01 -9.524280E-01 -9.523313E-01 -4.535888E-01 -4.534502E-01 
2.00 -1.000000 -1.000055 -9.999436E-01 -5.001324E-01 -4.999280E-01 

  
Table 1 – b : 

The time of the execute , SEC. 
Runge-Kutta for system+nonlinear 

shooting Adam for system + nonlinear shooting 

11.2601530      SEC. 6.1276854     SEC. 
 
Example 2 : 
 Present the results of algorithm (1.1) and the results of the improved algorithm (2) 
and the time of the execution , applied to the example : 

 ( ) ( ) ( )

0.1H  ,  20N                                       

33333.14
3
433y  ,  171y  ,  3x1  ,  yyx232

8
1y 3

==

===≤≤′−+=′′  

where the boundary-value problem has the exact solution  

 
x

16xy 2 +=    

 
Table 2 – a :This table presents some selected results of algorithm (1.1) and the improved 

algorithm (2) applied to example (2) . 

Selected 
value of x 

The exact 
value of 

y(x) 

The value of 
w1,i 
R-K 

+nonlinear 
shooting 

The value of 
w1,i Adam+ 
nonlinear 
shooting 

The value of 
w2,i 
R-K 

+nonlinear 
shooting 

The value 
of w2,i 

Adam+ 
nonlinear 
shooting 

1.1 15.755455 15.755490 15.755490 -11.023390 -11.023390 
1.2 14.773333 14.773380 14.773380 -8.711340 -8.711340 
1.3 13.997692 13.997740 13.997740 -6.867657 -6.867657 
1.7 12.301765 12.301780 12.300810 -2.136448 -2.134655 

2.0 11.999999 12.00023 11.999931 -7.692973E-05 1.34542E-
03 

2.5 12.650000 12.649970 12.64974 2.439964 2.440749 
2.9 13.927241 13.927200 13.927200 3.897488 3.897926 
3.0 14.333333 14.33329 14.33332 4.222212 4.222581 
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Table 2 – b : 
The time of the execute , SEC. 

Runge-Kutta for system+nonlinear 
shooting Adam for system + nonlinear shooting

12.0015372    SEC. 6.9864731   SEC. 
 

Examples (1) and (2) with their tables indicate that the nonlinear shooting method, 
which used Adams predictor-corrector method for systems, will always require less time 
to execute , though possibly with some loss in accuracy . 

So it is preferable to the nonlinear shooting method that used single-step (Runge-
Kutta method for systems) to approximate the solution of the IVPs . 

Also the fact that the Adams method that is used in this method requires only two 
function evaluations whereas the classical Runge-Kutta method requires four evaluations, 
which make it more efficient . 
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