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ABSTRACT 

In this paper we have investigated a self-scaling technique for the variable metric  
method to the increase its effectiveness for solving  ill-problems. this technique is  too 
effective in NOF;NOC;NOI and NOG, when compared with other established  
algorithms to solve standard constrained optimization problems . 
  ــــــــــــــــــــــــــــــــــــــــــــــــــ

 الجزاء-تقنية جديدة للتقييس الذاتي لدالتي الربط الحاجز
 

  الملخص

 المتغير الخوارزمية المقترحـة     في هذا البحث تم استحداث خوارزمية جديدة للتقييس الذاتي للمتري         

ذات فعالية عالية عند  مقارنتها مع مثيلاتها من الخوارزميات السابقة و تظهر من خـلال حـساب عـدد                    

مرات احتساب قيمة دالة الهدف وحساب عدد مرات استدعاء القيود  وحساب عدد التكـرارات اللازمـة                 

د استعمالها في حل المسائل اللاخطية فـي ألا         وحساب عدد مرات المشتقات المستعملة في الخوارزمية عن       

  . مثلية المقيدة بالإضافة إلى المقاييس الأخرى

ــــــــــــــــــــــــــــــــــــــــــــــــــ  
INTRODUCTION 

1-General Introduction to Nonlinear Constrained optimization 
The general constrained minimization problem 

                            minimize ( )xf  

                            subject to 
( )
( ) 1...Lmi                     0

10
+==

=≤
xh

...m i                    xc

i

i     ……(1) 

where x is an n-dimensional vector and the functions ( ),xf  ( ) 1...mi   , =xci and 
( ) l1,...,mi    ,0 +==xhi  are continuous and usually as-summed to possess continuous 

second partial derivatives. The constraints in eq.( 1) are referred to as functional 
constraints. 

There are basically two different kinds of constrained optimization approaches: 
Indirect Method: changes the constrained optimization into                                   

unconstrained optimization to be solved. 
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(Sequential Unconstrained Minimization Technique, SUMT) 
 
Direct Method: deals with the constraints directly in the search for the Optimum. 

(Kwon,2001)     
2- Sequential Unconstrained Minimization  Techniques (SUMT)     
Main idea: 
• Solve a constrained optimization problem by solving a sequence of unconstrained 

optimization problems, and in the limit, the solutions of the unconstrained problems 
will converge to the solution of the constrained problem. 

• Use an auxiliary function that incorporates the objective function together with 
“penalty” terms that measure violations of the constraints. INT[2] 

 
2-1 Classical SUMT 

Two groups of classical methods namely: 
Barrier methods: impose a penalty for reaching the boundary of an  inequality 

constraint.                                 
Penalty methods: impose a penalty for violating a constraint. 
Are used for this of algorithm in solving constrained non-linear optimization 

problem. 
 

3-Exterior Point Methods (Penalty function) 
Definition: A function ( ) RRxp n →: is called a penalty function for eq.(1) if it satisfies  
1- ( )  0=xp  if ( ) ( ) 0xh  ,  0 =≤xc   and                                
2- ( )  0fxp if   ( ) ( ) 0xhor      0 ≠≤xc  
    Penalty function are typically defined by 

                       ( ) ( )( ) ( )( )∑∑
+==

+=
l

mi
i

m

i
i xhxcxp

11
ϕφ  

Where  
1- ( ) 0=yφ  if 0≤y  and ( ) 0fyϕ if 0fy  
2- ( ) 0=yφ  if 0=y  and ( ) 0fyϕ if 0≠y  
 
3-1 General Type of Penalty Function Methods  

There are several types of penalty function method with the inequality constrained 
which has the following two terms:  
1- ( )( ) ( )( )[ ]2,0min xcxc ii =φ                          (quadratic loss function) 
2- ( )( ) ( )( )[ ]xcxc ii ,0min=φ                            (Zangwills, (1967) loss function) 
or with the equality constraint which has the following two forms 
1- ( )( ) ( )( )2xhxh ii =ϕ  
2- ( )( ) ( )xhxh ii =ϕ  
Hence .Our objective function may be define by 

[ ] [ ])(1)()(),(
11

xhxgxfx i

l
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i
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++= ϕ
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4-Interior Point Methods (Barrier Function) 
Definition: A Barrier function for eq(1) is any function ( ) RRxB n →:   if it satisfies 
- ( ) 0fxB  for all x  that satisfy ( ) 0fxc  
- ( ) ∞→xB  as ( ) 0} max{lim →xci

x
  

The idea in a barrier method is to dissuade points x  from ever approaching the 
boundary of the feasible region. We consider solving 

             
( )

n
k

k

kkkkk

R    x                              

)    c(x s.t.                         
)B(xµ)  f(x       ,µx

∈

>
+=

0
minθ

 

For a sequence of 0→kµ . Note that the constraints ( ) 0>kxc  are effectively 
unimportant in ( )kµθ ,x k , as they are never binding in ( )kµθ ,x k . INT[1]  

  
4-1 General Types of Barrier Function Method 

There are several types of Barrier function method  

1- ∑
=

=
m

i i xc
xB

1 )(
1)(         ……………………………….(Carrol,1961)  

2- ∑
=

∈>∈=
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i i xc
xB
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3- ( )∑
=
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i
i xcxB
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)(ln)(                        ……………………….  (Frish ,1955) 

 
5-Mixed Exterior-Interior Point Method 

The algorithms described in the previous section can be used directly to solve a 
problem involving strict equality constraint or inequality constraint. In this section, we 
consider some method, which can be used to solve a general class (equality and 
inequality of problem) thus, the new problem can be converted into an unconstrained 
minimization problem by constructing a function of the form. (Fiacco & Mc Cormick, 
1968a, 1968b)  

      [ ] [ ])(1)()(),(
11

xhxcxfx i

l

mi
i
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i
kkk ∑∑
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++= ϕ
µ

φµµθ ………….……  (2) 

Although both exterior and interior-point methods have many points of similarity. 
They represent two different points of view. In an exterior-point procedure, we start from 
an infeasible point and gradually approach feasibility. While doing so, we move away 
from the unconstrained optimum of the objective function. In an interior-point procedure 
we start at a feasible point and gradually improve our objective function, while 
maintaining feasibility. The requirement that we begin at a feasible point and remain 
within the interior of the feasible inequality constrained region is the chief difficulty with 
interior-point methods. In many problems we have no easy way to determine a feasible 
starting point, and a separate initial computation may be needed. Also, if equality 
constraints are present, we do not have a feasible inequality constrained region in which 
to maneuver freely. Thus interior-point methods cannot handle equalities. 
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We many readily handle equalities by using a “mixed” method in which we use 
interior-point penalty functions for inequality constraints only. Thus, if the first m 
constraints are inequalities and constraints (m+1) to n are equalities, our problem 
becomes: 

  Minimize )(1)()(),(       k
k

kkk xpxBxfx
µ

µµθ ++= ……………………(3)  

 
The function ),( µθ x  is then minimized for a sequence of monotonically decreasing 

0fµ .  
We can solve the constrained problem given in eq.(1)  construct a new objective 

function ),( kx µθ which is defined in eq.(2). Now our aim is to minimize the function 
),( kx µθ by starting form a feasible point x0 and with initial value 10 =µ  and the method 

reducing kµ  is simple iterative method such : 

                      
ω
µ

µ
ˆ1
k

k =+ ,………………………….……………….. (4) 

Where ω̂  is a constant equal to 10 and the search direction dk in this case can be defined  
                    kkk gHd −= ,……………………….…………..…………….……(5) 
where H is a positive definite symmetric approximation matrix to the inverse Hessian 
matrix G-1 and g is the gradient vector of the function ),( kkx µθ . The next iteration is set 
to further point 
                   iiii dxx λ+=+1 ,……………..………………………(6) 
where λ is a scalar chosen in such that kk ff <+1 . We thus test  ci(xk+1) to see that it is 
positive for all i. We find a feasible xk+1 and we can then proceed with the interpolation. 
Then a correction matrix to get updates the matrix kH  
                    kkk HH φ+=+1   …..………………………..…….. (7) 
where kφ  is a correction matrix which satisfies quasi-Newton condition namely  

)( 1 kkk yH σν=+ where kν and yk are difference vector between two successive points and 
gradients respectively and σ  is any scalar. 
      

The initial matrix H0 chosen to be identity matrix I.  Hk is updated through the 
formula of BFGS update. (Fletcher, 1970) 
                  )2()1(

1 kkk HHH +=+ …………………………...………..…...(8) 
where 
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              )()( 5.0
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And terminate of the method if  
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                      ε<− −1ii xx …………….………………………………(12) 
where 000001.0=ε , and 

                       101
k

k
µ

µ =+  ………………….…………………..……(13) 

 
5-1 General Type of Mixed Interior and Exterior Point Methods   

1- ( ) )(1)()(),( k
k

kkk xp
sqrt

xBxfx
µ

µµθ ++=    ………………..(Bigg,1983) 

2- )(1)()(),( k
k

kkk xpxBxfx
µ

µµθ ++=             ………………..(Rao,1994) 

3- )(1)()(),( k
k

kkk xpxBxfx
µ

µµθ +−=             ……………(Gettfried,1973) 

4- 0      )(1)(ˆ)(),( f∈++= k
k

kkk xpxBxfx
µ

µµθ        …………..(Toint, etal,1997) 

Where  
 
         ( )xB : -Inverse Barrier function  which handles the inequality. 
         )(ˆ xB :- Inverse Barrier function  which handles the equality. 
         ( )xB : -Log Barrier function  which handles the inequality. 
         ( )xp : -Penalty function  which handles the equality. 
 
5-2 Outlines of the  Mixed Interior-Exterior Point Methods  
Step1: Find an initial approximation x0 in the interior of the feasible  
               region for the inequality constraints i.e. ci(x0)>0. 
Step2: Set 1=i  and 10 =µ  is the initial value of 0µ . 
Step3: Set iii gHd −=  
Step5: Set iiii dxx λ+=+1 , where λ  is a scalar. 
Step6: Update H by correction matrix defined in eq.(8)-(11).  
Step7: Check for convergence i.e. if eq.(12) satisfied then stop. 
Step8: Otherwise, set 

101
i

i
µ

µ =+  and take x=x* and set k=k+1 and go to  

                step5. 
6- New Self-Scaling Variable Metric Methods  

In order to eliminate the truncation and rounding errors, the new scalar parameter σ  
is added to make the sequence and efficiency as problem dimension increase. The poor-
scaling is an imbalance between the values of the function and change in x. The function 
values may be change very little even though x is changing significantly. This difficulty 
can sometimes be remove by good scaling factor for the updating H and the performance 
of self-scaling methods is undoubtedly favorable in some cases especially when the 
number variables are large ( scales, 1985).   

An idea is multiplying part of BFGS  by scaling factor σ before the update takes 
place. The original motivation for self-scaling method arises from the analysis of 
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quadratic objective function, and the main results also assume that exact line searches are 
performed .                          
        Many authors have propose a special  scaling as follow: 

               1- ( )kkk
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             4- ( )kkk
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4 62ν
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In QN - methods the approximation kH  to the inverse of the Hessian can be 
selected to satisfy the Quasi-Newton condition.(Paul K.,2000) 

This paper we have suggested anew parameter say : 

     n

iHyT
iy

igT
i

new )1(
ν

σ −=                                                                    (18) 

where 
 n = number of variable  
 
6-1 Outlines of the New Self-Scaling  method  
Step 1: Find an initial approximation x0 in the interior of the feasible  
               region for the inequality constraints i.e. ( ) 0fxci . 
Step 2: Set 1=i  and 10 =µ  is the initial value of 0µ . 
Step 3: Set iii gHd −=  
Step 4: Set iiii dxx λ+=+1 , where λ  is a scalar. 
Step 5:Update H by correction matrix  which defined in eq.(8-11)  where 
             3kσ is defined in eq.(18) 
Step 6: Check for convergence if ∈− −  1 pii xx  where 51 −∈= E satisfied 
                 then stop. 

Step 7: Otherwise, set 
101

i
i

µ
µ =+  and take x=x* and set 1+= ii and go to  

                  Step 5. 
7- Numerical Results: 

Several standard non-linear constrained test functions were minimized to compare 
the new algorithms with standard algorithm see (Appendix). with 101 ≤≤ n  and 

10)(1 ≤≤ xci  and 10)(1 ≤≤ xhi . 
All the results are obtained using Pentium 4. All programs are written in 

FORTRAN language and for all cases the stopping criterion taken to be  
                  δ<− −1ii xx ,                                    510−=δ   
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All the algorithms in this paper use the same ELS strategy which is the quadratic 
interpolation technique directly adapted from (Bunday, 1984). 

The comparative performance for all of these algorithms are evaluated by 
considering NOF, NOI, NOG and NOC, where NOF is the number of function 
evaluations and NOI is the number of iterations and NOG is the number of gradient 
evaluations and NOC number of constrained evaluations. 

In table (1) we have compared our new algorithm with the standard algorithm  
 
Table 1: Comparison of the BFGS algorithm  with the new Self-Scaling algorithm 
Test Fn. BFGS- algorithm 

NOF(NOI)NOG(NOC) 
Self-Scaling BFGS- algorithm 

NOF(NOI)NOG(NOC) 
1- 2630(244)5(3) 1841(246)5(3) 
2- 907(129)10(19) 777(121)10(19) 
3- 103(53)7(11) 86(31)5(9) 
4- 2153(263)8(13) 835(146)5(9) 
5- 749(124)10(19) 760(126)10(19) 
6- 146(53)2(1) 146(53)2(1) 
7- 734(123)10(19) 707(124)10(19) 
8- 2725(310)15(29) 2719(282)15(29) 

Total   
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    s.t.. 
        12 21 −=− xx  

        01
4

2
2

2
1 ≥++

− xx  

 
 
 
6- 2

2
1)(min xxxf =                                           

    s.t. 

        
0

6)
2

(

21

2
1

21

≥+

=−

xx

xxx  

7- 2
2

2
1 )2()3()(min −+−= xxxf                       

    s.t. 

        
0

5

42
2
2

2
1

21

≥
≤+

=+

ix
xx

xx

 

8- 2
221

2
1)(min xxxxxf +−=                             

      s.t. 

         
22

4

21

2
2

2
1

≤+
=+

xx
xx  

 
  

REFERENCES 
Al-Bayati, A.Y. 1991. A New Family of Self Scaling Variable Metric Algorithms for 

Unconstrained Optimization, J.Ed. and Sc.,12 p. 
Biggs, M.C. 1973. A Note On Minimization Algorithms which Make Use of Non-

Quadratic Properties of the Objective Function, Journal of Institute of Mathematics 
and Its Application, No. 12, pp.337-338. 

Biggs, M.C. 1983. Computational with Sequential Unconstrained Minimization 
Technique for Nonlinear Programming, Numerical Optimization Center T.R.N. 

Bunday, B.D., 1984. Basic Optimization Methods, Edward Arnold, London. 
Carrol, C.W., 1961.  The Created Response Surface Technique Optimization Nonlinear 

Restrained Systems, OP. Res pp.169-184. 
Fletcher, R., 1970. A New Approach to Variable Metric  Algorithms. The Computer 

Journal, No. 13, pp.317-322. 
Fiacco, A.V. and McCormick, G.P., 1968a. Extensions of SUMT for  Nonlinear 

Programming Nonlinear programming Equality  Constraints and Extrapolation 
,Management science, Vol 12,No.111, pp.816-828 

Fiacco, A.V. and McCormick, G.P., 1968b. Nonlinear Programming Sequential 
Unconstrained Minimization Techniques, Wiley, New York. 

Frish, K.R., 1955. The  Logarithmic  Potential  Method  of  Convex  Programming. 
Memorandum may 13,195,University Institute of Economics Oslo. 



A new Self –Scaling Technique for… 
 

58

Kwon, T.H., 2001. Constrained optimization. University of Western Ontario London, 
Ontario, Canada 

Oren, S.S., and Luenbereger D.G 1974. Self-Scaling Variable Metric  Algorithm, Part II, 
Management Science, No. 20, pp. 863-874. 

Rao, S.S., 1994. Optimization Theory and Applications, Wiley Eastern  limited. 
Scales,  L.E., 1985. Introduction to Non-Linear  Optimization. Macillan , London. 
Toint, Ph.L. and Nicholas, I.M., 1997. Anote on The Second –Order Convergence of 

Optimization Algorithm by using Barrier Function : A current survey, Report 94/1, 
IBM T. J. Watso Research Center, U.S.A. 

Zangwill, W.G., 1967. Non-linear  Programming Via Penalty Function. Mgnt csi.13 
pp.344-358. 

Internet Reports: 
INT[1] Continuous Optimization Method Introduction to Penalty and Barrier Method for 

Unconstrained Optimization(2001),http://www.personal.engin. umich.edu/~ mepel- 
man/teaching/IOE11/section 9.pdf 

INT[2] Penalty and Barrier Method, 2001. http://www .cityu.edu.hk /ma/staff/ zhang / 
MA66-11-16.pdf 


