$\qquad$

# Thermodynamic Study of the Interaction of Cinnamylideneaniline and some of it's Derivatives with the Shift Reagent Ag(fod) by U.V Spectroscopy 

Layla M. Saleem<br>Department of Chemistry<br>College of Education<br>Mosul University

Sadallah T. Sulaiman<br>Ali Y. Al-Razzak<br>Department of Chemistry<br>College of Science<br>Mosul University

(Received 28/11/2004 , Accepted 13/9/2005)


#### Abstract

The U.V. spectra of a series of cinnamylidene (mono and di-substituted) anilines have been studied in $\mathrm{CCl}_{4}$ with the shift reagent $\mathrm{Ag}($ fod $)$. A splitting of the main band into two bands was observed, which may be attributed to the complex formation with the $\operatorname{Ag}$ (fod). The equilibrium constant for the process was calculated using the method of Hartman. The U.V. spectra were measured at different temperatures (293-333 ${ }^{0} \mathrm{~K}$ ), the results showed a decrease in K values with increasing temperature. The thermodynamic parameters (AG, AH and AS) were obtained. Application of Skalski method showed that the interaction with $\operatorname{Ag}$ (fod) was 1:1.

\section*{ طف الأثهة فوق البفججية}


## الملخص

مَ درلسةطف الشعة فوق البفسجية لسلسلة aنمركبلت السينمايليين انيلين المحضرةمن للسينمالييهايد والانيلينت (لحاية وثنائية التعويض) وقد دسِتمع كلثف الازلحة Ag(fod) ولوظظ القسلم حزمة المتصاص الرئيسية اللى حزمتن ثالويتين وهذا يعزى الل تكوين معقد ين هذه المركبلت وكلثف الازلحة, وقد مَ اليجاد ثابت الاتزلن لهنه العملية ططيقة هارتمان في درجت حرارية مختلفة بين (293_333 هطلقة) وقد لظهرت النتائج
 وبظبق معادلةسكللكي على النتائج وجد لن نسبة التعاقد بين هنه المركبت وكلثف الازلحة كانت 1:1.

## INTRODUCTION

Cinnamylidene anilines are present mainly in the stable transform (Anteunis et al., 1972) The ${ }^{1}$ HNMR study of these compounds after addition of the lanthanide shift reagent (LSR) $\mathrm{Eu}(\mathrm{fod})_{3}$ showed that they undergo isomerization to the less stable cis form (Saleem et al., 2000), In another studies (Saleem et al., 1992), (Saleem et al., 1997). it has been shown that cinnamylidene anilines can undergo isomerization to the cis form on irradiation by U. V. light at room temperature and the rate of isomerization was found to be a first order. The assigned cis signals for both methods (U.V. and ${ }^{1} \mathrm{NMR}$ ) were found to be identical, which confirm the isomerization process. The interaction of Cinnamylidene anilines with $\mathrm{Eu}(\mathrm{fod})_{3}$ was also studied by U.V. spectroscopy and in different solvents (Saleem et al., 1989), (Saleem et al., 1999).

The thermodynamic parameters for such interaction have been determined (Sulaiman et al., 1998). The present work involves the study of the interaction of a


1. $2,3,4,5,6=\mathrm{H}$
2. $4=\mathrm{Cl}, 2,3,5,6=\mathrm{H}$
3. $4=\mathrm{F}, 2,3,5,6=\mathrm{H}$
4. $4=\mathrm{Br}, 2,3,5,6=\mathrm{H}$
5. $4=\mathrm{OH}, 2,3,5,6=\mathrm{H}$
6. $3=\mathrm{Me}, 2,4,5,6=\mathrm{H}$
7. $2,3=\mathrm{Me}, 4,5,6=\mathrm{SH}$
8. $2,4=\mathrm{Me}, 3,5,6=\mathrm{H}$
9. $2,5=\mathrm{Me}, 3,4,6=\mathrm{H}$
(Scheme 1)

## EXPERIMENTAL

Cinnamylideneanilines were prepared by mixing an equimolar amounts of cinnamaldelyde with substituted anilines according to the procedure described by EI-bayoumi (E1-Bayotimi et al., 1971) and coworkers.

## Preparation of the shift reagent $\mathbf{A g}(f o d)$ :

(1,1, 1, 2, 2, 3, 3- Hepta fluoro -7, 7-dimethyl -4, 6- octanedion) silver(I). A solution of 9.6 g $(0.0324 \mathrm{~mol})$ of $\operatorname{Pr}(\mathrm{fod})_{3}$ in 5 ml of methanol was neutralized with 8.1 ml of 4 M NaOH . The solution was added to a stirred solution of 5.5 g . ( 0.0324 mol ) of silver nitrate in 75 ml of distilled water. A precipitate immediately separated, was collected by suction filtration, and was dried tinder Vacuum. (Belletete et al., 1982)

## Sampling:

A stock solution of $\left(5 \times 10^{-3} \mathrm{M}\right) \mathrm{Ag}(\mathrm{fod})$ was prepared in $\mathrm{CCl}_{4}$, a solution of $\left(5 \times 10^{-4} \mathrm{M}\right)$ of Schiff base was used for measurement. To 10 ml of $\left(5 \times 10^{-4} \mathrm{M}\right)$ solution of Schiff-base a different amount of $\left(4 \times 10^{-3} \mathrm{M}\right) \mathrm{Ag}($ fod $)$ was added using a micro syringe.

## Measurements:

The U.V. spectra were measured by Unicam Sp 800 U.V. spectrometer using 1 cm silica cell. Measurements were performed against a blank solution containing only $\operatorname{Ag}(f o d)$ of the same concentration as the sample in order to cancel the absorbance of the shift reagent. Variable temperature measurements were performed between 293-343 K ${ }^{0}$. Temperature control was carried out using a thermostat of a type HAAKE $\mathrm{D}_{3}( \pm 0.1$ Temp. accuracy).

## RESULTS AN D DISCUSSION

The U.V spectra of cinnamylidene anilines in $\mathrm{CCl}_{4}\left(5 \times 10^{-4} \mathrm{M}\right)$ show a strong absorption band at wavelength ranging between (295-298 nm).

Addition of the shift reagent $\operatorname{Ag}($ fod $)\left(5 \times 10^{-3} \mathrm{M}\right)$ to cinnamylidene aniline (1) caused a splitting of the main band into two bands: band $\mathrm{A}_{1}$ to the shorter wavelength ( 272 nm ) and band $\mathrm{A}_{2}$ to the longer wavelength ( 325 nm ) (Figure 1).


Figure 1: Absorption spectra of cinnamylideneaniline $\left(5 \times 10^{-4} \mathrm{M}\right)$ with $\mathrm{Ag}(\mathrm{fod})$ in $\mathrm{CCl}_{4}$ at $298 \mathrm{~K}^{\mathrm{o}}$.
A. in the absence of Ag (fod)
B. in the presence of Ag (fod)

Successive additions $(30 \mu \mathrm{l})$ of $\left(5 \times 10^{-4} \mathrm{M}\right) \mathrm{Ag}($ fod $)$ tip to $360 \mu 1$ resulted in a decrease in the absorbance of $\mathrm{A}_{1} \& \mathrm{~A}_{2}$, but the absorbance of band $\mathrm{A}_{1}$ decreases more than band $\mathrm{A}_{2}$. The calculated values of $\mathrm{A}_{1} \%$ and $\mathrm{A}_{2} \%$ (Table 1) show a decrease in $\mathrm{A}_{1} \%$ and increase in $\mathrm{A}_{2} \%$ which may be due to complex formation of trans form with $\mathrm{Ag}(\mathrm{fod})$ followed by transformation to the complex of the less stable cis form.

Table 1: Percent variation of complex due to addition Ag (fod) to cinnamylidene aniline $\left(5 \times 10^{-4} \mathrm{M}\right)$ in $\mathrm{CCl}_{4}$.

| Comp. | $\mathrm{A}_{1} \% \& \mathrm{~A}_{2} \%$ | $\mathrm{Ag}(\mathrm{fod})$ addition |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 120 | 150 | 180 | 210 |
| 1 | $\mathrm{~A}_{1} \%$ | 48.32 | 44.84 | 41.72 | 39.85 |
|  | $\mathrm{~A}_{2} \%$ | 51.67 | 55.15 | 41.72 | 60.15 |
| 2 | $\mathrm{~A}_{1} \%$ | 47.57 | 41.79 | 58.27 | 34.19 |
|  | $\mathrm{~A}_{2} \%$ | 52.42 | 58.20 | 36.52 | 65.80 |
| 3 | $\mathrm{~A}_{1} \%$ | 48.33 | 44.44 | 63.47 | 36.77 |
|  | $\mathrm{~A}_{2} \%$ | 51.66 | 55.55 | 39.76 | 63.22 |
| 4 | $\mathrm{~A}_{1} \%$ | 46.35 | 40.09 | 60.23 | 31.67 |
|  | $\mathrm{~A}_{2} \%$ | 53.64 | 59.90 | 34.48 | 38.32 |
| 6 | $\mathrm{~A}_{1} \%$ | 48.36 | 41.37 | 35.00 | 31.46 |
|  | $\mathrm{~A}_{2} \%$ | 51.63 | 58.62 | 65.00 | 68.53 |

In order to calculate the thermodynamic parameters, variable temperature measurements were performed for solutions of cinnamylidene aniline $\left(5 \times 10^{-4} \mathrm{M}\right)$ in $\mathrm{CCl}_{4}$ with $210 \mu \mathrm{of}(4 \mathrm{x}$ $\left.10^{-3} \mathrm{M}\right) \mathrm{Ag}($ fod $)$.

The equilibrium constant was calculated using the method of Hartman (Hartrnan et al., 1968) in which the equilibrium constant is correlated with the absorptions of the two bands $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ as follows :

$$
K=\frac{A_{2} \alpha_{1}}{A_{1} \alpha_{2}}
$$

Where $\alpha_{1}$ and $\alpha_{2}$ represent the molar absorption coefficients of band 1 and 2 after addition of $\mathrm{Ag}(\mathrm{fod}), \mathrm{A}_{1}$ and $\mathrm{A}_{2}$ are the absorbances of bands 1 and 2 respectively. Plot of $\mathrm{A}_{1}$ vs. $\mathrm{A}_{2}$ at different temperatures (Figure 2) gave straight lines with slopes $\frac{\alpha_{1}}{\alpha_{2}}$ from which the values of K has been calculated and are given in Table 2.

The following thermodynamic relation was used to calculate the enthalpy and entropy of the complexes:

$$
\log K=\frac{-\Delta H^{o}}{2.303 R T}+\frac{\Delta S^{o}}{2.303 R}
$$



Fig. 2: Plots of $A_{1}$ against $A_{2}$ for cinnamylideneaniline in $\mathrm{CCl}_{4}$ with Ag (fod) at different temperature.

Plot of $\log \mathrm{K}$ against $1 / \mathrm{T}$ give slopes of $\Delta \mathrm{H}^{0} / 2.303 \mathrm{R}$ and an intercept $\Delta \mathrm{S}^{0} / 2.303 \mathrm{R}$. Such plot is shown in Fig (3) and the values of $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are given in Table 2. From these results it can be seen that equilibriurn constant values decrease on increasing temperature.

Table 2 :The thermodynamic parameters of cinnamylidene aniline with $\mathrm{Ag}(\mathrm{fod})$ at different temperature in $\mathrm{CCl}_{4}$.
Comp. 1

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.06 | 0.900 | 0.1614 | 1.8233 | 4441.56 | -3927.86 | -28.56 |
| 303 | 3.300 | 1.04 | 0.905 | 0.1576 | 1.8474 | 4653.86 |  | -28.32 |
| 313 | 3.194 | 1.00 | 0.910 | 0.1506 | 1.8928 | 4925.59 |  | -28.28 |
| 323 | 3.095 | 0.96 | 0.915 | 0.1439 | 1.9384 | 5205.42 |  | -28.27 |
| 333 | 3.003 | 0.92 | 0.920 | 0.1372 | 1.9863 | 5499.19 |  | -28.30 |

* average value of $\Delta \mathbf{S}=-28.35$

Comp. 2

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} /$ mole | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.19 | 0.81 | 0.2952 | 1.2201 | 2972.16 | -5260.76 | -28.09 |
| 303 | 3.300 | 1.16 | 0.82 | 0.2842 | 1.2580 | 3169.08 |  | -27.82 |
| 313 | 3.194 | 1.13 | 0.83 | 0.2735 | 1.2962 | 3373.07 |  | -27.58 |
| 323 | 3.095 | 1.06 | 0.84 | 0.2534 | 1.3725 | 3685.74 |  | -27.69 |
| 333 | 3.003 | 1.00 | 0.85 | 0.2363 | 1.4423 | 3993.09 |  | -27.78 |

* average value of $\Delta \mathrm{S}=-27.79$

Comp. 3

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.14 | 0.81 | 0.4178 | 0.8725 | 2125.41 | -4004.35 | -20.92 |
| 303 | 3.300 | 1.12 | 0.82 | 0.4054 | 0.9028 | 2274.28 |  | -20.72 |
| 313 | 3.194 | 1.09 | 0.83 | 0.3899 | 0.9417 | 2450.56 |  | -20.62 |
| 323 | 3.095 | 1.05 | 0.84 | 0.3712 | 0.9908 | 2660.71 |  | -20.63 |
| 333 | 3.003 | 1.01 | 0.85 | 0.3528 | 1.0417 | 2884.01 |  | -20.68 |

* average value of $\Delta \mathrm{S}=-20.71$

Comp. 4

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.22 | 0.81 | 0.3945 | 0.9299 | 2265.23 | -2884.12 | -17.57 |
| 303 | 3.300 | 1.20 | 0.82 | 0.3833 | 0.9589 | 2415.60 |  | -17.49 |
| 313 | 3.194 | 1.16 | 0.83 | 0.3660 | 1.0050 | 2615.29 |  | -17.57 |
| 323 | 3.095 | 1.12 | 0.83 | 0.3534 | 1.0400 | 2792.83 |  | -17.57 |

* average value of $\Delta \mathrm{S}=-17.51$

Comp. 5

| Temp. <br> $\mathrm{K}^{\mathrm{0}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.19 | 1.11 | 0.6620 | 0.4123 | 1004.36 | -2442.81 | -11.76 |
| 303 | 3.300 | 1.18 | 1.13 | 0.6447 | 0.4388 | 1105.39 |  | -11.71 |
| 313 | 3.194 | 1.17 | 1.14 | 0.6336 | 0.4562 | 1187.16 |  | -11.59 |
| 323 | 3.095 | 1.14 | 1.15 | 0.6120 | 0.4909 | 1318.27 |  | -11.64 |
| 333 | 3.003 | 1.12 | 1.16 | 0.5959 | 0.5175 | 1432.73 |  | -11.63 |

* average value of $\Delta \mathrm{S}=-11.67$

Comp. 6

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 1.20 | 1.04 | 0.5332 | 0.6287 | 1531.51 | -3338.07 | -16.61 |
| 303 | 3.300 | 1.18 | 1.05 | 0.5193 | 0.6551 | 1650.28 |  | -16.46 |
| 313 | 3.194 | 1.16 | 1.07 | 0.5013 | 0.6904 | 1796.61 |  | -16.40 |
| 323 | 3.095 | 1.13 | 1.08 | 0.4837 | 0.7261 | 1949.88 |  | -16.37 |
| 333 | 3.003 | 1.09 | 1.09 | 0.4625 | 0.7711 | 2134.83 |  | -16.43 |

* average value of $\Delta \mathrm{S}=-16.45$

Comp. 7

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 0.83 | 1.07 | 0.1590 | 1.8386 | 4478.83 | -2574.51 | -24.07 |
| 303 | 3.300 | 0.82 | 1.07 | 0.1571 | 1.8503 | 4661.16 |  | -23.88 |
| 313 | 3.194 | 0.79 | 1.065 | 0.1520 | 1.8835 | 4901.39 |  | -23.88 |
| 323 | 3.095 | 0.77 | 1.06 | 0.1489 | 1.9039 | 5112.77 |  | -23.79 |
| 333 | 3.003 | 0.73 | 1.05 | 0.1426 | 1.9476 | 5392.05 |  | -23.92 |

* average value of $\Delta \mathrm{S}=-23.91$

Comp. 8

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 0.78 | 1.11 | 0.3852 | 0.9538 | 2323.45 | -1437.49 | -12.83 |
| 303 | 3.300 | 0.77 | 1.10 | 0.3841 | 0.9566 | 24.09 .81 |  | -12.69 |
| 313 | 3.194 | 0.75 | 1.09 | 0.3775 | 0.9739 | 2534.36 |  | -12.68 |
| 323 | 3.095 | 0.73 | 1.08 | 0.3704 | 0.9930 | 2666.62 |  | -12.70 |
| 333 | 3.003 | 0.71 | 1.07 | 0.3638 | 1.0110 | 2799.01 |  | -12.72 |

* average value of $\Delta \mathrm{S}=-12.72$

Comp. 9

| Temp. <br> $\mathrm{K}^{\mathrm{o}}$ | $1 / \mathrm{T} \times 10^{-3}$ | $\mathrm{~A}_{2}$ | $\mathrm{~A}_{1}$ | $\mathrm{~K}_{2} \mathrm{M}^{-1}$ | $-\ln \mathrm{K}_{2}$ | $\Delta \mathrm{G}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{H}$ <br> $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{S}$ <br> $\mathrm{J} / \mathrm{mole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 293 | 3.412 | 0.94 | 1.190 | 0.1025 | 2.2772 | 5547.26 | -2060.37 | -25.96 |
| 303 | 3.300 | 0.92 | 1.190 | 0.1004 | 2.2976 | 5787.98 |  | -25.90 |
| 313 | 3.194 | 0.91 | 1.185 | 0.0997 | 2.3054 | 5999.30 |  | -25.74 |
| 323 | 3.095 | 0.88 | 1.180 | 0.0968 | 2.3345 | 6269.11 |  | -25.78 |
| 333 | 3.003 | 0.85 | 1.180 | 0.0936 | 2.3687 | 6557.89 |  | -25.88 |

- average value of $\Delta \mathrm{S}=-11.67$

The positive value of $\Delta \mathrm{G}^{0}$ indicate that the equilibrium prefers the backward transformation (cis complex back to trans see scheme 2). The negative values of $\Delta \mathrm{S}^{0}$ indicate that the complex form is more ordered (more rigid).


Scheme (2)


Fig. 3: Plot of $\ln \mathrm{K}$ vs. $1 / \mathrm{T}$ for cinnamylideneaniline with $\mathrm{Ag}(\mathrm{fod})$ in $\mathrm{CCl}_{4}$.

## Stoichiometry (complex formation) of cinnamylideneaniline (1) with $\mathbf{A g}(f o d):$

In addition to the splitting of the main band into two bonds which was observed on adding $\mathrm{Ag}($ fod $)$, a blue shift for the band $\mathrm{A}_{1}$ to the shorter wave length and a red shift for the band $\mathrm{A}_{2}$ to the longer wave length was also observed. The plot of frequency shift (Av) against the added amount of $\mathrm{Ag}(\mathrm{fod})$ shows a linear correlation which have been obtained forboth $\mathrm{A}_{1}$ and


Fig. 4: Plots of frequency shift ( $\Delta \mathrm{u}$ ) against additions of $\mathrm{Ag}(\mathrm{fod})$ of cinnamylideneaniline for both bands ( $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ ).

The slope of the plot for both bands $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ was found to be $\left(9 \times 10^{-7}\right)$. This result indicates that both bands $A_{1}$ and $A_{2}$ show similar effect on complexation with $\operatorname{Ag}(f o d)$. In order to find the stoichiometry of these complexes a plot of $\mathrm{A}_{0}-\mathrm{A} /[\mathrm{Ag}(\mathrm{fod})]^{\mathrm{n}}$ against A [were $\mathrm{A}_{0}=$ the absorbance of the Schiff base at a particular wave length in the absence of $\left.\mathrm{Ag}(\mathrm{fod})\right]$, the absorbance in the presence of $\mathrm{Ag}($ fod $)$ ] was obtained with a linear correlation when $\mathrm{n}=1$ (Fig. 5) which represent the no. of $\mathrm{Ag}(\mathrm{fod})$ molecules involved in the complex.


Fig. 5: Plots of (A0-A)/[Ag(fod)] against absorbance for cinnamylideneaniline in $\mathrm{CCl}_{4}$ at $293 \mathrm{~K}^{\mathrm{o}}$.

## REFERENCES

M. Anteunis and A. DeBryne, J. Magn. Res. 8, pp.7-14 (1972).
L. M. N. Saleem, A. Y. Al-Razzak, Raf. J. Sci, 3, 8-14, 2000.

L M N. Saleern and A. S. Authman, Spec Lett. 25, 799-809(1992), Spectr. Lett, 25, 799-809 (1992).
L. M. N. Saleern, J. Ed. Sci, 26,63-71(1997).
L. M. N. Saleern and A. 0. Ornar, Iraq. J. Sci., 30, 9-16 (1989).
L. M. N. Saleem and A. Y. Al-Razzak, Raf. J. Sci, 10, 12-16 (1999).
S. T. Sulaiman, L. M. N. Saleern, A. S. Authman, Iraq. 1. Chem., 24, 49-53 (1998).
M. A. E1-Bayotimi, M. EJ-Asser and F. Abdel-Halirn, J. Am. Chem. Soc., 93, 586-590 (1971).
M. Belletete and G. Durocher, Can. J. Chern., 60, 2332-2339 (1982).
K. O. Hartrnan, g. L. Cariso, R. E. Witkowski and W. G. Fateley, Spectrochemica Acta, Vol. 24A, 157-167(1968).

