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Abstract

This paper proposes a new algorithm for non-linear optimization to modify and
develop the conjugate gradient (CG) methods and to obtain a strong global
convergence. This algorithm is derived and evaluated numerically against the standard
(P/R and H/S)-CG algorithms and T/S algorithm using more than (20) standard well-
known test functions. The numerical results show that, Non —quadratic models are very
beneficial in most of the problems especially when the dimensionality of the problem
increases.

Introduction

Conjugate gradient methods (CG) were proposed by Hestenses and
Stiefel (Hestences & Stiefle, 1952) for solving systems of linear equations.
The use of this method for unconstrained optimization was prompted by the
fact that the minimization of a positive-define quadratic function is
equivalent to solving the linear equation system that results when its
gradient is set at zero. Conjugate gradient methods as applied to quadratic
functions are described first. Actually, the extension of conjugate gradient
methods for solving non-linear equation systems and its use in solving
general unconstrained minimization problems was first done by Fletcher
and Reeves (Fletcher & Revees, 1964). We will show these methods can be
extended to minimize general non-linear functions.

The conjugate gradient method have in general the following basic
properties (Dragica Vasileska, 2006):

1) The conjugacy condition.

2) The orthogonally condition

3) The descent direction

4) The quadratic termination condition with exact line search (ELS).

Concept of the extended CG-methods (ECG)
A function f is defined as a non-linear scaling of the quadratic function
q(x) if the following condition holds:

f= F(q(x)),z—zz F >0and q(x) >0 .. (D
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This property is called invariancy to non-linear scaling (Spedicato, 1976).
The following properties are immediately derived from the above
condition:
1) Every contour line of q(x) is a contour line of f.
i) If x* is a minimizer of g(x), then it is also a minimizer of f.
Various authors have published related work in this area:
i) A CG methods which minimizes the general function

f(x)=((q(x)”,p>0 xeR" ... (2)
In at most n steps has been proposed in (Fried, 1971).
i) Two CG methods which minimize the following polynomial model

£ = 200 +2,0° (9 )

where ¢, and &, are scalars, have been investigated with two different
restarting critieriain in (Boland & Kowalik , 1977a) and (Boland &
Kowalik , 1979Db) .
i) Also two different rational models have been developed in
(Tassopoulos and Storey, 1984a) and (Tassopoulos & Storey, 1984b)
namely:

F(x) = £0(x)+1

£,9(X)
and
&q(x)

f(x)_1+q(x),g >0 ...(5
iv) Another new CG method which based on general logarithmic model

f(x) = e(logq(x)—1),¢ >0 ... (6)

have been implemented by (Al-Bayati , 1995).
v) And (Al-Assady and Al-Ta’ai, 2002) described their algorithm which
based on the trigonometric function:

F(a(x)) = sin(eq(x)) . (7)

where ¢ is scalar.
vi) Also (Al-Mashhadany, 2002) has been developed a new rational model
which is defined as following:
£q(x) .

F(q(x))—em(gzq(x)_l), £,<0 )
vii) Finally, another specific rational model was considered by (Taqi &
Adham, 2009) which is defined as following:

2 -&0(x)

f (x) = cos *( 2a00 ) ... (9)

where ¢, and ¢, are scalars.

&, >0 ... (4)
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We have suggested in this paper a new algorithm based on the non-
quadratic model to use a successful convenient technique for solving
unconstrained optimization problems which develops the classical CG
method. This new model is as follow:

F(q(x)) = coth™(&g(x)) ... (10)

Where q(x):%xTGx+be+c IS quadratic function and & is a scalar.

It is assumed that:

2—';:f'>0forq>0 ... (12)

holds

However, we first observe that q(x) and f(x) given in the above new
model have identical contours through with different function values, and
they have the same unique minimum point x*.

The derivation of new Algorithm
The implementation of the extended conjugate gradient method has
been performed for general function F(q(x)) of the form of equation (10)
The new model is

F(q(x)) = coth™ (eq(x))
Take the inverse function relationship we get
qzlcothf zi(e:+e_:] ... (12)
& ge —e
The unknown quantities p, was expressed in term of available quantities
of the algorithm (i.e. function and the gradient values of the objective

function).
Since p, is a parameter, which is defined as
Y
o=t .. (13)
k
f, —fi )2 f —f1)2
, — e _e _ k-1 __ k-1
Where, f = £ ) and f/, = £( e )
4 4
Hence
f )2
New _ e k-1 _e k-1
pk ( efk _e_fk ] (14)
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The outline of the new algorithm
Given X, € R"the initial point, and scalar ¢ .
Step (0): Set d, =—0,
Step (1): Fork=1,2,...
Compute x, =X, , +4,,0, ;
where 4, _,is the minimizer of fon d, ;.
Step (2): Check for convergence
If|g, | <&, then stop, Otherwise continue.
Step (3): Calculate
fz fd

Exp(f)=f + f’+7+?+...
Step (4): Compute

ew e fk—l effk—l 2
pkN - |: e fk : e_fk :|
Step (5): Check ifo< p, <1, then go to step (6). Otherwise set p, =1 and go

to step(6).
Step (6): Calculate the new direction

d, =-0, +Bd,
where p, is defined as follows:

B = gI(Pkgk —04)
k 7 rqT
[dy 1 (Px 9k — 9k a)]
B, = g-kr(pkgk —0i4)
‘ (9¢.19:4)
Step (7): Check for restarting criterion
If k = n, then stop, Otherwise set k = k +1 and go to step (1).

modified H/S in (Hestences and Stiefle ,1952).

modified P/R in (Polak and Ribier, 1969).

Numerical Computation

Twenty four non linear test functions with dimensions 2<n<200 (see
Appendix), were chosen to test the effectiveness of the new algorithm. All
computations are performed by using (Pentium 4 computer) by using
"FORTRAN PROGRAMS" and for all cases the stopping criterion requires

|9, | <5x107 to be satisfied. In order to compare the new algorithm with
some established algorithms the identical linear search was used, namely, a
cubic fitting procedure described in (Bunday, 1984).

All the results given in the tables specifically count the number of
function calls (NOF) and the number of the iterations calls (NOI).
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Results in table | and Il give the comparison of new algorithm with

standard CG methods and Tassopoulos and Storey (T/S) algorithm.

Table (1)
H/S
Test
Functi n NEW algorithm | T/S algorithm Standard CG
unction
NOI(NOF) NOI(NOF) NOI(NOF)
) Ve 35(82) 35(60) 22(46)
Dixon
Ve 107(618) 130(860) 120(860)
4 26(155) 33(230) 33(230)
10 20(105) 21(115) 18(122)
Cantreal
20 17(109) 22(132) 18(123)
200 21(112) 26(189) 19(137)
2 29(97) 23(73) 31(73)
Rosen 4 18(42) 24(58) 24(58)
80 25(62) 23(56) 26(56)
Y 12(36) 17(48) 17(48)
Cubic ¢ 13(36) 16(41) 16(42)
Ve 13(36) 14(36) 14(37)
Y 5(31) 3(17) 3(17)
OSP ¢ 8(36) 5(24) 5(24)
10 12(60) 10(24) 10(48)
40 29(92) 25(73) 43(141)
Bigg 100 29(92) 25(73) 45(142)
200 29(92) 25(73) 45(142)
Non 2 17(41) 18(43) 19(46)
Diagonal 4 22(50) 22(52) 21(50)
0 65(138) 72(158) 72(158)
Powell
T 60(183) 92(198) 62(198)
Wolfe 4 22(68)) 12(27) 12(27)
20 48(200) 39(79) 39(79)
Total NOI(NOF) 682(2573) 732(2739) 734(2904)
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Table (1)
P/R
Test
Funci n NEW algorithm T/S algorithm Standard CG
unction
NOI(NOF) NOI(NOF) NOI(NOF)
Dixon Ve 22(46) 37(73) 35(72)
Ve 227(460) 250(490) 249(490)
4 19(102) 21(107) 21(107)
20 18(109) 17(100) 19(119)
Cantreal
100 29(102) 17(100) 19(119)
200 20(97) 17(100) 20(131)
~osen 2 26(66) 31(73) 31(73)
4 31(85) 33(62) 33(72)
Y 19(49) 17(48) 17(48)
Cubic 10 25(60) 24(35) 24(37)
80 24(57) 24(35) 24(37)
2 5(31) 3(17) 3(17)
OSP 4 8(38) 5(23) 5(23)
10 12(57) 11(52) 11(52)
4 20(64) 20(65) 20(65)
Bigg 20 25(78) 16(49) 23(75)
100 39(49) 49(70) 49(73)
Non 2 15(37) 25((49) 19(46)
Diagonal 21(48) 26(47) 20(47)
4 69(162) 77(183) 77(183)
Powell 20 48(115) 48(115) 48(115)
60 64(143) 78(169) 85(182)
Wolfe 10 48(71) 32(63) 31(63)
100 64(68) 49(99) 49(99)
Total NOI(NOF) 898(2194) 926(2224) 932(2345)

From comparing new algorithm with standard CG methods using (H/S)
formula, see table (I) we obtained the following results:
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Table (111)
Tools Standard H/S-CG NEW Algorithm
NOI 100% 92.9%
NOF 100% 88.6%

It is clear from the above table, that the new algorithm improve the
standard H/S-CG algorithm in about (7.1%) NOI and (11.4%) NOF.

And from comparing new algorithm with standard CG-methods using
(P/R) formula, see table (1) we obtained the following results:

Table (1V)
NEW Algorithm
Tools Standard P/R-CG
NOI 100% 96.3%
NOF 100% 93.5%

It is clear from the above table, that the new algorithm improve the
standard P/R-CG algorithm in about (3.7%) NOI and (6.5%) NOF.

Moreover, we can see from table (I) and table (1) that the new
algorithm is better than the T/S algorithm since it has less (NOI) and (NOF)
than the T/S algorithm.

Graphics

In this section we are going to illustrate our numerical results by
figures. "Microsoft Graph 2003" has been utilized to draw the figures. The
comparison between the standard CG algorithms, T/S algorithm, and the
new algorithm proposed. with regard to NOI and NOF has been
demonstrated by drawing figures.

Figures (V) and (V1) show that the new algorithm is better than the
established algorithms which are T/S algorithm and standard CG
algorithms with respect to the NOI and NOF when ELS are used. These
figures draw the total of the NOI and NOF for the numerical results in
tables (1) and (I1).

Finally, all the above tables and figures show that the new algorithm
requires less NOI and NOF than other established algorithms to achieve
convergence for solving all those test functions with the use of ELS.
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Figure (V) :The Comparison among the different CG algorithms with ELS by using
H/S formula.
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Figure (VI) :The Comparison among the different CG algorithms with ELS by using
P/R formula.
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Appendix (Test functions)
1- Bigg Function:

f= i(exp(—xlzi) —5exp(—x,z,) —exp(z,) +5exp(—1Ozi))2  Z; =$

i=1
x. =(1,2)"

2-Cubic Function:
f =100(x, — x)?
x, =(—1.21)7

3- Dixon Function:

F = @)+ A= %0)" + D06 %)

X (—1,-1)7
4-Generalized Cantreal Function:

i
f= Z[eXp(mes) - X4i—2]2 +100(Xy;_, — X4i_1)° + [[atan(x‘”,l - x4i)]4 + in,3]
i1

X, = (1,2,2,2)"
5-Non —-Diagonal variant of Rosenbrock Function:

f = iloo(xi —x2f e+ (1—x)
i=1

X =(-1.....0"
6-Oren and Spedicato Power Function (OSP):
F=>(x2),r=2
i=1
X =(@1,..)"

7-Rosenbrock Function:

f = ZZZ(ZLOO(X2i —x3)+@— X2i—1)2)
x. =(—1.2,1)7
8-Wolfe Function:

fZ[— xl(3—%)+2X2 _1} +Z|:Xi—1_xi(3_);)+zxi—l_l:| +{Xn—1_xn(3_);])_1:|

i=1

2

9-Generalized Powell Function:

;
f= Z[(qu-s —10X45.5)" 450Xy 5 = Xg) " + (X = 2% )" +10(Xy; 4 — X4i)4]
=)
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