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Abstract 

 

        In this work, we study new system with a rich structure (the Shimizu-

Morioka system), which is exhibiting the Lorenz-like dynamics.                    

)1(...0,

xzz

y)z1(xy

yx

2















 

Where the dot denotes .
dt

d
 the system obtained a Hopf bifurcation 

(Supercritical and subcritical) for some values of . For the analysis we use 

the center manifold and normal form theorem. A computer algebra system 

using Maple (version 9) was used to derive all the formulas and verifying the 

results presented in this work [Char, David]. 

 

Introduction 
     The Shimizu-Morioka mode was considered in which complex behavior of 

trajectories has been discovered [Shimizu] by means of computer simulation. 

This equations were put forward in [Shimizu] as a model for studying the 

dynamics of the Lorenz system for large Rayleigh number. A detailed 

exposition of the plethora of bifurcational phenomena in that system can be 

found in (Shilinikov 1989, 1991).It was shown in (Sil’nikov 1993, 1991) that 

there are two types of Lorenz-like attractors in this model. The first is an 

orientable Lorenz-like attractor and the second is non orientable containing a 

countable set of saddle periodic orbits with negative multipliers. 

         Basically there are two ways of investigating periodic solutions of more 

than two coupled ODE. One is to use the fixed-point theorem to establish the 

existence, but not the stability of periodic solutions in the large. The other 

method is to investigate the bifurcation of an isolated equilibrium point, as 
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some parameter changes, into an equilibrium point surrounded by a small 

periodic orbit. The obvious parameter here is . This method can demonstrate 

the stability, as well as the existence, of a periodic solution in the small. This 

Hopf bifurcation can go in two ways. A stabile equilibrium point can go to an 

unstable equilibrium point surrounded by a small stable periodic orbit. Or an 

unstable equilibrium point can go to a stable equilibrium point surrounded by 

a small unstable periodic orbit. In this work one use Hopf bifurcation theorem 

for locating the limit cycles of Shimizu-Morioka system. We have shown that 

system (1) possesses a stable limit cycle for some value of  and unstable limit 

cycle for others value of . Of course it is important to give an analytical proof 

for this result. A detailed analysis of the Hopf bifurcation, using the methods 

of local bifurcation theory, especially the center manifold and normal form 

theorem. 

      This work is organized as follows: In section 2, we introduce some 

concepts of background. In the succeeding section, the stability of the 

equilibrium points of this model was analyzed. The Hopf bifurcation for the 

Shimizu-Morioka system was studied in section 4. In section 5 we study the 

spatial cases for occurring the limit cycle. The conclusions are finally made. 

 

Some Concepts of background 
       The term bifurcation was originally used by poincare to describe the 

“splitting”equilibrium (equilibrium) solutions in a family of differential 

equations.If   

)2(...,;)( kn RRxxfx  
  

Is a system of differential equations depending on the k-dimensional 

parameter   then the equilibrium solutions of (2) are given by the solutions of 

the equation 0)( xf . As  varies, the implicit function theorem implies that 

these equilibria are described by smooth functions of  away from those 

points at which the Jacobian derivative of )(xf  with respect to x,  ,xx fD  has a 

zero eigenvalue, the grave of each of these functions is a branch of equilibria 

of (2). At an equilibrium ),( 00 x  where ,xx fD has a zero eigenvalue, several 

branches of equilibria may com together, and one says that ),( 00 x  is a point 

of bifurcation. 

We have the following important theorems 

Theorem (1): (Ronald, 1998) 
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     The equilibrium point E is asymptotically stable if all the eigenvalues of 

)(EDf  have negative real parts. 

Theorem (2): (Ronald, 1998) 
     The equilibrium point E is unstable if at least one of the eigenvalues of 

)(EDf  has positive real part. 

Theorem (3) :( Rama Mohana, 1980) 

      A necessary and sufficient condition for the negativity of the real parts of 

all the roots of the polynomial     
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With real coefficients is the positivity of all the principal diagonals of the 
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     It should be noted that the principal diagonal of the Hurwitz matrix nH  

exhibits the coefficients of the polynomial )(p  in the order of their numbers 

from natoa1 , denote the principal diagonal minors of the Hurwitz matrix by 

                        ).det(,...........,
1

,
23

1

211 nn HD
aa

a
DaD   

If n =3, then the Hurwitz conditions reduce to 

                       0aaaand,0a,0a,0a 321321    

The center manifold theorem reduces the original system to a center manifold 

which may have smaller dimensions than the original system. 

Theorem (4) :(Center Manifold Theorem for Flows) (Guckenheimer & 

Holmes, 2002) 

     Let f be a 
rC vector field on

nR vanishing at the origin ( 0)0( f ) and 

let )0(DfA  . Divide the spectrum of A in to three parts, ucs  ,,  with 
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Let the (generalized) eignspaces of ucs and  ,,  be ucs EandEE ,, , 

respectively. Then there exist 
rC stable and unstable invariant manifolds 

us WandW tangent to
us EandE at 0 and a 1rC center manifold 

cW tangent 

to cE at 0. The manifolds cus WandWW ,,  are invariant for the flow of f .The 

stable and unstable manifolds are unique, but 
cW need not be. 

     The center manifold theorem implies that the bifurcating system is locally 

topologically equivalent to                    
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     At the bifurcating point. We now tackle the problem of computing the 

“reduced” vector field f
~

. For simplicity, and because it is the most interesting 

case physically, we assume that the unstable manifold is empty and that the 

linear part of the bifurcating system is in block diagonal form: 

  
)4(...),(;),(

),(

mn RRyxyxgCyy

yxfBxx








 

     Where B and C are mmandnn   matrices whose eigenvalues have, 

respectively, zero real pars and negative real parts, and f and g  vanish, along 

with there first partial derivatives, at the origin. Since the center manifold is 

tangent to cE (the 0y  space) we can represent it as a (local) graph                   

)5(...0)0()0(;)}(/),{(  Dhhxhyyxwc  

     Where mRUh :  is defined on some neighborhood nRU   of the origin, 

we now consider the projection of the vector field on cEontoxhy )( : 

)6(...)).(,( xhxfBxx   

Since )x(h  is tangent to 0y  , the solutions of equation (6) provided a good 

approximation of the flow of )~(
~~ xfx   restricted to cw . In fact we have 

Theorem (5): (Carr, 1981)  

      If the origin  0x  of equation (6) is locally asymptotically stable 

(respectively unstable) then the origin of equation (4) is also locally 

asymptotically stable (respectively unstable). 
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        Now, one can show how )x(h  can be calculated or at least approximated. 

Substituting )x(hy 
 
in the second component of equation (4) and using the 

chain rule, the followings are obtained: 
))(,()())](,()[()( xhxgxhCxhxfBxxDhxxDhy    

     Or      
)7(....0))(,()())](,()[())((  xhxgxhCxhxfBxxDhxhN  

With boundary conditions 0)0()0(  Dhh .This (partial)differential equation 

for )(xh
 
can not of course, be solved exactly in most cases, but its solution can 

be approximated arbitrarily close as a Taylor series at x = 0, in most cases of 

interest, an approximation of degree two or three suffices. 

Theorem (6): (Guckenheimer & Holmes, 2002) 

       If a function )(x  with 0)0()0(   D  can be found such that 

)())((


 xOxN  for some 1  as 0x then it follows that 

0)()()(  xasxOxxh


 . 

     Thus according to the above theorem one can approximate the center 

manifold to any degree of approximation by solving the equation (7) with the 

same degree of approximation. 

      One of the basic tools in the study of dynamic behavior of system 

governed by non linear differential equations near a bifurcation point is the 

theory of normal forms. The fundamental idea of the method of normal forms 

is to employ successive coordinate transformations to systematically construct 

a form of the original differential equations to be as a simple as possible. The 

normal form theory is usually applied together with the center manifold 

theorem [Yu]. 

      Guckenheimer and Holmes have explicitly shown that on the basis of the 

normal form theorem, one finds a non linear coordinate transformation which 

transforms every system with the structure 
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In to the system 
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This is expressed in polar coordinates as:                                  
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      It can be seen that the sign of “a” determine the stability of the equilibrium 

point at the Hopf bifurcation point. 

      Guckenheimer and Holmes carried out the procedure for calculating the 

stability coefficient “a” and gave the formula: 
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  

Where xyf  denotes )0,0)((
2

yx

f




, etc. and g,f  are the functions containing the non 

linear terms of equation (8). 

Thomas [1996] determines the formula for calculating the coefficient “b”:    
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Stability analysis of the equilibrium points 
       The Shimizu-Morioka system will be investigated by the following three 

non linear differential equations: 
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Where , are the positive real parameters of the system. 

Proposition 1:  

        If 0  the system (1) has three isolated equilibrium points 

),1,0,(A),0,0,0(O 1   and )1,0,(2 A  and fore  0  it has only one isolated 

equilibrium point .)0,0,0(O  

Proof: 
Solving the system                                 

0
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The system (13) leads to 

                                        
0

0)1(

2 



xz

zx


 

Which yields 0,0,0  zyx x=0, where 0  and fore 0 , 

.1,0,  zyx   
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Therefore, the system (1) has only one equilibrium point )0,0,0(O for 0  

but for 0  has three isolated equilibrium points 

.)1,0,(A),1,0,(A),0,0,0(O 21   

Proposition 2:  

     The equilibrium point )0,0,0(O is unstable for all .R  

Proof:   

The Jacobian matrix of system (1) at )0,0,0(O is: 
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Then the eigenvalues of 0J  are: .
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  is positive for every R  then )0,0,0(O is unstable by 

theorem (2) (see the figure).  

Next, consider the stability of system (1) at .0for.)1,0,(A),1,0,(A 21   

Because the system is invariant under the transformation ),,(),,( zyxzyx  , 

one only needs to consider the stability of system (1) at ).1,0,(1 A  

Under the linear transformations ),,(),,( 111 zyxzyx   
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The system (1) becomes: 
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Hence, one has to consider the stability of system (14) at .)0,0,0(O  

The Jacobian matrix for system (14) at the point )0,0,0(O is: 
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With characteristic equation:  

)15(...02)( 23    

Then, for Routh-Hurwitz condition [Rama], this equation has all roots with 

negative real parts if and only if                                           

  
)16(...02

0,0

2 






 

Proposition 3: 

      The equilibrium point )1,0,(1 A  is asymptotically stable if and only if 






22 
 o   .)2,0(where  

Proof:  

 Suppose )1,0,(1 A  is asymptotically stable, then equation (15) has no roots 

with positive real parts. Since ,02))(det( 1   forAJ then equation (15) also 

has no zero roots for .0  

Comparing the coefficients of equation 023  DKT   and equation (15) 
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Then equation (15) has all roots with negative real parts for 

.0,
2 2

0 


 



 , therefore the condition (16) holds, it follows that  






22 
  .)2,0(where  

Conversely, suppose 
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22 
 o  ),2,0(where it is easy to see that the 

condition (16) holds, this means that the equation (15) has all roots with 
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negative real parts, and the theorem (1) guarantees that the equilibrium point 

)1,0,(1 A  is a asymptotically stable (see the figure).  

Proposition 4:  

     The equilibrium point )1,0,(A1   is unstable if and only if  





22 
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where .)2,0(  

Proof: 

 Let the equilibrium point )1,0,(1 A  be unstable, then not all roots of 

equation (15) have negative real parts, this means that the equation (15) dose 

not satisfy the condition (16). 

Now if ).2,0(,
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 o  where ,)2,0( we get 

,022  this is equivalent to the equation (15) which dose not satisfy the 

condition (16), and then there exists at least eigenvalue with non negative real 

part. 

  Since 
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 then the equation (15) has no eigenvalues with zero real parts. 

From above one can obtain, equation (15) has at least one eigenvalue with 

positive real part, theorem (2) guarantees that the equilibrium 

point )1,0,(1 A is unstable (see the figure).  

 

Hopf bifurcation analysis 
      In the following we will prove that the system (1) displays a Hopf 

bifurcation at the equilibrium point )1,0,(A1  . 

Proposition 5:  

      The equation (15) has purely imaginary roots if and only if 
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Proof:  

   Since equation (15) has pure imaginary roots if and only if 0 DTK , 

Thomas [1995]. From equation (17) yields: 
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      So the first condition for a Hopf bifurcation is fulfilled. Nevertheless, for 

applying the hopf bifurcation theorem a second condition must be fulfilled, i.e. 
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Where ))(Re( 3,2   denotes the real part of   which is a smooth function of . 

Proposition 6:  

      The derivative of the real part of complex solution of equation (15) with 

respect to   at )2,0(,
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Proof: 

 We calculate d without solving (15) explicitly. Let 
112 ivu    1123 ivu    and 

1  be eigenvalues. As )A(J 1  has two non-zero pure imaginary eigenvalues 

when 0 , it follows that for   near 0  two of the eigenvalues will be 

complex conjugates. 
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Equating coefficients with equation (15) result is 
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Implicitly differentiating )(11 uu   the following is obtained: 
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Thus, also the second condition for a Hopf bifurcation is fulfilled and system 

(14) displays a Hopf bifurcation at the point .A1  

        We now analyses the Hopf bifurcation of system (1) in detail.  At first we 

give an expression for the flow in the center manifold cW at the bifurcation 

point which is two-dimensional ( cW has some dimension as the eignspase of 

the conjugate complex eigenvalue with zero real part). 

Using the eigenvectors as the basis for a new coordinate system equation, with          
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System (14) is transformed into the diagonals system: 
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Where an over bar denotes complex conjugation. 

     According to the center manifold theorem the center manifold cW is 

tangent to eigenspace 
cE = span {v, w}. Therefore 

cW an be approximated 

for the two variables v, w by equation                                 
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It follows together with system (21) and equation (22), after comparison of the 

coefficients for 
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Substitute the value of 321 aanda,a  in equation (21) to get:         
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After inserting )w,v(hu   into the equation for v, w in equation (20), one 

obtains an approximated expression for the flow in the center manifold: 
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        In a second step we simplify the expression for the flow in the center 

manifold by removing all of the redundant non linear terms. The simplest 

expression is the normal form which still contains all information about the 

qualitative behavior of the system at the bifurcation point. With a further 

linear coordinate transformation system (23) can be rewritten into a form 

which only contains real numbers giving the so-called standard form. 
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Applying the equations (11), (12) to expression (25) which has the same as 

structure equation (8), one obtains: 

(26)...
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Remark: 

     Maple program tell us )2,0(0b  .Since 00  band  it can be 

seen from (10) that there is an equilibrium value *rr  where the direction of 

rotation changes. 

Special cases 
        In this section we consider the different values for the constant. By 

changing instantaneously the dissociation constant  the response of the 

system is different. 

For 1 , we obtain: 10  , the coefficients which describe the limit cycle: 

,03.0 a  

.01,01.0,0766666667.1  db  

Since ,0a  then the equilibrium point 1A is stable and system (1) has stable 

limit cycle with periodic .2P  

Since ,00 
d

a
andd then the Hopf bifurcation is supercritical and the 

bifurcating periodic solutions exist for 1 . 

For  37.1  we obtain: 092044.00  , the coefficients which describe the limit 

cycle: 
.03508560959.0,050109849904.0,097018622.24,040662173615.0  dba

Since ,0  then the equilibrium point 1A is unstable and system (1) has 

unstable limit cycle with periodic .700342743.5 P  

Since ,00 
d

a
andd then the Hopf bifurcation is subritical and the 

bifurcating periodic solutions exist for 092044.0 . 
 

Conclusions 
         In this work we analyse the Shimizu-Morioka system. We discuss the 

local stability and the existence of the Hopf bifurcation; we study the direction 

and stability of the bifurcating periodic solutions. It was shown that a limit 

cycle exists and it is characterized by the coefficients from (18), (19) and (25), 

for different values of the equilibrium constant which depends on the value 

of  , in section 4 we obtain stable or unstable limit cycle, via a Hopf 

bifurcation.  
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Figure: Equilibrium bifurcation diagrams of Shimizu-Morioka system 

dependence on  of: (a) x, y; (b) z. 

The solid curves depict stable behaviour and the doted curves depict unstable 

behavior. 
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 Hopfبتشعيب   Shimizu-Morioka نظام يةتحليل إستقرار

 
 رزكار حاج صالح

 قسم الرياضيات، كلية العلوم ـ جامعة كوية
 تاريخ القبول:2/4/2009 , تاريخ الاستلام:11/12/2007

 
 الخلاصة

 
يعرض  الذي  (Shimizu-Morioka) نظام في هذا البحث تم دراسة نظام جديد مع تركيب غنى هو       

 شبه لورنز الدينميكية.
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. استخدمت  لبعض القيم  Supercritical and subcritical)من النظام حصلنا على تفرع هوبف )          

واستخدم (. normal form) و( center manifoldنظرية )و بالأخص  في التحليل نظرية التفرع المحليّة طريقة
     هذه البحث. فيقدمة النتائج الم ولإثباتجمع الصيغ  لاشتقاق ( Maple)للحاسبة  الجبرينظام 

 

 


