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Abstract
In this work, we study new system with a rich structure (the Shimizu-

Morioka system), which is exhibiting the Lorenz-like dynamics.
X=y

y=xQ1-2)-By
z:—ocz+x2
a,p>0 ..(D

Where the dot denotes % the system obtained a Hopf bifurcation

(Supercritical and subcritical) for some values of . For the analysis we use
the center manifold and normal form theorem. A computer algebra system
using Maple (version 9) was used to derive all the formulas and verifying the
results presented in this work [Char, David].

Introduction

The Shimizu-Morioka mode was considered in which complex behavior of
trajectories has been discovered [Shimizu] by means of computer simulation.
This equations were put forward in [Shimizu] as a model for studying the
dynamics of the Lorenz system for large Rayleigh number. A detailed
exposition of the plethora of bifurcational phenomena in that system can be
found in (Shilinikov 1989, 1991).It was shown in (Sil’nikov 1993, 1991) that
there are two types of Lorenz-like attractors in this model. The first is an
orientable Lorenz-like attractor and the second is non orientable containing a
countable set of saddle periodic orbits with negative multipliers.

Basically there are two ways of investigating periodic solutions of more
than two coupled ODE. One is to use the fixed-point theorem to establish the
existence, but not the stability of periodic solutions in the large. The other
method is to investigate the bifurcation of an isolated equilibrium point, as
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some parameter changes, into an equilibrium point surrounded by a small
periodic orbit. The obvious parameter here isa.. This method can demonstrate
the stability, as well as the existence, of a periodic solution in the small. This
Hopf bifurcation can go in two ways. A stabile equilibrium point can go to an
unstable equilibrium point surrounded by a small stable periodic orbit. Or an
unstable equilibrium point can go to a stable equilibrium point surrounded by
a small unstable periodic orbit. In this work one use Hopf bifurcation theorem
for locating the limit cycles of Shimizu-Morioka system. We have shown that
system (1) possesses a stable limit cycle for some value of gand unstable limit
cycle for others value of 3. Of course it is important to give an analytical proof
for this result. A detailed analysis of the Hopf bifurcation, using the methods
of local bifurcation theory, especially the center manifold and normal form
theorem.

This work is organized as follows: In section 2, we introduce some
concepts of background. In the succeeding section, the stability of the
equilibrium points of this model was analyzed. The Hopf bifurcation for the
Shimizu-Morioka system was studied in section 4. In section 5 we study the
spatial cases for occurring the limit cycle. The conclusions are finally made.

Some Concepts of background

The term bifurcation was originally used by poincare to describe the
“splitting”’equilibrium (equilibrium) solutions in a family of differential
equations.If
x=f,(x); xeR",ue R¥ ..(2)
Is a system of differential equations depending on the k-dimensional
parameter u then the equilibrium solutions of (2) are given by the solutions of

the equation f,(x)=0. As u varies, the implicit function theorem implies that
these equilibria are described by smooth functions of pu away from those
points at which the Jacobian derivative of f, (x) with respectto x, D,f,, hasa

zero eigenvalue, the grave of each of these functions is a branch of equilibria
of (2). At an equilibrium (x,,«,) where D, f,, has a zero eigenvalue, several
branches of equilibria may com together, and one says that (x,, «,) IS a point
of bifurcation.

We have the following important theorems

Theorem (1): (Ronald, 1998)
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The equilibrium point E is asymptotically stable if all the eigenvalues of
Df (E) have negative real parts.
Theorem (2): (Ronald, 1998)

The equilibrium point E is unstable if at least one of the eigenvalues of
Df (E) has positive real part.
Theorem (3) :( Rama Mohana, 1980)

A necessary and sufficient condition for the negativity of the real parts of
all the roots of the polynomial

p()=2"+a Al +a,A" " +...+a _A+a

With real coefficients is the positivity of all the principal diagonals of the
minors of the Hurwitz matrix

a, 1 0 0 0 0 0 ... 0

a a a 1 0 0 0 ... 0
H — a 4, a; a, q 1 0 ... 0

i O 0 O O O O o0 ... a,

It should be noted that the principal diagonal of the Hurwitz matrix Hp
exhibits the coefficients of the polynomial p(Z) in the order of their numbers
froma, to a_, denote the principal diagonal minors of the Hurwitz matrix by
a 1
a, a,
If n =3, then the Hurwitz conditions reduce to

8 >0,8)>0,a3>0,and aay-az>0
The center manifold theorem reduces the original system to a center manifold
which may have smaller dimensions than the original system.
Theorem (4) :(Center Manifold Theorem for Flows) (Guckenheimer &
Holmes, 2002)

Let fbe a C"vector field on R"vanishing at the origin (f(0)=0) and
let A= Df (0). Divide the spectrum of A in to three parts, 05,0.,0, with

D, =|a|,D, = R ,D, =det(H,).
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<0 if leog,
Rel:{=0 if Aeog,
>0 if Aeoy.

Let the (generalized) eignspaces of o,,0.,and o, beE* E® and E‘,
respectively. Then there exist C'stable and unstable invariant manifolds

W*and W"tangentto E*and E" at 0 and a C"*center manifold W ° tangent
toE“at 0. The manifolds W*,W",and W€ are invariant for the flow of f.The

stable and unstable manifolds are unique, but W © need not be.
The center manifold theorem implies that the bifurcating system is locally

y=-Y (X ¥.7)eW",w, w) (3
3

At the bifurcating point. We now tackle the problem of computing the
“reduced” vector field f . For simplicity, and because it is the most interesting
case physically, we assume that the unstable manifold is empty and that the
linear part of the bifurcating system is in block diagonal form:

X=Bx+ f(Xx,y)
y=Cy+g(xy) ; (X,y) e R"xR" ~(4)

Where B and C are nxnand mxm matrices whose eigenvalues have,
respectively, zero real pars and negative real parts, and f and § vanish, along
with there first partial derivatives, at the origin. Since the center manifold is
tangent to E°(the y=0 space) we can represent it as a (local) graph
w* ={(x,¥)/y =h(x)}; h(0) = Dh(0) =0 ... (5)

Where h:U —R"™ is defined on some neighborhood U = R" of the origin,
we now consider the projection of the vector field ony = h(x) onto E°:

x = Bx + f (x,h(x)). ...(6)
Since h(x) is tangent toy =0, the solutions of equation (6) provided a good
approximation of the flow of X = f (X) restricted tow. In fact we have
Theorem (5): (Carr, 1981)

If the origin Xx=0 of equation (6) is locally asymptotically stable
(respectively unstable) then the origin of equation (4) is also locally
asymptotically stable (respectively unstable).
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Now, one can show how h(x) can be calculated or at least approximated.
Substituting y = h(x) in the second component of equation (4) and using the

chain rule, the followings are obtained:
y = Dh(x)x =Dh(X)[Bx+ f (x,h(x))]=Ch(x) + g(x,h(x))
Or

N (h(x)) = Dh(x)[Bx+ f (x,h(x))]-Ch(x) —g(x,h(x))=0. A7)
With boundary conditions h(0) = Dh(0) =0.This (partial)differential equation
for h(x) can not of course, be solved exactly in most cases, but its solution can
be approximated arbitrarily close as a Taylor series at x = 0, in most cases of
interest, an approximation of degree two or three suffices.
Theorem (6): (Guckenheimer & Holmes, 2002)

If a function ¢(x) with ¢0)=Dg0)=0 can be found such that

N(#(x)) =0(x")for some p>1 as |q—o0then it follows that
h(x) = ¢(x) +O(|x|") as [ — 0.

Thus according to the above theorem one can approximate the center
manifold to any degree of approximation by solving the equation (7) with the
same degree of approximation.

One of the basic tools in the study of dynamic behavior of system
governed by non linear differential equations near a bifurcation point is the
theory of normal forms. The fundamental idea of the method of normal forms
Is to employ successive coordinate transformations to systematically construct
a form of the original differential equations to be as a simple as possible. The
normal form theory is usually applied together with the center manifold
theorem [Yu].

Guckenheimer and Holmes have explicitly shown that on the basis of the
normal form theorem, one finds a non linear coordinate transformation which
transforms every system with the structure

X=-wYy+O(x]]y|)

_ .. (8)
y=awx+0(X,|y)
In to the system
U=—ov+(@u—bv)(u?+v2)+0(4) o)
V=wu+(@v+bu)u?+v2) +0(4)
This is expressed in polar coordinates as:
f=ar’ ... (10)
0=w+br2
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It can be seen that the sign of “a” determine the stability of the equilibrium
point at the Hopf bifurcation point.

Guckenheimer and Holmes carried out the procedure for calculating the
stability coefficient “a” and gave the formula:

1 1
a= E[fxxx + fxyy + gxxy + gyyy + (;)( fxy(fxx + fyy)
_gxy(gxx+gyy)_ fxxgxx+ fyygyy)] (11)

o f
oxoy
linear terms of equation (8).

Thomas [1996] determines the formula for calculating the coefficient “b”.

Where f,, denotes(C )00, etc. and f,g are the functions containing the non

1 1
b ZE[gxxx + gxyy - fxxy - fyyy +£[5( fxxgxy + fxygyy - fxx fyy - fy?/

- gxxgyy - gfx) _2( fxi + fx?l + g)fy + gjy) + fyygxy + fxygxx]] (12)

Stability analysis of the equilibrium points
The Shimizu-Morioka system will be investigated by the following three
non linear differential equations:
X=Yy
y=xA-2)-py
2=-az+X
Where o, are the positive real parameters of the system.
Proposition 1:
If o>0 the system (1) has three isolated equilibrium points
0(0,0,0), A;(v/a,01), and A,(—J«,0) and fore a <0 it has only one isolated
equilibrium point 0(0,0,0).

Proof:

Solving the system

y=0

xXAL—z)—py=0 ...(13)

—az+x*>=0
The system (13) leads to
X(1-2z)=0
—az+x* =0
Which vyields x=0,y=0,z=0x=0, where «o<0 and forea>0,
x=FJa,y=0,z=1,
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Therefore, the system (1) has only one equilibrium point O(0,0,0) for a <0
but for a>0 has three isolated equilibrium points
0(0,0,0), A;(Va,0.0), Ay (—/a,0).
Proposition 2:

The equilibrium point O(0,0,0) is unstable for all « eR.

Proof:
The Jacobian matrix of system (1) at 0(0,0,0) is:
0 1 0
Jo=|1 -8 0
0 0 -«

The characteristic polynomial of Jy is 2 +(a+B) 2 +(af-1)1—a =0.
Then the eigenvalues of J, are: 4 =-¢, ﬂm:_pi— V2ﬁ2+4. It is clear that

P ARV i \/2/32“‘ is positive for every aeR then 0O(0,0,0) is unstable by

theorem (2) (see the figure).

Next, consider the stability of system (1) at A;(Va,0.1), A,(—/a,0). for a.> 0.
Because the system is invariant under the transformation (x, y, z) - (-x,~v, ),
one only needs to consider the stability of system (1) at A, (vV&,0).

Under the linear transformations  (x,y,z) = (x,,Y,,2,)

X=X +\/E
Y=Y,
z=12,+1
The system (1) becomes:
X =Y
Vi = —( +Va)z, — By, .. (14)
2, = —az, + 2Jax + x?

Hence, one has to consider the stability of system (14) at 0(0,0,0).
The Jacobian matrix for system (14) at the point 0(0,0,0) is:

0 1 0
JA)=| 0 -8 —a
2Ja 0 -
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With characteristic equation:
A+ (a+ PP +axfl+2a =0 ...(15)
Then, for Routh-Hurwitz condition [Rama], this equation has all roots with
negative real parts if and only if

a>0, >0

L2 +aff—2>0 ...(16)
Proposition 3:

The equilibrium point A (V&,01) is asymptotically stable if and only if

a>a, = 2_,8182 where 3 € (0,/2).

Proof:

Suppose A(Va,0) is asymptotically stable, then equation (15) has no roots
with positive real parts. Since det(J(A)) = —2a for a > 0, then equation (15) also
has no zero roots for « > 0.

Comparing the coefficients of equation 2’ -T# -KA1-D =0 and equation (15)
to obtain

T =—(a+ )
= —ap
=2
and TK +D = a(B% +af —2) .. A7)

2
Since TK+D=0 ifandonly if a =0or a = Z_ﬂ'B ,3# 0. then equation (15) has

— 2 -
no pure imaginary roots fora # o, = 2 ﬁﬂ ,3#0.. From above we can obtain

2
that, equation (15) has no roots with zero real parts whena # «, = 2 _ﬂﬂ B #0..

Then equation (15) has all roots with negative real parts for

a¢ao=2_ﬂﬂ B #0., therefore the condition (16) holds, it follows that

a> Z_ﬂﬂz where 3 € (0,/2).

2
Conversely, suppose a > a, = Z_ﬂﬂ where 3 e (0,+/2), it is easy to see that the

condition (16) holds, this means that the equation (15) has all roots with
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negative real parts, and the theorem (1) guarantees that the equilibrium point
A (Ve ,00) is a asymptotically stable (see the figure).
Proposition 4:

2
The equilibrium point A; (v/a.,0,1) is unstable if and only if « <a, = Z_ﬂﬂ
where S e (0,42).
Proof:
Let the equilibrium point A (V&,01) be unstable, then not all roots of

equation (15) have negative real parts, this means that the equation (15) dose
not satisfy the condition (16).

Now if ﬁ2+a,6’—2<0:>a<2_ﬂﬁ,ﬂe(o,\/E).Then its shown that

if A (Va,01)be unstable then a <, = 2-p° where S < (0,/2).

B
2 g

Conversely, suppose a<a,= where Be(0,2),we  get

B +af—2<0,this is equivalent to the equation (15) which dose not satisfy the
condition (16), and then there exists at least eigenvalue with non negative real
part.

Since

det(J(A))=2a#0and TK+D=a(f*+af-2)#0 fora<a, = Z_ﬂﬂz,ﬂe(o,ﬁ),

then the equation (15) has no eigenvalues with zero real parts.

From above one can obtain, equation (15) has at least one eigenvalue with
positive real part, theorem (2) guarantees that the equilibrium
point A, (v,0,0)is unstable (see the figure).

Hopf bifurcation analysis
In the following we will prove that the system (1) displays a Hopf

bifurcation at the equilibrium point A;(+/a,0).

Proposition 5:
The equation (15) has purely imaginary roots if and only if

2
a=a, = Z_ﬂﬂ . B <(0,4/2).In this case the solutions of equation (15) are
A :_Tf, 2,5 =Foi where o =4/2-p%. ... (18)
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Proof:
Since equation (15) has pure imaginary roots if and only ifTK+D =0,
Thomas [1995]. From equation (17) yields:

2
TK+D=0if and only if a:OOra:aO:Z_ﬂﬁ , Be(0,42) (Butif =0 then

equation (15) becomes A3 +BA? = 0 and it has no any complex eigenvalues).
N2

To find eigenvalues ata:(xozz b  Be(0,42), let Loz =Fio be

complex solutions and 4, the real solution of equation (15) then,

bt A =TrOA) = DY

B

Since 1,1,4, = Det(J(A))) :_Tfa)z =-2 (Z_ﬂﬁz) = w=+2-p°.

So the first condition for a Hopf bifurcation is fulfilled. Nevertheless, for
applying the hopf bifurcation theorem a second condition must be fulfilled, i.e.
9 (Re(,,(a)))  =d =0,
da ’

a=a,

Where Re(),3(a)) denotes the real part of & which is a smooth function of o

Proposition 6:
The derivative of the real part of complex solution of equation (15) with

2
respect to « ata=a0=2_ﬁﬂ , Be(0,+/2)is non zero and equal

— 2 2
t 2=P . This means that di(Re(g2 (@) =—d=—2°F
a y a

0 2 =———— 0.
2(B° —-4B-2) 2p°-4p-2)
Proof:
We calculate d without solving (15) explicitly. Let j=y:, A, =4, =u, —iv, and
A, be eigenvalues. As J(A;) has two non-zero pure imaginary eigenvalues

wheno =0, , it follows that for o near ay two of the eigenvalues will be
complex conjugates.

A, 2, and A, Satisfy

X = (U + 4 )X + (A4 +2u, 4 )x-|2'2, =0 [Stephen].
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Equating coefficients with equation (15) result is

—(a+p)=2u,+4,

—2a=|A,|" 4
and af =|4,|" +2u. 4,
then 2—05—2u1(oc+ﬁ+2ul) =af
a+[+2u,

Implicitly differentiating u =u () the following is obtained:
2(a+ B +2up) — 201+ 204)
(a+P+2u;)?
hen . @+ B+2u)(Bla+ B +2u) - 2) +20)
Y —(da+2(a+ f+48u)(a+ B+2u,)°)

—2(ac+B+4u)uy =p

At o =g, where Re(1,) = u; =0, after some calculations we obtain:

U (e,) =d = f‘ﬁz .
2(B°—4p-2)
Since B < (0,4/2), we have
0y(ctg) =d < 0, then - Re(hp s(@))))  =d= 2= _,,
o " Tlame 2(B% -4p-2)

...(19)

Thus, also the second condition for a Hopf bifurcation is fulfilled and system

(14) displays a Hopf bifurcation at the point A;.

We now analyses the Hopf bifurcation of system (1) in detail. At first we
give an expression for the flow in the center manifold W © at the bifurcation

point which is two-dimensional (W © has some dimension as the eignspase of

the conjugate complex eigenvalue with zero real part).

Using the eigenvectors as the basis for a new coordinate system equation, with

x] o F e o
X, |[=M| v Where M= -2 -1 -1
+i —i

X, W -2,/a, prio foio
i o o

System (14) is transformed into the diagonals system:
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ul [-2/p 0 0Tul |hu®+hyv?+hw?+huv+huw+hyvw

Vi=| 0 —iw 0 |V |+ ku®+kV+kw +Kk,uv+kuw+ kvw .. (20)
W 0 0 io|w| |ku?+kyv?+kW +Kkouv+kuw+kyvw
With

] 387w _a-o’f-iop® _ Ploti(fie’-4fa,) | _20"f-a)

' AT Ao’ Ja, ’ Aw,/a, Y Ae? a,

2B\a,d, + B%d, —Ja,d, +@*d, +impd, —Ja,d, +@*d, —iepd,
k, = K, = k= ,
A Aw® . a, Aw® .\ a,

_ —B%ody -i(200dy ~Be?dy +2B,fagds) . —B2od, +i(20gdy —Bw’dy + 2B ogds)

K - ,
) Aoy ° Aofag
2
kg = 2ood3-0%2) A 2.4 28420,
szq/ao

d, =P +io(B+a,).d, :—%(ﬂa)2+2ao)+%iﬂ2a), dy =\/30+%i,&o\/;0.
Where an over bar denotes complex conjugation.
According to the center manifold theorem the center manifold W ©is

tangent to eigenspace E°= span {v, w}. Therefore W °an be approximated
for the two variables v, w by equation

u :h(v,w):a1v2 +a2vw+a3w2 +O(3) ...(21)
Where O (3) denotes terms of order ve,viw,vw’ and w®. with

i=My Ny (22)
o oW
It follows together with system (21) and equation (22), after comparison of the
coefficients for v2,vw and w? obtains:
a = h, h, and a, h,

2/ﬁ—2ia)’a2_2/ﬂ’ S 2/B+2i0

Substitute the wvalue of a;,a, anda; in equation (21) to get:

u=h(v,w) = h, — v+ h, VW h, .
2/ f-2iw 21 p 2/ f+2iw

After inserting u=h(v,w) into the equation for v, w in equation (20), one

obtains an approximated expression for the flow in the center manifold:

w? +0(3) (23)
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{\‘/} ~ {— ia)\/} .\ k,v2 + KW + kovw+ (K,V + kw)u (24)
Wl | iew || kv + koW + kvw (K + K wu | '

In a second step we simplify the expression for the flow in the center
manifold by removing all of the redundant non linear terms. The simplest
expression is the normal form which still contains all information about the
qualitative behavior of the system at the bifurcation point. With a further
linear coordinate transformation system (23) can be rewritten into a form
which only contains real numbers giving the so-called standard form.

. 1 —i
wh NRFREAN
w V4 1 1
It follows
g‘=-wz+1(-k3-123—k2—|22+k6+126);(2+%(k3+123+k2+|22+k6+126)42

+|(k —k,+k,) ¢ 7

1 [(k P 'SR L S RS ) L S S
215 —2iw 218 218+ 2iw 21— 2iw 215 2/ﬂ+2la)

L A S SR S WU L S N
2 215—2i 218 21p+2iw 21— 2iw 218 2/,B+2|

+1[(k +kg)( —3h, + h, + h, )+ (ks +k, )( h, + h,
2 212w 218 21B+2iw 21820 218 2/,6’+2|

h, h, _h Ve (k4K h, b hz.
2/8-2io 218 2/B+2iw 218-2iw 2/B 2/B+2iw

¢

Ny

N’

Nx°

+— [(k +kg)(

W= OJC-—(k3 K3 + kg — kg — kg +Kg )y _E( kg +kg —ky + kg — kg +kg) 2
+(-kg—kg+ky +kp) &

i — h h h _ h h h
+—[(kg — K)ot~ —2 )4 (kg —Kg) (ot —2
2 2/p-2i0 2/p 2/p+2io 2/B - 2io 2/5 2/[3+2|co

1 hy by, AL L B
Lo pa 8hyhy + (ks —k
jllks K 2p-20 20p 2pezi0 oz g 2/B+2Iw

P i B2 ha oy e Ny g
ol k)l 2/B—2ico+2/[3+2/B+2ico)+(k5 k4)(2/[3 Jio 21p 2/B+2m)]gx

L gy e he o h T ha o hy oy 3
2 e 2 2o T Y 20 2 2peae )

&

)|k
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Applying the equations (11), (12) to expression (25) which has the same as
structure equation (8), one obtains:
e B*(3B* -58° -1) be B(3p° +85° 764" +82/3% +36)

(B -28° -1)(B* -28" -4) 32~ %)% (B —28° ~1).(B* -2~ 4)
Remark:

Maple program tell us b<0 VB e (0,+/2).Since >0 and b<0 it can be

seen from (10) that there is an equilibrium value r = r” where the direction of
rotation changes.
Special cases

In this section we consider the different values for the constantp. By
changing instantaneously the dissociation constant 3 the response of the
system is different.
For g =1, we obtain: «, =1, the coefficients which describe the limit cycle:
a=-03<0,
b=-1.766666667 <0,d =—0.1<0,w=1>0.
Since a < 0,then the equilibrium point A;is stable and system (1) has stable

limit cycle with periodic P=27 .

..(26)

Since d <0and —g<0,then the Hopf bifurcation is supercritical and the

bifurcating periodic solutions exist fora <1.

For B=1.37 we obtain: o, =0.092044, the coefficients which describe the limit
cycle:

a=0.06621736154> 0,b = —24.97018622 <0,d =-0.01098499045 <0, » = 0.3508560959> 0.
Since « >0, then the equilibrium point A;is unstable and system (1) has

unstable limit cycle with periodic P =5.7003427437c
Since d<0and —§>o,then the Hopf bifurcation is subritical and the

bifurcating periodic solutions exist for « > 0.092044.

Conclusions

In this work we analyse the Shimizu-Morioka system. We discuss the
local stability and the existence of the Hopf bifurcation; we study the direction
and stability of the bifurcating periodic solutions. It was shown that a limit
cycle exists and it is characterized by the coefficients from (18), (19) and (25),
for different values of the equilibrium constant o which depends on the value
of B, in section 4 we obtain stable or unstable limit cycle, via a Hopf
bifurcation.
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Figure: Equilibrium bifurcation diagrams of Shimizu-Morioka system
dependence on a of: (a) x, y; (b) z.
The solid curves depict stable behaviour and the doted curves depict unstable
behavior.
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