On Generalized Some Kind of Contra Homeomorphism Functions and Some relations among Them in Intuitionistic Topological Spaces

Younus J. Yaseen* Suham M. Ali** Amal A.F**
*Department of Mathematics, College of Education - University of Tikrit **Department of Mathematics, College of Science - University of Kirkuk

Accepted: 2011/4/26, Received: 2010/12/12

Abstract

In this paper, we introduce the definition of contra homeomorphism functions, contra k-homeomorphism functions, contra strongly k-homeomorphism functions and contra S^{*}-k- homeomorphism functions in intuitionistic topological spaces where $\mathrm{k}=$ $\{$ semi, α, per , $\beta\}$, and we give propositions to show the relations among them, some counter examples are given for not implications. We give also a diagram to illustrate these relations.

Introduction

The notion of homeomorphism, k- homeomorphism, strong-khomeomorphism and $S^{*}-\mathrm{k}$ - homeomorphism functions in intuitionistic topological spaces where $\mathrm{k}=\{$ semi, α, per , $\beta\}$ was introduced by (Hanna H.Alwan \&Yunis J. Yaseen 2007).

The notion of contra continuity was introduced by (Dontchev, 1996), contra semi continuous function was introduced and investigated by (Dontchev \& Noiri, 1999), so contra pre continuous was introduced by (Jafari, \& Noiri, 2002), and generalized them on intuitionistic topological spaces by (Ali M. Jasem \& Yunis J.Yaseen 2009).

In this paper we define some kinds of contra homeomorphism functions, contra semi- homeomorphism, contra α - homeomorphism , contra pre- homeomorphism, contra β - homeomorphism, contra strongly-semi- homeomorphism, contra strongly α - homeomorphism, contra strongly pre-homeomorphism, contra strongly β - homeomorphism, contra S^{*} - semi- homeomorphism, contra S^{*} - α - homeomorphism, contra S^{*} - prehomeomorphism, contra $S^{*}-\beta$-homeomorphism functions in intuitionistic topological spaces, and we study some relation among them.

Preliminaries

Let X be anon-empty set, an intuitionistic set (briefly IS) A is an object having the form $A=\left\langle x, A_{1}, A_{2}\right\rangle$ where A_{1} and A_{2} are disjoint subset
of X. the set A_{1} is called a member of A, while A_{2} is called non- member of A, an intuitionistic topology (briefly IT) on a non-empty set X, is a family T of IS in X containing $\widetilde{\varnothing}, \widetilde{X}$ and closed under arbitrary unions and finitely intersections. In this case the pair(X, T) is called an intuitionistic topological space (briefly ITS), any IS in T is known as an intuitionistic open set (briefly IOS) in X. The complement of IOS is called intuitionistic closed set (briefly ICS), so the interior and closure of A are denoted by $\operatorname{int}(A)$ and $\operatorname{cl}(A)$ respectively and defined by $\operatorname{Int}(A)=U\left\{G_{i}: G_{i} \in T\right.$ and $G_{i} \subseteq A ;$ where $\left.A=\left\langle x, A_{1}, A_{2}\right\rangle\right\}$ $\operatorname{cl}(A)=\cap\left\{F_{i}: F_{i}\right.$ is ICS in X and $A \subseteq F_{i} ;$ where $\left.A=\left\langle x, A_{1}, A_{2}\right\rangle\right\}$
A set A is called:

1. intuitionistic semi - open set (ISOS, for short) if $\mathrm{A} \subseteq \mathrm{cl}($ int A$)$.
2. intuitionistic α - open set (I $\alpha O S$, for short) if $A \subseteq \operatorname{int}(\operatorname{cl}($ int $A)$) .
3. intuitionistic per - open set (IPOS, for short) if $A \subseteq \operatorname{int}(\mathrm{clA})$.
4. intuitionistic $\beta-$ open set (I $\beta \mathrm{OS}$, for short) if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{clA})$). (Jeon,J.K.,Jun, Y.B.and Park, J.H.2005)

The complement of ISOS, I α OS, IPOS and I β OS in X is called intuitionistic semi-closed set, intuitionistic α-closed set, intuitionistic preclosed set and intuitionistic β-closed set in X (ISCS, I α CS, IPCS and I β CS for short) (Thakur \& Singh, 1998).
Every IOS (ICS) is ISOS, I α OS, IPOS and I β OS (ISCS, I α CS, IPCS and I β CS for short) (Hanna H.Alwan \&Yunis J. Yaseen; 2007).
Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be:

1. An intuitionistic contra continuous (I contra cont., for short) function if the inverse image of each IOS in Y is ICS in X.
2. An intuitionistic contra semi-continuous (I contra semi-cont., for short) function if the inverse image of each IOS in Y is ISCS in X.
3. An intuitionistic contra α-continuous (I contra α-cont., for short) function if the inverse image of each IOS in Y is I α CS in X.
4. An intuitionistic contra pre-continuous (I contra pre-cont., for short) function if the inverse image of each IOS in Y is IPCS in X.
5. An intuitionistic contra β-continuous (I contra β-cont., for short) function if the inverse image of each IOS in Y is $\mathrm{I} \beta \mathrm{CS}$ in X . (Ali M. Jasem \&Yunis J.Yaseen; 2009).

Now we introduce the definition of contra open function and contra homeomorphism function in intuitionistic topological spaces:

Definition 1: Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be an intuitionistic contra open (I contra open, for short) function if the image of each IOS in X is ICS in Y .
Remark: f is contra closed function if the image of each ICS in X is IOS in Y.

Theorem 2: Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a fictive function then the following statement are equivalent:

1. f is contra open .
2. f is contra closed.

Proof: ($1 \rightarrow 2$) Let A be IOS in X then $f(A)$ is ICS in Y since f is I contra open function, then $f\left(A^{c}\right)$ is IOS in Y and A^{c} is ICS in X, i.e : the image of each ICS in X is IOS in Y.Hence f is I contra closed function .
$(2 \rightarrow 1)$ by the same way,we can prove them.
Definition 3: Let (X, T) and (Y, σ) be two ITS's and let $f: X \rightarrow Y$ be a function then f is called I contra homeomorphism if f is bijective function, I contra continuous function and $f^{1} I$ contra continuous function
Theorem 4: Let (X, T) and (Y, σ) be two ITS's then $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is I contra open function iff f^{-1} is I contra continuous function.
Proof: let $\mathrm{f}^{-1}: Y \rightarrow \mathrm{X}$ be contra continuous function then: $\forall \mathrm{A}$ is IOS in X then $\left(\mathrm{f}^{-1}\right)^{-1}(\mathrm{~A})$ is ICS in Y ; i.e $\forall \mathrm{A}$ is ICS in X then $\mathrm{f}(\mathrm{A})$ is ICS in Y. Hence f is I contra open function.
Conversely: let f be I contra open function then: $\forall \mathrm{B}$ is IOS in X then
$f(B)$ is ICS in Y; hencef ${ }^{-1}$ is I contra continuous function since
$\left(f^{-1}\right)^{-1}(B)=f(B)$.
Corollary 5: Let (X, T) and (Y, σ) be two ITS's then $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is I contra homeomorphism function if f is bijective function, I contra continuous function and I contra open function.
proof: By (theorem 4) f^{-1} is I contra continuous function(since f is I contra open function) then by (Definition 3) f is I contra homeomorphism function.

Definition 6: Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then f is said to be :

1. An intuitionistic contra semi-open (I contra semi-open, for short) function if the image of each IOS in X is ISCS in Y.
2. An intuitionistic contra α-open (I contra α-open, for short) function if the image of each IOS in X is I α CS in Y .
3. An intuitionistic contra pre-open (I contra pre-open, for short) function if the image of each IOS in X is IPCS in Y.
4. An intuitionistic contra β-open (I contra β-open, for short) function if the image of each IOS in X is I β CS in Y .
5. An intuitionistic contra semi- closed (I contra semi- closed, for short) function if the image of each ICS in X is ISOS in Y.
6. An intuitionistic contra α-closed (I contra α-closed, for short) function if the image of each ICS in X is I $\alpha \mathrm{OS}$ in Y .
7. An intuitionistic contra pre _closed (I contra pre -closed, for short) function if the image of each ICS in X is IOS in Y.
8. An intuitionistic contra β-closed (I contra β-closed, for short) function if the image of each ICS in X is $\mathrm{I} \beta \mathrm{OS}$ in Y .

Proposition 8: Let (X, T) and (Y, σ) be two ITS's and let $f: X \rightarrow Y$ be function then :

1. If f is I contra open (closed) function then f is I contra k- open (closed) function.
2. If f is I contra α - open (closed) functio then f is I contra semiopen (closed) function.
3. If f is I contra semi- open (closed) function then f is I contra β open (closed) function.
4. If f is I contra α - open (closed) function then f is I contra preopen (closed) function.
5. If f is I contra β - open (closed) function then f is I contra preopen (closed) function.
Where $\mathrm{k}=\{$ semi, α, per , $\beta\}$
Proof:1.Let A be IOS in X then $f(A)$ is ICS in Y (since f is I contra open function) then $f(A)$ is IKCS in Y (since every ICS is IKCS) hence f is I contra k- open function. Now let A be ICS in X then $f(A)$ is IOS in Y (since f is I contra closed function) then $\mathrm{f}(\mathrm{A})$ is IKOS in Y (since every IOS is IKOS) hence f is I contra k - closed function .
6. Let A be IOS in X then $f(A)$ is I $\alpha C S$ in Y (since f is I contra α-open function) then $f(A)$ is ISCS in Y (since every I α CS is ISCS) hence f is I contra semi- open function .Now let A be ICS in X then $f(A)$ is I $\alpha O S$ in Y (since f is I contra α-closed function) then $f(A)$ is ISOS in Y (since every $\mathrm{I} \alpha \mathrm{OS}$ is ISOS) hence f is I contra semi- closed function .
7. Let A be IOS in X then $f(A)$ is ISCS in Y (since f is I contra semi-open function) then $f(A)$ is $I \beta C S$ in Y (since every ISCS is $I \beta C S$) hence f is I contra β - open function. Now let A be ICS in X then $f(A)$ is ISOS in Y (since f is I contra semi-closed function) then $f(A)$ is $I \beta O S$ in Y (since every ISOS is I $\beta O S$) hence f is I contra β - closed function .
8. Let A be IOS in X then $f(A)$ is I $\alpha C S$ in Y (since f is I contra α-open function) then $f(A)$ is IPCS in Y (since every $I \alpha C S$ is IPCS) hence f is I contra pre- open function. Now let A be ICS in X then $f(A)$ is $\operatorname{I\alpha OS}$ in Y
(since f is I contra α-closed function) then $f(A)$ is IPOS in Y (since every $\mathrm{I} \alpha \mathrm{OS}$ is IPOS) hence f is I contra pre- closed function.
9. Let A be IOS in X then $f(A)$ is I $\beta C S$ in Y (since f is I contra β-open function) then $f(A)$ is IPCS in Y (since every I β CS is IPCS) hence f is I contra pre- open function. Now let A be ICS in X then $f(A)$ is I β OS in Y (since f is I contra β-closed function) then $\mathrm{f}(\mathrm{A})$ is IPOS in Y (since every I $\beta \mathrm{OS}$ is IPOS) hence f is I contra pre- closed function.
We summarized the above result by the following diagram.

Definition 8: Let (X, T) and (Y, σ) be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijective function then f is said to be:

1. An intuitionistic contra semi-homeomorphism (I contra semihom., for short) function if f is contra semi- continuous function and contra semi- open function .
2. An intuitionistic contra α - homeomorphism (I contra α-hom., for short) function if f is contra α - continuous function and contra α open function.
3. An intuitionistic contra pre- homeomorphism (I contra pre-hom., for short) function if f is contra pre-continuous function and contra pre - open function.
4. An intuitionistic contra β - homeomorphism (I contra β-hom., for short) function if f is conta β-continuous function and contra β open function.
5. 6. An intuitionistic contra strongly semi- homeomorphism (I contra S - semi-hom., for short) function if f is contra semi- continuous function and contra open function.
1. An intuitionistic contra strongly α - homeomorphism (I contra S- α hom., for short) function if f is contra α - continuous function and contra open function.
2. An intuitionistic contra strongly pre- homeomorphism (I contra S-pre-hom., for short) function if f is contra pre-continuous function and contra open function.
3. An intuitionistic contra strongly β-homeomorphism (I contr S -β-hom., for short) function if f is contra β-continuous function and contra open function
4. An intuitionistic contra S^{*} semi- homeomorphism (I contra S^{*} semi-hom., for short) function if f is contra continuous function and contra semi- open function.
10.An intuitionistic contra $S^{*}-\alpha$ - homeomorphism (I contra $S^{*}-\alpha$ hom., for short) function if f is contra continuous function and contra α-open function.
11.An intuitionistic contra S^{*} - pre- homeomorphism (I contra S^{*} -pre-hom., for short) function if f is contra continuous function and contra pre - open function.
12.An intuitionistic contra S^{*} - β - homeomorphism (I contra S^{*} - β hom., for short) function if f is contra continuous function and contra β-open function.

Proposition 9: Let $\mathrm{k}=\{$ semi, α, per , β \}and $(\mathrm{X}, \mathrm{T}),(\mathrm{Y}, \sigma)$ be two ITS's and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijective function then :

1. If f is I contra hom. function then f is I contra k- hom. function.
2. If f is I contra hom. function then f is I contra S - k - hom. function.
3. If f is I contra hom. function then f is I contra $\mathrm{S}^{*}-\mathrm{k}$ - hom. function.
4. If f is I contra α - hom. function then If f is I contra semihom.function.
5. If f is I contra semi- hom. function then If f is I contra β - hom. function
6. If f is I contra β - hom. function then If f is I contra pre- hom. function
7. If f is I contra α - hom.function then If f is I contra prehom.function.
8. If f is I contra S - α - hom.function then If f is I contra S-semi- hom. function.
9. If f is I contra S -semi- hom.function then If f is I contra $\mathrm{S}-\beta$ - hom. function
10.If f is I contra $S-\beta$ - hom.function then If f is I contra S-pre- hom. function
11.If f is I contra S - α - hom.function then If f is I contra S-pre- hom. function.
12.If f is I contra $S^{*}-\alpha$ - hom.function then If f is I contra S^{*}-semihom. function.
10. If f is I contra S^{*}-semi- hom.function then If f is I contra $S^{*}-\beta$ hom. function
14.If f is I contra $S^{*}-\beta$ - hom.function then If f is I contra S^{*}-prehom.function
15.If f is I contra S^{*} - α - hom.function then If f is I contra S^{*}-prehom. function.
11. If f is I contra S-k- hom.function then If f is I contra k- hom. function.
17.If f is I contra S^{*}-k- hom.function then If f is I contra k- hom. function.

Proof:

1. Let A be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~A})$ is ICS in X (since f is I contra cont. function) then $f^{-1}(A)$ is IkCS in X , hence f is I contra k - cont. function. Let B be IOS in X then $\mathrm{f}(\mathrm{B})$ is ICS in Y (since f is I contra open function.) then $f(B)$ is IkCS in Y then f is I contra k-open function Hence f is I contra k - hom. Function.
2. Let A be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~A})$ is ICS in X (since f is I contra cont. function) then $\mathrm{f}^{-1}(\mathrm{~A})$ is IkCS in X , hence f is I contra k -cont. function hence f is I contra $S-k$ - hom. Function.
3. Let B be IOS in X then $f^{(} B$) is ICS in Y (since f is I contra open function.) then $\left.f^{(} B\right)$ is $I k C S$ in Y then f is I contra k-open. function. Hence f is I contra $\mathrm{S}^{*}-\mathrm{k}$ - hom. function.
4. Let A be IOS in Y then $f^{-1}(A)$ is $I \alpha C S$ in X (since f is I contra α - cont. function) then $f^{-1}(A)$ is ISCS in X, hence f is I contra semi-cont. function. Now let B be IOS in X then $f^{(} B$) is I $\alpha C S$ in Y (since f is I contra α-open
function.) then $\mathrm{f}(\mathrm{B})$ is ISCS in Y then f is I contra semi-open.function. Hence f is I contra semi- hom.function.
$5,6,7$ we can prove that by the same way.
5. let A be IOS in Y then $\mathrm{f}^{-1}(\mathrm{~A})$ is $I \alpha \mathrm{CS}$ in X (since f is I contra α - cont. function) then $f^{-1}(A)$ is ISCS in X,then f is I contra semi-cont. function and f is I contra open function (since f is I contra S - α-hom.function). Hence f is I contra S -semi- hom.function.
$9,10,11$ we can prove that by the same way.
6. Let B be IOS in X then $f(B)$ is I $\alpha C S$ in Y (since f is I contra α-open function.) then $f(B)$ is ISCS in Y then f is I contra semi-open function and f is I contra cont. function (since f is I contra $S^{*}-\alpha$-hom.function). Hence f is I contra S^{*}-semi- hom.function.
$13,14,15$ we can prove that by the same way.
7. Let B be IOS in X then $f(B)$ is ICS in $Y($ since f is I contra open function) then $f(B)$ is IkCS in Y then f is I contra k-open function. Hence f is I contra k - hom.function.
8. Let A be IOS in Y then $f^{-1}(A)$ is ICS in X (since f is I contra cont. function) then $\mathrm{f}^{-1}(\mathrm{~A})$ is IkCS in X ,then f is I contra k-cont. function. Hence f is I contra k - hom.function.
Remark : the converse of proposition 2.9 is not true .
The following examples shows that:
1- I contra semi- hom.function does not I contra hom.function
Example 1: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B\}$ where $B=\langle y,\{1\},\{2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$
Now $f^{-1}(B)=\langle x,\{a\},\{b\}\rangle$ is ISCS in X since $\left(f^{-1}(B)\right)^{c}$ is ISOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clint}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$ then f is I contra semi-cont. function, but not I contra cont.function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=\langle x,\{b\},\{a\}\rangle$ not IOS in X. And f is I contra semi-open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is ISCS in Y since $(f(A))^{c}$ is ISOS in Y since $(f(A))^{c} \subseteq c l i n t(f(A))^{c}=Y$, but f not I contra open function since $f(A)$ is not ICS in Y since $c l f(A)=B^{c} \neq f(A)$
Hence f is I contra semi-hom. function, but not I contra hom. Function.
2-I contra α-hom.function does not I contra hom.function.

Example 2: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{b\},\{a, c\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\emptyset}, \tilde{Y}, B\}$ where $B=\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$
Now $f^{-1}(\mathrm{~B})=\langle x,\{\mathrm{a}\},\{\mathrm{b}, c\}\rangle$ is $\mathrm{I} \alpha \mathrm{CS}$ in X since $\left(f^{-1}(B)\right)^{c}$ is I $\alpha \mathrm{OS}$ in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{intclint}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$ then f is I contra α-cont. function, but not I contra cont.function since $f^{-1}(B)$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=\langle x,\{b, c\},\{a\}\rangle$ not IOS in X . And f is I contra α-open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is $\mathrm{I} \alpha \mathrm{CS}$ in Y since $(f(A))^{c}$ is I $\alpha \mathrm{OS}$ in Y since $(f(A))^{c} \subseteq \operatorname{intclint}(f(A))^{c}=X$, but f not I contra open function since $f(A)$ is not ICS in Y since $\operatorname{clf}(A)=B \neq f(A)$
I contra α-hom.function but not I contra hom.function Hence f is
3- I contra pre - hom.function does not I contra hom.function.
Example 3: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{b, c\},\{a\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B\}$ where $B=\langle y,\{2\},\{1\}\rangle$ Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$ Now $f^{-1}(\mathrm{~B})=$ $\langle x,\{\mathrm{~b}\},\{\mathrm{a}\}\rangle$ is IPCS in X since $\left(f^{-1}(B)\right)^{c}$ is IPOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clintcl}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$ then f is I contra β-cont. function, but not I contra cont.function since $f^{-1}(B)$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=$ $\langle x,\{a\},\{b\}\rangle$ not IOS in X. And f is I contra pre-open function since $f(\mathrm{~A})=\langle y,\{2,3\},\{1\}\rangle$ is IPCS in Y since $(f(A))^{c}$ is IPOS in Y since $(f(A))^{c} \subseteq \operatorname{intcl}(f(A))^{c}=Y$, but f not I contra open function since $f(A)$ is not ICS in Y since $\operatorname{clf}(A)=Y \neq f(A)$.
Hence f is I contra pre - hom.function but not I contra hom.function.
4-I contra β-hom.function does not I contra hom.function.
Example 4: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{b, c\},\{a\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B\}$ where $B=\langle y,\{2\},\{1\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$ Now $f^{-1}(\mathrm{~B})=$ $\langle x,\{\mathrm{~b}\},\{\mathrm{a}\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in X since $\left(f^{-1}(B)\right)^{c}$ is I $\beta \mathrm{OS}$ in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clintcl}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$ then f is I contra β-cont. function, but not I contra cont. function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=$ $\langle x,\{a\},\{b\}\rangle$ not IOS in X . And f is I contra β-open function since $f(\mathrm{~A})=$ $\langle y,\{2,3\},\{1\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in Y since $(f(A))^{c}$ is $\mathrm{I} \beta \mathrm{OS}$ in Y since $(f(A))^{c} \subseteq \operatorname{clintcl}(f(A))^{c}=Y$, but f not I contra open function since $f(A)$ is not ICS in Y since $\operatorname{clf}(A)=Y \neq f(A)$.

Hence f is I contra β - hom.function but not I contra hom.functio
5- I contra S- semi- hom.function does not I contra hom.function.
Example 5: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\emptyset}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ And let $Y=\{1,2,3\}, \sigma=\{\widetilde{\emptyset}, \tilde{Y}, B, C\}$ where $B=\langle y,\{1\},\{2\}\rangle$, $C=\langle y,\{1,3\},\{2\}\rangle$ Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(\mathrm{~B})=\langle x,\{\mathrm{a}\},\{\mathrm{b}\}\rangle$ is ISCS in X since $\left(f^{-1}(B)\right)^{c}$ is ISOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clint}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$, also $f^{-1}(\mathrm{C})$ is ISCS in X then f is I contra semi-cont.function, but not I contra cont.function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=\langle x,\{b\},\{a\}\rangle$ not IOS in X . And f is I contra open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle=C^{c}$ is ICS in Y since $\mathrm{C} \in \sigma$. Hence f is I contra S - semi-hom. Function, but not I contra hom. Function.
6- I contra S- α - hom.function does not I contra hom.function.
Example 6: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\emptyset}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and $\operatorname{let} Y=\{1,2,3\}, \quad \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B\} \quad$ where $B=\langle y,\{1,3\},\{2\}\rangle \quad B=$ $\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}\},\{\mathrm{b}, c\}\rangle$ is $\mathrm{I} C \mathrm{CS}$ in X since $\left(f^{-1}(C)\right)^{c}$ is $\mathrm{I} \alpha \mathrm{OS}$ in X since $\left(f^{-1}(C)\right)^{c} \subseteq \operatorname{intclint}\left(f^{-1}(C)\right)^{c}=\mathrm{X}$, also $f^{-1}(C)$ is $\mathrm{I} \alpha \mathrm{OS}$ in X , then f is I contra α-cont.function, but not I contra cont.function since $f^{-1}(\mathrm{C})$ not ICS in X since $\left(f^{-1}(C)\right)^{c}=\langle x,\{b, c\},\{a\}\rangle$ not IOS in X .And f is I contra open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is ICS in Y since $(f(A))^{c}=B$ is IOS in Y . Hence f is I contra $\mathrm{S}-\alpha$ - hom. function but not I contra hom.function .
7- I contra S- pre - hom.function does not I contra hom.function.
Example 7: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{b\},\{a\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B, C\}$, where $B=\langle y,\{1\},\{2\}\rangle$ and $C=$ $\langle y,\{1,3\},,\{2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=$ 3.Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle$ is IPCS in X since $\left(f^{-1}(C)\right)^{c}$ is IPOS in X since $\left(f^{-1}(C)\right)^{c} \subseteq \operatorname{intcl}\left(f^{-1}(C)\right)^{c}=\mathrm{X}$, also $f^{-1}(\mathrm{~B})$ is IPCS in X then f is I contra pre -cont. function, but not I contra cont. function since $f^{-1}(\mathrm{C})$ not ICS in X since $\left(f^{-1}(C)\right)^{c}=\langle x,\{b\},\{a, c\}\rangle$ not IOS in X , and f is I contra open function since $f(\mathrm{~A})=\langle y,\{2\},\{1\}\rangle$ is ICS in Y since $(f(A))^{c}=B$ is IOS in Y .
Hence f is I contra S- pre - hom.function but not I contra hom.function.
8. I contra S- β - hom.function does not I contra hom.function.

Example 8: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B, C\}$ where $B=\langle y,\{2\},\{1\}\rangle$ and $C=$ $\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=$ 2 and $f(c)=3$
Now $f^{-1}(\mathrm{~B})=\langle x,\{\mathrm{~b}\},\{\mathrm{a}\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in X since $\left(f^{-1}(B)\right)^{c}$ is $\mathrm{I} \beta \mathrm{OS}$ in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clintcl}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$, also $f^{-1}(C)$ is I β OS then f is I contra β-cont. function, but not I contra cont. function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=\langle x,\{a\},\{b\}\rangle$ not IOS in X . And f is I contra open function since $f(\mathrm{~A})=\langle y,\{2,3\},\{1\}\rangle$ is ICS in Y since $(f(A))^{c}=\mathrm{C}$ is IOS in Y. Hence f is I contra S - β - hom. function but not I contra hom.function.
9- I contra S^{*} - semi- hom.function does not I contra hom.function .
Example 9: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A, B\} \quad$ where $A=$ $\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and $\mathrm{B}=\langle x,\{\mathrm{~b}\},\{a\}\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{1\},\{2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1$, $f(b)=2$ and $f(c)=3$.Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}\},\{\mathrm{b}\}\rangle$ is ICS in X since $\left(f^{-1}(C)\right)^{c}=B$ is IOS in X then f is I contra cont. function. And f is I contra semi- open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is ISCS in Y since $(f(A))^{c} \subseteq \operatorname{clint}(f(A))^{c}=Y$, also $f(\mathrm{~B})$ is ISCS in Y, f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $\mathrm{cl} f(\mathrm{~A})=\mathrm{C}^{\mathrm{c}} \neq f(\mathrm{~A})$. Hence f is I contra S^{*} - semi-hom. Function but not I contra hom. Function 10-I contra S^{*} - α - hom.function does not I contra hom. function.
Example 10: $\operatorname{Let} X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A, B\}$ where $A=$ $\langle x,\{\mathrm{~b}\},\{a, c\}\rangle, B=\langle x,\{b, c\},\{a\}\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{1\},\{2,3\}\rangle$.Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=$ 2and $f(c)=3$.Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}\},\{\mathrm{b}, c\}\rangle$ is ICS in X since $\left(f^{-1}(C)\right)^{c}=B$ is IOS in X , then f is I contra cont. function. And f is I contra α - open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is $\mathrm{I} \alpha \mathrm{CS}$ in Y $\operatorname{since}(f(A))^{c}$ is $\quad \mathrm{I} \alpha \mathrm{OS} \quad$ in $\quad \mathrm{Y}$ since $(f(A))^{c} \subseteq \operatorname{intclint}(f(A))^{c}=Y$ also $f(\mathrm{~B})$ is IaCS in Y , but f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $(f(A))^{c}$ is not IOS in Y. Hence f is I contra S^{*} - α hom. function but not I contra hom. function .
11- I contra S^{*} - pre - hom.function does not I contra hom.function.

Example 11: $\operatorname{Let} X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A, B, C, D\}$ where $A=$ $\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle, B=\langle x,\{b\},\{a\}\rangle, C=\langle x,\{b\},\{c, a\}\rangle$ and $\mathrm{D}=\langle x,\{b, c\}, \varnothing\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, E\}$ where $E=\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now f is I contra continuous function since: $f^{-1}(E)=\langle x,\{a\},\{b, c\}\rangle$ is ICS in X $\left(f^{-1}(E)\right)^{c}=\mathrm{A}$ is IOS in X . and f is I contra pre - open function Since $f(D)=\langle Y,\{2,3\}, \emptyset\rangle$ is IPCS in Y since $(f(D))^{c}$ is IPOS in Y $f(D))^{c} \subseteq \operatorname{intcl}(f(D))^{c}=Y$, also $f(A), f(B)$, and $f(C)$ are IPCS in Y but f does not I contra open function since $f(D)$ is not ICS in Y since $\operatorname{clf}(\mathrm{D})=\mathrm{y} \neq \mathrm{f}(\mathrm{D})$. Hence f is I contra S^{*} - p- hom.function but not I contra hom.function
12-I contra $S^{*}-\beta$ - hom.function does not I contra hom.function
Example 12: Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A, B\}$ where $A=$ $\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle$ and $B=\langle x,\{a\},\{b\}\rangle \quad$ and \quad let $\quad Y=\{1,2,3\}, \quad \sigma=$ $\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{2\},\{1\}\rangle$ and. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(C)=\langle x,\{b\},\{a\}\rangle$ is ICS in X since $\left(f^{-1}(C)\right)^{c}=\mathrm{B}$ is IOS in X then f is I contra cont. function. And f is I contra β - open function since $f(\mathrm{~A})=\langle y,\{2,3\},\{1\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in Y since $(f(A))^{c}$ is IßOS in Y since $(f(A))^{c} \subseteq \operatorname{clintcl}(f(A))^{c}=Y$, also $f(B)$ is IßCS in Y , but f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $(f(\mathrm{~A}))^{\mathrm{c}}$ is not IOS in Y.
Hence f is I contra $\mathrm{S}^{*}-\beta$ - hom.function but not I contra hom.function.

Remark :

1. The notion I contra S- semi- hom.function and I contra S*- semi- * hom.function are independed notion .
At first we prove that I contra S- semi- hom.function does not I contra S^{*} - semi- hom.function for example : Let $X=\{a, b, c\}$ and $T=\{\widetilde{\emptyset}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, B, C\}$ where $B=\langle y,\{1\},\{2\}\rangle . C=\langle y,\{1,3\},\{2\}\rangle$ Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$.Now $f^{-1}(B)=\langle x,\{\mathrm{a}\},\{\mathrm{b}\}\rangle$ is ISCS in X since $\left(f^{-1}(B)\right)^{c}$ is ISOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clint}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$, also $f^{-1}(\mathrm{C})$ is ISCS in X then f is I contra semi-cont.function, but not I contra cont.function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=$ $\langle x,\{b\},\{a\}\rangle$ not IOS in X. And f is I contra open function since $f(\mathrm{~A})=$
$\langle y,\{2\},\{1,3\}\rangle=C^{c}$ is ICS in Y since $\mathrm{C} \in \sigma$. Hence f is I contra S- semihom.function, but not I contra S^{*} - semi hom.function
Now the I contra S^{*} - semi- hom.function does not I contra S- semihom.function we shown that by this example :
let $X=\{a, b, c\}$ and $\quad T=\{\widetilde{\varnothing}, \tilde{X}, A, B\} \quad$ where $\quad A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and $\mathrm{B}=\langle x,\{\mathrm{~b}\},\{a\}\rangle \quad$ and \quad let $\quad Y=\{1,2,3\}$ and $\quad \sigma=\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{1\},\{2\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}\},\{\mathrm{b}\}\rangle$ is ICSin X since $\left(f^{-1}(C)\right)^{c}=$ B is IOS in X then f is I contra cont.function. And f is I contra semiopen function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is ISCS in Y since $(f(A))^{c}$ is ISOS in $\mathrm{Y}(f(A))^{c} \subseteq \operatorname{clint}(f(A))^{c}=Y$, also $f(\mathrm{~B})$ is ISCS in Y, f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $\mathrm{cl} f(\mathrm{~A})=$ $\mathrm{C}^{\mathrm{c}} \neq f(\mathrm{~A})$. Hence f is I contra S^{*} - semi-hom. function but not I contra S-sime- hom.function.
2. The notion I contra S - α - hom.function and I contra $S^{*}-\alpha-$ hom. function are independed notion.
At first we prove that I contra $S-\alpha$ - hom.function does not I contra $S^{*}-\alpha$ - hom.function for this example: Let $X=\{a, b, c\}, T=\{\widetilde{\emptyset}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle$ and let $Y=\{1,2,3\}, \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B\}$ where $B=$ $\langle y,\{1,3\},\{2\}\rangle \quad B=\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(\mathrm{C})=\langle x,\{\mathrm{a}\},\{\mathrm{b}, c\}\rangle$ is IaCS in X since $\left(f^{-1}(C)\right)^{c}$ is $\mathrm{I} \alpha \mathrm{OS}$ in X since $\left(f^{-1}(C)\right)^{c} \subseteq \operatorname{intclint}\left(f^{-1}(C)\right)^{c}$ $=\mathrm{X}$, also $f^{-1}(C)$ is $\mathrm{I} \alpha \mathrm{OS}$ in X , then f is I contra α-cont.function, but not I contra cont.function since $f^{-1}(\mathrm{C})$ not ICS in X since $\left(f^{-1}(C)\right)^{c}=$ $\langle x,\{b, c\},\{a\}\rangle$ not IOS in X . And f is I contra open function since $f(\mathrm{~A})=$ $\langle y,\{2\},\{1,3\}\rangle$ is ICS in $\mathrm{Y} \operatorname{since}(f(A))^{c}=B$ is IOS in Y. Hence f is I contra S- α-hom.function but not I contra $S^{*}-\alpha$-hom.function
Now the I contra $S^{*}-\alpha$ - hom.function does not I contra S- α hom.function we shown that by this example: Let $X=\{a, b, c\}$ and $T=$ $\{\widetilde{\varnothing}, \tilde{X}, A, B\}$ where $A=\langle x,\{\mathrm{~b}\},\{a, c\}\rangle, B=\langle x,\{b, c\},\{a\}\rangle \quad$ and \quad let $\quad Y=$ $\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $\langle x,\{\mathrm{a}\},\{\mathrm{b}, c\}\rangle$ is ICS in X since $\left(f^{-1}(C)\right)^{c}=B$ is IOS in X , then f is I contra cont.function .And f is I contra α - open function since $f(\mathrm{~A})=\langle y,\{2\},\{1,3\}\rangle$ is $\mathrm{I} \alpha \mathrm{CS}$ in

Y since $(f(A))^{c}$ is $\mathrm{I} \alpha \mathrm{OS}$ in Y since $(f(A))^{c} \subseteq \operatorname{intclint}(f(A))^{c}=Y$ also $f(\mathrm{~B})$ is IaCS in Y , but f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $(f(\mathrm{~A}))^{\mathrm{c}}$ is not IOS in Y. Hence f is I contra $\mathrm{S}^{*}-\alpha$ hom.function but not I contra $S-\alpha$-hom.function.
3. The notion I contra S- pre - hom.function and I contra S^{*} - prehom.function are independed notion.
At first we prove that I contra S- pre- hom.function does not I contra S*-pre- hom.function for this example :
Let $X=\{a, b, c\}$ and $T=\{\widetilde{\emptyset}, \tilde{X}, A\}$ where $A=\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle$ and let $Y=\{1,2,3\} \quad$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, B, C\}$, where $\mathrm{B}=\langle y,\{1,3\},,\{2\}\rangle$ and $\mathrm{C}=$ $\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$.Now $f^{-1}(\mathrm{~B})=\langle x,\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}\}\rangle$ is IPCS in X since $\left(f^{-1}(B)\right)^{c} \quad$ is IPOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{intcl}\left(f^{-1}(B)\right)^{c}=\mathrm{X}$, also $f^{-1}(\mathrm{C})$ is IPCS in X then f is I contra pre -cont. function, but not I contra cont. function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=\langle x,\{a\},\{b\}\rangle$ not IOS in X. And f is I contra open function since $f(\mathrm{~A})=\langle y,\{2,3\},\{1\}\rangle$ is ICS in Y since $(f(A))^{c}=C$ is IOS in Y. Hence f is I contra S-pre - hom.function but not I contra S^{*} - pre-hom.function. Now the I contra S^{*} - prehom.function does not I contra S- pre- hom.function we shown that by this example : Let $X=\{a, b, c\}$ and $T=\{\widetilde{\varnothing}, \tilde{X}, A, B, C, D\}$ where $A=$ $\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle, B=\langle x,\{b\},\{c\}\rangle, C=\langle x,\{b\}\{a, c\}\rangle$ and $D\langle x,\{b, c\}, \varnothing\rangle$ and let $Y=\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, E\}$ where $E=\langle y,\{1\},\{2,3\}\rangle$ and. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now f is I contra cont. function $\operatorname{sincef}^{-1}(\mathrm{E})=\langle x,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\rangle$ is ICS in X since $\left(f^{-1}(E)\right)^{c}=\mathrm{A}$ is IOS in X . And f is I contra pre - open function since $f(\mathrm{D})=\langle y,\{2,3\}, \emptyset\rangle$ is IPCS in Y since $(f(D))^{c}$ is IPOS in Y since $(f(D))^{c} \subseteq \operatorname{intcl}(f(D))^{c}=Y$, also $f(B), f(C)$ and $f(A)$ are IPCSs in Y , but f is not I contra open Function since $f(\mathrm{D})$ is not ICS in Y since $c l f(\mathrm{D})=\mathrm{Y} \neq \mathrm{f}(\mathrm{D})$ is not IOS in Y. Hence f is I contra S^{*}-pre hom.function but not I contra S^{*}-pre -hom.function.
4. The notion I contra S - β - hom.function and I contra $S^{*}-\beta$ hom.function are independed notion.
At first we prove that I contra $S-\beta$ - hom.function does not I contra $S^{*}-\beta$ - hom.function for this example:Let $X=\{a, b, c\}, T=\{\widetilde{\varnothing}, \tilde{X}, A\}$ where
$A=\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle \quad$ and \quad let $\quad Y=\{1,2,3\}, \quad \sigma=\{\widetilde{\varnothing}, \tilde{Y}, B, C\}$ where $B=$ $\langle y,\{2\},\{1\}\rangle$ and $C=\langle y,\{1\},\{2,3\}\rangle$. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3$. Now $f^{-1}(\mathrm{~B})=\langle x,\{\mathrm{~b}\},\{\mathrm{a}\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in X since $\left(f^{-1}(B)\right)^{c}$ is IBOS in X since $\left(f^{-1}(B)\right)^{c} \subseteq \operatorname{clintcl}\left(f^{-1}(B)\right)^{c}$ $=\mathrm{X}$, also $f^{-1}(C)$ is I β OS then f is I contra β-cont.function, but not I contra cont.function since $f^{-1}(\mathrm{~B})$ not ICS in X since $\left(f^{-1}(B)\right)^{c}=$ $\langle x,\{a\},\{b\}\rangle$ not IOS in X. And f is I contra open function since $f(\mathrm{~A})=$ $\langle y,\{2,3\},\{1\}\rangle$ is ICS in Y since $(f(A))^{c}=\mathrm{C}$ is IOS in Y. Hence f is I contra $S-\beta$-hom.function but not I contra S^{*} - β-hom.function.
Now the I contra $S^{*}-\beta$ - hom.function does not I contra $S-\beta$-hom. function we shown that by this example : Let $X=\{a, b, c\}$ and $T=$ $\{\widetilde{\varnothing}, \tilde{X}, A, B\}$ where $A=\langle x,\{\mathrm{~b}, \mathrm{c}\},\{a\}\rangle$ and $B=\langle x,\{a\},\{b\}\rangle$ and let $Y=$ $\{1,2,3\}$ and $\sigma=\{\widetilde{\varnothing}, \tilde{Y}, C\}$ where $C=\langle y,\{2\},\{1\}\rangle$ and. Define a function $f: X \rightarrow Y$ by $f(a)=1, f(b)=2$ and $f(c)=3 . \operatorname{Now} f^{-1}(\mathrm{C})=\langle x,\{\mathrm{~b}\},\{\mathrm{a}\}\rangle$ is ICS in X since $\left(f^{-1}(C)\right)^{c}=\mathrm{B}$ is IOS in X then f is I contra cont.function And f is I contra β - open function since $f(\mathrm{~A})=\langle y,\{2,3\},\{1\}\rangle$ is $\mathrm{I} \beta \mathrm{CS}$ in Y since $(f(A))^{c}$ is IßOS in Y since $(f(A))^{c} \subseteq \operatorname{clintcl}(f(A))^{c}=Y$, also $f(B)$ is $\mathrm{I} \beta \mathrm{CS}$ in Y , but f is not I contra open function since $f(\mathrm{~A})$ is not ICS in Y since $(f(\mathrm{~A}))^{\mathrm{c}}$ is not IOS in Y. Hence f is I contra $S^{*}-\beta$ hom.function but not I contra S - β-hom.function.
We summarized the above result by the following diagram .

Diagram : The following implications are true and not reversed.

REFERENCES

- Ali. M.Jasem and Yunis J. Yaseen. (2009): On Generalization Contra and Almost Contra Continuous Function among Intuitionistic Topological Spaces M.Sc.Thesis, College of Education Tikrit university
- Dontchev J. and Noiri,T. (1999): Contra-Semi Continuous Functions Math. Pannonica Vol. 10, pp. 159-168.
- Dontchev, J. (1996): Contra-Continuous Functions and Strongly SClosed Spaces internat. J. Math. and Sci. vol. 19 No. 2 pp. 303-310.
- Dontchev, J. and Noiri, T. (1998): Contra-Semi Continuous Functions Arxiv:math. Vol.12, pp. 1-11.
- Hanna H. Alwan and Yunis J. Yaseem, (2007):Weak Form of Continuity and Openness in Intuitionistic Topological Spaces M.Sc.Thesis, College of Education Tikrit university
- Jeon, J.K., Jun, Y.B. and Park, J .H. (2005): Intuitionistic fuzzy Alpha - Continuity and Intuitionistic Fuzzy Precontiuity I.J. of Math, Sci. 19, pp. 3091 - 3101.
- Jafari, S. and Noiri,T. (2002): On Contra Pre-Continuous Functions Bull. Malays. Math. Sci. Soc. Vol. 12 No.2, pp. 115-128
- Thakur *, S.S and Singh, S. (1998): On Fuzzy Semi- Preopen Sets and Fuzzy Semi - Precotinuity Fuzzy set and system Vol . 98 pp383391.

أعمام بعض أنواع من الاوال المتثشاكلة المعاكسة وبعض علاقتها مـع بعضها بين الفضاءات التبولوجية الحدسية

$$
\begin{aligned}
& \text { يونس جهاد ياسين ***** ** ** } \\
& \text { * قسم الرياضيات، كلية التربية ـ جامعة تكريت } \\
& \text { ** * قسم الرياضيات، كلية (لعلوم ـ جامعة كركوك } \\
& \text { تاريخ الاستلام:2010/12/12 , تاريخ القبول: 2011/4/26 }
\end{aligned}
$$

(لخلاصة

سندرس في هذا البحث مفهوم الدو ال المتثاكلة المعاكس (contra homeomorphism)وبعض أنو اعها contra k-homeomorphism functions, contra strongly k-homeomorphism functions . cortion بين الفضاءات الثنولوجية الحدسية وكذلك سندرس and contra S*-k- homeomorphism functions علاقة هذه الدو ال مع بعضها عن طريق بعض المبر هنات والأمتلة وتم وضع مخطط لتلك العلاقة.

