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Abstract 
 

       In this paper, we introduce the definition of contra homeomorphism functions, 

contra k-homeomorphism functions, contra strongly k-homeomorphism functions and 

contra S*-k- homeomorphism functions in intuitionistic topological spaces where k= 

{semi,   , per ,   }, and we give propositions to show the relations among them, some 

counter examples are given for not implications. We give also a diagram to illustrate 

these relations. 

 

Introduction 
The notion of homeomorphism, k- homeomorphism, strong-k- 

homeomorphism and S*-k- homeomorphism functions in intuitionistic 

topological spaces where k = {semi,   , per ,   } was introduced by (Hanna 

H.Alwan &Yunis J. Yaseen  2007). 

The notion of contra continuity was introduced by (Dontchev, 1996), 

contra semi continuous function was introduced and investigated by 

(Dontchev & Noiri, 1999), so contra pre continuous was introduced by 

(Jafari, & Noiri, 2002), and  generalized them on intuitionistic topological 

spaces by (Ali M. Jasem & Yunis J.Yaseen 2009).   

In this paper we define some kinds of contra homeomorphism 
functions, contra semi- homeomorphism, contra - homeomorphism , 

contra pre- homeomorphism,  contra - homeomorphism, contra  strongly-  

semi- homeomorphism, contra strongly - homeomorphism, contra 

strongly pre-homeomorphism, contra strongly - homeomorphism, contra 

S*- semi- homeomorphism, contra S*- - homeomorphism, contra S*-  pre-

homeomorphism,contra S*- -homeomorphism functions in intuitionistic 

topological spaces,  and we study some relation among them.  

 

Preliminaries 
Let X be anon-empty set, an intuitionistic set (briefly IS) A is an 

object having the form A 〈       〉 where    and    are disjoint subset 
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of X. the set    is called a member of A, while    is called non- member of 

A, an intuitionistic topology (briefly IT) on a non-empty set X, is a family 

T of IS in X containing  ̃  ̃ and closed under arbitrary unions and finitely 

intersections. In this case the pair(X, T) is called an intuitionistic 

topological space (briefly ITS), any IS in T is known as an intuitionistic 

open set (briefly IOS) in X. The complement of IOS is called intuitionistic 

closed set (briefly ICS), so the interior and closure of A are denoted by 

   ( ) and   ( ) respectively and defined by 

    ( )   {                          〈       〉}    
  ( )   {                                            〈       〉 } 
 A set A is called:              

1.   intuitionistic  semi - open  set (ISOS, for short) if  Acl(intA).  
2.  intuitionistic    - open  set (I OS, for short) if Aint(cl(intA)) . 

3.  intuitionistic per - open set (IPOS, for short) if Aint(clA) . 

4.  intuitionistic   – open set (I OS, for short) if Acl(int(clA)). 

(Jeon,J.K.,Jun,Y.B.and Park, J.H.2005) 

The complement of  ISOS, I OS, IPOS and I OS in X is  called 

intuitionistic semi-closed set , intuitionistic -closed set, intuitionistic pre-

closed set and intuitionistic -closed set  in X ( ISCS, I CS, IPCS and I

CS  for short)  (Thakur & Singh, 1998). 

Every IOS (ICS) is ISOS, I OS, IPOS and I OS (ISCS, I CS, IPCS and I

CS for short) (Hanna H.Alwan &Yunis J. Yaseen; 2007). 

 Let (X, T) and (Y, ) be two ITS's and let       be a function then f is 

said to be: 

1. An intuitionistic contra continuous (I contra cont., for short) function 

if the inverse image of each IOS in Y is ICS in X. 

2. An intuitionistic contra semi-continuous (I contra semi-cont., for 

short) function if the inverse image of each IOS in Y is ISCS in X. 

3. An intuitionistic contra -continuous (I contra -cont., for short) 

function if the inverse image of each IOS in Y is I CS in X. 

4. An intuitionistic contra pre-continuous (I contra pre-cont., for short) 

function if the inverse image of each IOS in Y is IPCS in X. 

5. An intuitionistic contra -continuous (I contra -cont., for short) 

function if the inverse image of each IOS in Y is I CS in X. 

 (Ali M. Jasem &Yunis J.Yaseen; 2009).  

  
Now we introduce the definition of contra open function and contra 

homeomorphism function in intuitionistic topological spaces: 

 



Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011 

 

168 
 

Definition 1:  Let (X,T)  and  (Y, )  be  two  ITS's  and  let         be a 

function then  f  is said  to  be an intuitionistic contra open  (I contra open , 

for short) function  if  the  image of each IOS in X is ICS in Y. 

Remark: f is contra closed function if the image of each ICS in X is IOS in 

Y. 

Theorem 2: Let (X, T) and (Y, ) be two ITS's and let       be a fictive 

function then the following statement are equivalent: 

1. f is contra open  . 

2. f is contra closed . 

Proof: ( 1 2)Let A be IOS in X then f(A) is ICS in Y since f is I contra 

open function , then f(A
c
) is IOS in Y  and A

c
 is ICS in X ,i.e : the  image 

of each ICS in X is IOS in Y.Hence f is I contra closed function . 

(2 1) by the same way,we can prove them.  

Definition 3: Let (X,T) and (Y, ) be two ITS's and let       be a 

function  then  f  is called I contra  homeomorphism  if   f  is  bijective  

function,I contra continuous  function and f
-1

 I contra continuous function 

Theorem 4: Let (X, T) and (Y, ) be two ITS's then        is I contra 

open   function iff   f
-1

 is I contra continuous function. 

Proof: let f
-1     be contra continuous function then:   A is IOS in X 

then (f
-1

)
-1

(A) is ICS in Y; i.e   A is ICS in X then f (A) is ICS in Y. Hence 

f is I contra open function. 

Conversely: let f be I contra open function then:   B is IOS in X then  

f (B) is ICS in Y ; hencef
-1

 is I contra  continuous  function  since 

(f
-1

)
-1

(B) = f (B). 

Corollary 5: Let (X,T) and (Y, ) be two ITS's then         is I contra 

homeomorphism  function  if  f  is bijective  function , I contra  continuous 

function  and  I contra open function . 

proof: By( theorem 4 ) f
-1

  is I contra continuous function(since f  is I 

contra open function) then by (Definition 3) f  is I contra homeomorphism  

function . 

 

Definition 6 :  Let (X,T)  and  (Y, )  be  two  ITS's  and  let         be a 

function then  f  is said  to  be : 

1. An intuitionistic contra semi-open (I contra semi-open, for short) 

function if the image of each IOS in X is ISCS in Y. 

2. An intuitionistic contra -open (I contra -open, for short) function 

if the image of each IOS in X is I CS in Y. 

3. An intuitionistic contra pre-open (I contra pre-open, for short) 

function if the image of each IOS in X is IPCS in Y. 

4. An intuitionistic contra -open (I contra -open, for short) function if 

the image of each IOS in X is I CS in Y. 
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5. An intuitionistic contra semi- closed (I contra semi- closed, for short) 

function if the image of each ICS in X is ISOS in Y. 

6. An intuitionistic contra -closed (I contra -closed, for short) 

function if the image of each ICS in X is I OS in Y. 

7. An intuitionistic contra pre -closed (I contra pre -closed, for short) 

function if the image of each ICS in X is IOS in Y. 

8.  An intuitionistic contra β -closed (I contra β-closed, for short) 

function if the image of each ICS in X is IβOS in Y. 

 

Proposition 8: Let (X, T) and (Y, ) be two ITS's and let       be  

function then : 

1. If   is I contra open (closed) function then   is I contra k- open 

(closed) function. 

2. If     is I contra  - open (closed) functio then    is I contra semi- 

open (closed) function. 

3.  If    is I contra semi- open (closed) function then f is I contra    - 

open (closed) function. 

4. If    is I contra   - open (closed) function then f is I contra      - 
open (closed) function. 

5. If    is I contra   - open (closed) function then f is I contra      - 
open (closed) function. 

Where k= {semi,   , per ,   } 

Proof:1.Let A be IOS in X then f(A) is ICS in Y (since f is I contra open 

function) then f(A) is IKCS in Y (since every ICS is IKCS) hence f is  I 

contra k- open function .Now let A be ICS in X then f(A) is IOS in Y 

(since f is I contra closed function) then f(A) is IKOS in Y (since every IOS 

is IKOS) hence f is  I contra k- closed function . 

    2. Let A be IOS in X then f(A) is IαCS in Y (since f is I contra α-open 

function) then f(A) is ISCS in Y (since every IαCS is ISCS) hence f is  I 

contra semi- open function .Now let A be ICS in X then f(A) is IαOS in Y 

(since f is I contra α-closed function) then f(A) is ISOS in Y (since every 

IαOS is ISOS) hence f is  I contra semi- closed function . 

   3. Let A be IOS in X then f(A) is ISCS in Y (since f is I contra semi-open 

function) then f(A) is IβCS in Y (since every ISCS is IβCS) hence f is  I 

contra β- open function .Now let A be ICS in X then f(A) is ISOS in Y 

(since f is I contra semi-closed function) then f(A) is IβOS in Y (since 

every ISOS is IβOS) hence f is  I contra β- closed function . 

   4. Let A be IOS in X then f(A) is IαCS in Y (since f is I contra α-open 

function) then f(A) is IPCS in Y (since every IαCS is IPCS) hence f is  I 

contra pre- open function. Now let A be ICS in X then f(A) is IαOS in Y 
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(since f is I contra α-closed function) then f(A) is IPOS in Y (since every 

IαOS is IPOS) hence f is  I contra pre- closed function. 

    5. Let A be IOS in X then f(A) is IβCS in Y (since f is I contra β-open 

function) then f(A) is IPCS in Y (since every IβCS is IPCS) hence f is  I 

contra pre- open function. Now let A be ICS in X then f(A) is IβOS in Y 

(since f is I contra β-closed function) then f(A) is IPOS in Y (since every 

IβOS is IPOS) hence f is  I contra pre- closed function. 

We summarized the above result by the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 8: Let (X, T) and (Y, ) be two ITS's and let       be a 

bijective function then f is said to be: 

1. An intuitionistic  contra  semi- homeomorphism  (I  contra  semi-

hom., for short) function  if  f   is contra semi- continuous function 

and contra semi- open function .  

2. An intuitionistic contra - homeomorphism   (I contra -hom., for 

short) function  if  f is contra  - continuous  function and  contra -

open function. 

3. An intuitionistic contra pre- homeomorphism   (I contra pre-hom., 

for short) function if f is contra pre-continuous function and contra 

pre - open function. 

4. An intuitionistic contra - homeomorphism   (I contra -hom., for 

short) function  if  f   is conta    -continuous function  and  contra  -

open function. 

Contra open (closed) 

functions 

Contra   -open (closed) 

functions 

Contra semi-open 

(closed)  function 

Contra  -open (closed) 

functions 

Contra Pre-open 

(closed) functions 
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5. 6. An intuitionistic contra strongly semi- homeomorphism (I contra 

S- semi-hom., for short) function if f   is contra semi- continuous 

function and contra open function.  

6. An intuitionistic contra   strongly - homeomorphism   (I contra S- -

hom., for short) function  if  f is contra  - continuous  function and  

contra open function. 

7. An intuitionistic contra strongly pre- homeomorphism   (I contra S-

pre-hom., for short) function if f is contra pre-continuous function 

and contra open function. 

8.  An intuitionistic  contra  strongly   - homeomorphism   (I contr   S-

  -hom., for short) function if  f is contra  -continuous function and  

contra  open function 

9. An intuitionistic contra S* semi- homeomorphism (I contra S*- 

semi-hom., for short) function if f   is contra continuous function and 

contra semi- open function.  

10. An intuitionistic  contra  S*- - homeomorphism   (I contra S*- -

hom., for short) function  if  f is contra   continuous  function and  

contra -open function. 

11. An intuitionistic  contra   S*- pre- homeomorphism   (I contra S*-

pre-hom., for short) function if  f is contra continuous function and  

contra  pre - open function. 

12.An intuitionistic  contra S*- - homeomorphism   (I contra S*- - 

    hom., for short) function  if  f   is contra continuous function  and       

    contra  -open function. 

 

Proposition 9: Let k= {semi,   , per ,   }and (X,T) , (Y, ) be two ITS's 

and let       be a bijective function then : 

     1. If   is I contra hom. function then   is I contra k- hom. function. 

2. If   is I contra hom. function then   is I contra S- k- hom. function. 

3. If    is I contra hom. function then   is I contra S*-k- hom. function. 

4. If    is I contra - hom. function then If    is I contra semi- 

hom.function. 

5.  If   is I contra semi- hom. function then If    is I contra β- hom. 

function 

6. If    is I contra β- hom. function then If    is I contra pre- hom. 

function 
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7. If    is I contra - hom.function then If    is I contra pre- 

hom.function. 

8. If    is I contra S- - hom.function then If    is I contra S-semi- hom. 

function. 

9.  If   is I contra S-semi- hom.function then If    is I contra S-β- hom. 

function 

10. If    is I contra S-β- hom.function then If    is I contra S-pre- hom. 

function 

11. If    is I contra S- - hom.function then If    is I contra S-pre- hom. 

function. 

12. If    is I contra S*- - hom.function then If    is I contra S*-semi- 

hom. function. 

13.  If   is I contra S*-semi- hom.function then If    is I contra S*-β- 

hom. function 

14. If    is I contra S*-β- hom.function then If    is I contra S*-pre- 

hom.function 

15. If    is I contra S*- - hom.function then If    is I contra S*-pre- 

hom. function. 

16.  If    is I contra S-k- hom.function then If    is I contra k- hom. 

function. 

17. If    is I contra S*-k- hom.function then If    is I contra k- hom. 

function. 

Proof: 

1. Let A be IOS in Y then f 
-1 

(A) is ICS in X (since f is I contra cont. 

function) then f 
-1 

(A) is IkCS in X, hence f is I contra k- cont. function.  

Let B be IOS in X then f
 
(B) is ICS in Y (since f is I contra open function.) 

then f (B) is IkCS in Y then f is I contra k-open function Hence f is I contra 

k- hom. Function. 

2. Let A be IOS in Y then f 
-1 

(A) is ICS in X (since f is I contra cont. 

function) then f 
-1 

(A) is IkCS in X, hence f is I contra k-cont. function 

hence f is I contra S- k- hom. Function. 

3. Let B be IOS in X then f 
(
B) is ICS in Y (since f is I contra open 

function.) then f 
(
B) is IkCS in Y then f is I contra k-open. function. Hence 

f is I contra S*-k- hom. function. 

4. Let A be IOS in Y then f 
-1 

(A) is IαCS in X (since f is I contra α- cont. 

function) then f 
-1 

(A) is ISCS in X, hence f is I contra semi-cont. function. 

Now let B be IOS in X then f 
(
B) is IαCS in Y (since f is I contra α-open 
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function.) then f 
 
(B) is ISCS in Y then f is I contra  semi-open.function. 

Hence f is I contra semi- hom.function. 

5,6,7 we can prove that by the same way. 

8. let A be IOS in Y then f 
-1 

(A) is IαCS in X (since f is I contra α- cont. 

function) then f 
-1 

(A) is ISCS in X ,then f is I contra semi-cont. function 

and f is I contra open function (since f is I contra S-α-hom.function). Hence 

f is I contra S-semi- hom.function. 

9,10,11 we can prove that by the same way. 

12. Let B be IOS in X then f 
 
(B) is IαCS in Y (  since f is I contra α-open 

function.) then f 
 
(B) is ISCS  in Y then f  is I contra  semi-open function 

and f is I contra cont. function (since f is I contra S*-α-hom.function). 

Hence f is I contra  S*-semi- hom.function. 

13,14,15 we can prove that by the same way. 

16. Let B be IOS in X then f(B) is ICS in Y(since f is I contra open 

function) then f
 
(B) is IkCS in Y then f  is I contra  k-open function. Hence 

 f is I contra  k- hom.function. 

17. Let A be IOS in Y then f 
-1 

(A) is ICS in X (since f is I contra cont. 

function) then f 
-1 

(A) is IkCS in X ,then f is I contra k-cont. function. 

Hence  f is I contra k- hom.function.  

Remark  : the converse of proposition 2.9 is not true . 

The following examples shows that: 

1- I contra semi- hom.function does not I contra hom.function  

Example 1:  Let   {     } and   { ̃  ̃  } where   〈  { } {   }〉 

and let   {     } ,   { ̃  ̃  } where   〈  { } { }〉. Define a 

function       by  ( )     ( )         ( )    

Now     ( )  〈  { } { }〉 is ISCS in X since (    ( ))  is ISOS in X 

since (    ( ))       (    ( ))  =X then f is I contra semi-cont.      

function, but not  I contra cont.function since    ( ) not ICS in X since 

(    ( ))  〈  { } { }〉 not IOS in X . And f  is I contra  semi-open 

function since  ( )  〈  { } {   }〉 is ISCS in Y since (  ( ))  is ISOS 

in Y since (  ( ))      (  ( ))   , but  f  not  I contra  open  function 

since  ( ) is not  ICS in Y since     ( )      ( )   

Hence f  is I contra  semi-hom. function, but not I contra  hom. Function. 

2- I contra - hom.function   does   not  I contra  hom.function.  
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Example 2:  Let   {     } and   { ̃  ̃  } where   〈  { } {   }〉 

and let   {     } ,   { ̃  ̃  } where   〈  { } {   }〉. Define a 

function       by  ( )     ( )         ( )    

Now    ( )  〈  { } {   }〉 is IαCS in X since (    ( ))  is IαOS in X 

since (    ( ))          (    ( ))  =X then f is I contra α-cont.      

function, but not  I contra cont.function since    ( ) not ICS in X since 

(    ( ))  〈  {   } { }〉 not IOS in X . And f  is I contra α-open 

function since  ( )  〈  { } {   }〉  is  IαCS in Y since(  ( ))  is IαOS 

in Y since (  ( ))          (  ( ))   , but  f  not  I contra  open  

function since  ( ) is not  ICS in Y since     ( )     ( ) 

I contra  - hom.function but not I contra hom.function   Hence f is 

3- I contra pre - hom.function does not I contra hom.function. 

Example 3:  Let   {     } and   { ̃  ̃  } where   〈  {   } { }〉 

and let   {     } ,   { ̃  ̃  } where   〈  { } { }〉 Define a 

function       by  ( )     ( )         ( )    Now    ( )  

〈  { } { }〉 is IPCS in X since (    ( ))  is IPOS in X since 

(    ( ))         (    ( ))  =X then f is I contra β-cont. function, but 

not  I contra cont.function since    ( ) not ICS in X since (    ( ))  

〈  { } { }〉 not IOS in X . And f  is I contra pre-open function since 

 ( )  〈  {   } { }〉  is  IPCS in Y since (  ( ))  is IPOS in Y since 

(  ( ))        (  ( ))   , but  f  not  I contra  open  function since 

 ( ) is not  ICS in Y since     ( )     ( )  

Hence f is I contra pre - hom.function but not I contra hom.function. 

4- I contra    - hom.function   does   not I contra  hom.function. 

Example 4:  Let   {     } and   { ̃  ̃  } where   〈  {   } { }〉 

and let   {     } ,   { ̃  ̃  } where   〈  { } { }〉. Define a 

function       by  ( )     ( )         ( )    Now    ( )  

〈  { } { }〉 is IβCS in X since (    ( ))  is IβOS in X since 

(    ( ))         (    ( ))  =X then f is I contra β-cont. function, but 

not  I contra cont. function since    ( ) not ICS in X since (    ( ))  

〈  { } { }〉 not IOS in X . And f  is I contra β-open function since  ( )  

〈  {   } { }〉 is IβCS in Y since (  ( ))  is IβOS in Y since 

(  ( ))          (  ( ))   , but  f  not  I contra  open  function since 

 ( ) is not  ICS in Y since     ( )     ( )  
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Hence f is I contra    - hom.function  but   not I contra  hom.functio 

5- I contra S- semi- hom.function does not I contra hom.function. 

Example 5: Let   {     } and   { ̃  ̃  } where   〈  { } {   }〉  

And let   {     } ,   { ̃  ̃    } where   〈  { } { }〉,            

   〈  {   } { }〉 Define a function        by  ( )     ( )    

     ( )            ( )  〈  { } { }〉                     (    ( ))   

is ISOS in X since (    ( ))       (    ( ))  =X ,also    ( )          

       then f is  I contra semi-cont.function , but not  I contra cont.function 

since    ( ) not ICS in X since (    ( ))  〈  { } { }〉 not IOS in X . 

And f is I contra open function since  ( )  〈  { } {   }〉     is ICS in 

Y since C     Hence f is I contra S- semi-hom. Function, but not I contra 

hom. Function.  

6- I contra S- - hom.function does not I contra hom.function. 

Example 6:  Let   {     } and   { ̃  ̃  }where   〈  { } {   }〉 

and let  {     } ,   { ̃  ̃  } where    〈  {   } { }〉     

〈  { } {   }〉. Define a function        by  ( )     ( )       

 ( )     Now    ( )  〈  { } {   }〉 is IαCS  in X since (    ( ))  is 

IαOS in X since (    ( ))          (    ( ))  =X ,also     ( )         

        then f is I contra α-cont.function , but not  I contra cont.function 

since    ( ) not ICS in X since (    ( ))  〈  {   } { }〉 not IOS in X 

.And f  is I contra open function since  ( )  〈  { } {   }〉  is  ICS in Y 

since(  ( ))    is IOS in Y . Hence f is I contra S-  - hom. function but  

not  I contra  hom.function  . 

7- I contra S- pre - hom.function does not I contra hom.function. 

Example 7: Let   {     } and   { ̃  ̃  } where   〈  { } { }〉 

and let   {     } ,   { ̃  ̃    }  where   〈  { } { }〉       

〈  {    } { }〉. Define a function       by  ( )     ( )        

 ( )   .Now    ( )  〈  {   } { }〉 is IPCS  in X since (    ( ))   is 

IPOS in X since (    ( ))       (    ( ))  =X  , also     (B) is  IPCS 

in X then f is I contra pre -cont. function, but not  I contra cont. function 

since    ( ) not ICS in X since (    ( ))  〈  { } {   }〉 not IOS in X 

, and f  is I contra open function since  ( )  〈  { } { }〉  is  ICS in Y 

since (  ( ))    is IOS in Y . 

Hence f is I contra S- pre - hom.function but not I contra hom.function. 
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8. I contra S-   - hom.function does not I contra hom.function. 

Example 8:  Let   {     } and   { ̃  ̃  }where    〈  {   } { }〉 

and let   {     } ,   { ̃  ̃    }where   〈  { } { }〉          

〈  { } {   }〉. Define a function       by  ( )     ( )  

        ( )    

Now     ( )  〈  { } { }〉 is IβCS  in X since (    ( ))  is IβOS in X 

since (    ( ))         (    ( ))  =X ,also     ( )         then f is I 

contra β-cont. function , but not  I contra cont. function since    ( ) not 

ICS in X since (    ( ))  〈  { } { }〉 not IOS in X . And f is I contra 

open function since  ( )  〈  {   } { }〉  is ICS in Y since (  ( ))  =C is 

IOS in Y. Hence f is I contra S-   - hom. function but   not I contra 

hom.function. 

9- I contra S*- semi- hom.function does not I contra hom.function . 

Example 9:  Let     {     }  and      { ̃  ̃    }   where   

〈  { } {   }〉        〈  { } { }〉  and let   {     } and   { ̃  ̃  } 

where   〈  { } { }〉.  Define a function       by  ( )     

  ( )         ( )   .Now    ( )  〈  { } { }〉 is ICS in X since 

(    ( ))    is IOS in X then f is I contra cont. function. And f  is I 

contra  semi- open function since  ( )  〈  { } {   }〉 is ISCS in Y since 

(  ( ))       (  ( ))    , also  ( ) is ISCS in Y , f is not I contra  

open  function since   ( ) is not ICS in Y since  cl  ( )      ( ) . 

Hence f is I contra S
*
- semi-hom. Function but not I contra hom. Function   

10- I contra S*- - hom.function   does not I contra hom. function. 

Example 10: Le   {     }a     {  ̃  ̃    } where   

〈  { } {   }〉   〈  {   } { }〉 and let   {     } and   { ̃  ̃  } 

where   〈  { } {   }〉.Define a function       by  ( )     ( )  

      ( )   .Now    ( )  〈  { } {   }〉 is ICS in X since 

(    ( ))    is IOS in X, then f is I contra cont. function. And f  is I 

contra α- open function since  ( )  〈  { } {   }〉  is  IαCS in Y 

since(  ( )) is IαOS in Y since ( ( ))          (  ( ))    

also  ( ) is IαCS in Y, but  f is not I contra  open  function since   ( ) is 

not ICS in Y since  ( ( ))  is not IOS in Y. Hence f is I contra S*-  - 

hom. function but  not  I contra  hom. function . 

11- I contra S*- pre - hom.function does not I contra hom.function. 
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Example 11: Le   {     }a     {  ̃  ̃        }where   

〈  {   } { }〉   〈  { } { }〉   〈  { } {   }〉and D=〈  {   }  〉 and 

let   {     } and   { ̃  ̃  } where     〈  { } {   }〉  . Define   a   

function       by  ( )     ( )         ( )                 contra 

continuous function since:    ( )  〈  { } {   }〉 is ICS in X  

(   ( )) =A is IOS in X. and f is I contra pre – open function 

Since ( )  〈  {   }  〉                   (  ( ))               

 ( ))       (  ( ))          ( )  ( )      ( )         in Y but 

f  does not I contra open function since f(D) is not ICS in Y since 

clf(D)=y  ( )  Hence f is I contra S*- p- hom.function  but  not  I contra  

hom.function 

12- I contra S*-   - hom.function does not I contra hom.function 

Example 12:  Let   {     } and   { ̃  ̃    }          

〈  {   } { }〉       〈  { } { }〉 and let   {     },    

{ ̃  ̃  }where   〈  { } { }〉      . Define a function       by 

 ( )     ( )          ( )   . Now    ( )  〈  { } { }〉 is ICS in 

X since (    ( )) =B is IOS in X then f is I contra cont. function. And f  is 

I contra β- open function since  ( )  〈  {   } { }〉  is  IβCS in Y since 

(  ( ))  is IβOS in Y since (  ( ))         (  ( ))   , also   ( ) is 

IβCS in Y , but  f is not I contra  open  function since   ( ) is not ICS in Y 

since  ( ( ))  is not IOS in Y. 

Hence f is I contra S*-   - hom.function but   not I contra hom.function. 

Remark : 

1. The notion I contra S- semi- hom.function and I contra S*- semi- 

hom.function are independed notion . 

 At first we prove that I contra S- semi- hom.function  does not   I contra 

S*- semi- hom.function  for example : Let   {     } and   { ̃  ̃  } 

where   〈  { } {   }〉 and let   {     } and   { ̃  ̃    } where 

  〈  { } { }〉.   〈  {   } { }〉 Define a function       by 

 ( )     ( )         ( )   .Now    ( )  〈  { } { }〉 is ISCS  in 

X since (    ( ))  is ISOS in X since (    ( ))       (    ( ))  =X , 

also   ( )                 then f is  I contra semi-cont.function , but not  I 

contra cont.function since    ( ) not ICS in X since (    ( ))  

〈  { } { }〉 not IOS in X . And f is I contra open function since  ( )  
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〈  { } {   }〉     is ICS in Y since C      Hence f is I contra S- semi-

hom.function, but not I contra S*- semi hom.function 

Now the I contra S*- semi- hom.function does not   I contra S- semi- 

hom.function  we shown that by this example :  

      {     } and   { ̃  ̃    } where   〈  { } {   }〉 

      〈  { } { }〉 and let   {     }and   { ̃  ̃  } where 

  〈  { } { }〉 . Define a function       by  ( )     ( )              

       ( )           ( )  〈  { } { }〉                 (    ( ))  

  is IOS in X  then f is  I  contra  cont.function. And f  is I contra  semi- 

open function since  ( )  〈  { } {   }〉 is ISCS in Y since  (  ( ))  is  

ISOS  in Y   (  ( ))       (  ( ))    , also  ( ) is ISCS in Y , f is 

not I contra  open  function since   ( ) is not ICS in Y since  cl  ( )  

    ( ). Hence f   is I  contra   S
*
- semi-hom. function but  not  I contra  

S-sime-   hom.function.   

2. The notion I contra S- α - hom.function and I contra S*- α - hom. 

function are  independed  notion . 

At first we prove that I contra S- α - hom.function does not   I contra S*- α 

- hom.function for this example: Let   {     } ,   { ̃  ̃  }  

where   〈  { } {   }〉 and let   {     } ,   { ̃  ̃  } where   

〈  {   } { }〉     〈  { } {   }〉   . Define   a   function         by 

 ( )     ( )         ( )   . Now    ( )  〈  { } {   }〉 is IαCS  

in X since (    ( ))  is IαOS in X since (    ( ))          (    ( ))  

=X ,also     ( )                then f is I contra α-cont.function , but not  I 

contra cont.function since    ( ) not ICS in X since (    ( ))  

〈  {   } { }〉 not IOS in X. And f is I contra open function since  ( )  

〈  { } {   }〉  is ICS in Y since(  ( ))    is IOS in Y. Hence f is I 

contra S-  - hom.function but not I contra S*-   -hom.function   

Now the I contra S*- α - hom.function does not   I contra S- α - 

hom.function we shown that by this example: Le   {     }a     

{  ̃  ̃    }where   〈  { } {   }〉   〈  {   } { }〉 and let   

{     } and   { ̃  ̃  } where      〈  { } {   }〉  . Define   a   function   

      by  ( )     ( )         ( )     Now  〈  { } {   }〉 is ICS 

in X since (    ( ))    is IOS in X , then f is I contra  cont.function  

.And f  is I contra α- open function since  ( )   〈  { } {   }〉  is  IαCS in 
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Y since(  ( )) is IαOS in Y since ( ( ))           (  ( ))    

also  ( ) is IαCS in Y , but  f is not I contra  open  function since   ( ) is 

not ICS in Y since  ( ( ))  is not IOS in Y. Hence f is I contra S*-  - 

hom.function but not I contra S-    -hom.function. 

3. The notion I contra S- pre - hom.function and I contra S*- pre- 

hom.function are  independed  notion . 

At first we prove that I contra S- pre- hom.function does not   I contra S*- 

pre- hom.function  for this example : 

Let   {     } and   { ̃  ̃  } where   〈  {   } { }〉 and let 

  {     } and   { ̃  ̃    }  where   〈  {    } { }〉        

〈  { } {   }〉. Define a function       by  ( )     ( )       

  ( )          ( )  〈  {   } { }〉                    (    ( ))  is 

IPOS in X since (    ( ))       (    ( ))  =X, also     (C) is IPCS in 

X then f is I contra pre -cont. function, but not I contra cont. function since 

   ( ) not ICS in X since (    ( ))  〈  { } { }〉 not IOS in X . And f 

 is I contra open function since  ( )  〈  {   } { }〉  is  ICS in Y 

since (  ( ))    is IOS in Y. Hence f is I contra S-pre - hom.function 

but not I contra S* - pre-hom.function. Now the I contra S*- pre- 

hom.function does not  I contra S- pre- hom.function  we shown that by 

this example : Let   {     } and   { ̃  ̃        } where    

〈  {   } { }〉    〈  { } { }〉   〈  { }{   }〉      〈  {   }  〉and 

let   {     }      { ̃  ̃  }         〈  { } {   }〉      . Define  a  

function       by  ( )     ( )          ( )     Now f is I 

contra  cont. function          ( )  〈  { } {   }〉 is ICS  in X since 

(    ( )) =A  is IOS in X .And f  is I contra  pre - open function since 

 ( )  〈  {   }  〉  is  IPCS in Y since (  ( ))  is IPOS in Y since 

(  ( ))       (  ( ))          ( )    ( )    ( ) are IPCSs in Y , 

but  f is not I contra  open Function since   ( ) is not ICS in Y since 

    ( )     ( ) is not IOS in Y. Hence f is I contra S*-pre -

hom.function but not I contra S*-pre -hom.function. 

4. The notion I contra S- β- hom.function and  I contra S*- β - 

hom.function  are  independed  notion . 

At first we prove that I contra S- β - hom.function does not   I contra S*- β 

- hom.function for this example:Let   {     } ,   { ̃  ̃  }      
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  〈  {   } { }〉 and let   {     },   { ̃  ̃    }where   

〈  { } { }〉          〈  { } {   }〉. Define a function       by 

 ( )     ( )          ( )   . Now    ( )  〈  { } { }〉 is IβCS  

in X since (    ( ))  is IβOS in X since (    ( ))         (    ( ))  

=X ,also     ( )         then f is I contra β-cont.function , but not  I 

contra cont.function since    ( ) not ICS in X since (    ( ))  

〈  { } { }〉 not IOS in X. And f is I contra open function since  ( )  

〈  {   } { }〉  is ICS in Y since (  ( ))  =C is IOS in Y. Hence f is I 

contra S-   - hom.function  but   not I contra S*-   -hom.function. 

Now the I contra S*- β - hom.function  does not   I contra S- β - hom. 

function we shown that by this example :  Let   {     } and   

{ ̃  ̃    }where    〈  {   } { }〉        〈  { } { }〉and let   

{     } and   { ̃  ̃  }where   〈  { } { }〉      . Define a  function 

      by ( )     ( )         ( )   .Now    ( )  〈  { } { }〉  

is ICS in X since (    ( )) =B is IOS in X  then f is I contra  cont.function  

And f  is I contra β- open function since  ( )  〈  {   } { }〉  is  IβCS in 

Y since (  ( ))  is IβOS in Y since (  ( ))         (  ( ))   , also 

  ( ) is IβCS in Y , but  f is not I contra  open  function since   ( ) is not 

ICS in Y since  ( ( ))  is not IOS in Y. Hence f is I contra S*-   - 

hom.function but   not I contra S-   -hom.function. 

We summarized the above result by the following diagram . 
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Diagram : The following  implications are true and not reversed . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contra S-  - hom. 

functions 

Contra S- semi- 

hom. functions 

Contra S-  -

hom.functions 

Contra hom. functions 

Contra   - hom. 

functions 

Contra semi-hom. 

functions 

Contra  -hom. 

functions 

Contra S
*
 -   –hom. 

functions 

Contra S
*
 - semi-

hom. functions 

Contra S
*
 -   -hom. 

functions 

Contra S
*
 - pre–

hom. functions 

Contra S-pre-hom. 

functions 

Contra pre-hom. functions 
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بعض‌أنواع‌من‌‌الدوال‌المتشاكلة‌المعاكسة‌وبعض‌علاقتها‌مع‌‌أعمام‌‌‌‌
‌بعضها‌بين‌الفضاءات‌التبولوجية‌الحدسية

‌
 أمل‌عباس‌**‌‌‌‌‌‌‌سهام‌محمد‌علي‌**‌‌‌‌‌‌‌‌‌‌‌‌يونس‌جهاد‌ياسين*‌‌‌‌

‌ـ‌جامعة‌تكريت‌‌‌*‌‌قسم‌الرياضيات،‌كلية‌التربية
‌**‌قسم‌الرياضيات،‌كلية‌العلوم‌ـ‌جامعة‌كركوك
تاريخ القبول:  2011/4/26  تاريخ الاستلام:2010/12/12 ,

  
‌

 الخلاصة‌
 

وبعض  (contra homeomorphism)سندرس في هذا البحث مفهوم الدوال المتشاكلة المعاكس
 contra k-homeomorphism functions ,contra strongly k-homeomorphism functions .أنواعها

and contra S*-k- homeomorphism functions  بين الفضاءات التبولوجية الحدسية وكذلك سندرس
  الدوال مع بعضها عن طريق بعض المبرهنات والأمثلة وتم وضع مخطط لتلك العلاقة. علاقة هذه
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