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Abstract 

 
         Same basic properties of resonators from a wave – optical and from a ray 

resonator were investigated. These properties play a pivoted role in determining both 

the spectral properties of optical resonators and the behavior of rays inside such 

resonators. In this investigation, the phase was used as a unifying concept. Furthermore 

the basic expressions for paraxial two mirror resonators were considered a long with a 

special case where the phase assumes a rational value=2  k \N. In this case a 

paraxial two-mirror resonator has, at the same time, a highly degenerate eign frequency 

spectrum and supports closed periodic orbits that repeat after N round trips. Outside the 

paraxial limit, these periodic orbits are still useful they allow us to make general 

statements about the behavior of the phase for non paraxial eign modes. Also extend the 

expressions for the paraxial two-mirror resonator so that can be used to analyse   

paraxial resonators with astigmatic eign modes. Also, I suggest a possible application of 

a degenerate two-mirror resonator as a high- resolution length- sensing interferometer. I 

discuss its principle of operation and point out some limitations.  

  

Introduction  
 

    

     At the start of the last decade of the 19th century, Gouy (Klaassen et al., 

2004, Dingjan et al., 2002) showed that a beam of light that passes through 

a focus esquires an additional phase factor  He demonstrated this using a 

variation on the Fresnel double – mirror experiment, where one of the two 

mirrors was replaced by a concave mirror.  Further study showed that the 

magnitude of Phase depends on the transverse Structure of the focused 

beam. For well – behaved, smooth beams without additional structure, this 

additional phase equals  Careful analysis has shown that this change in 

phase does not occur suddenly occurs gradually in a region around the 

focus. Since at first glance the Phase appears to be a purely wave- optical 

property, it is surprising to find that it also plays a prominent role in 

determining the ray properties of resonators. This is a direct consequence 

of the fact that Gaussian beam propagation rules are the same as the rules 

that govern paraxial ray optics. 

      In this search draw together equations and concepts concerning wave 

optics and ray optics in resonators of various types, using the Phase as a 
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unifying concept. Most of these results are not new, but are phrased in 

ways that are useful for the rest of this research. The combination of optics 

emphasizes aspects of optics that rarely get much attention in textbooks or 

scientific journals. Our discussion naturally leads to speculation on cases 

that are not covered by standers theory, most notably non paraxial 

resonators. In the next section recall the familiar expressions for paraxial 

two-mirror resonators that can be found in any textbook on laser physics 

and resonator optics (Siegman, 1986, Milonni & Eberly, 1988 and 

Verdeyen, 1989), and highlight the parallels between wave and ray optics 
in such systems. Then, in section 4 I will consider so called degenerate 

paraxial two-mirror resonators, where the Phase is a rational fraction of 
2. Next, in section 5, we will consider what happens to those periodic 

orbits, and hence to that special behavior, outside the paraxial limit and I 

will speculate about the Phase for non paraxial modes. In section 6, 

consider the Phase in the context of three-mirror resonators, where the 

resonator eigenmodes are astigmatic. Also give some attention to the 

possibility of closed periodic orbits in this type of resonators, and briefly 

speculate about three-mirror resonators outside the paraxial limit. Finally, 

in section 7 discuss the possibilities of using a degenerate resonator to 

create a high – resolution optical interferometer. 

 

Paraxial Two-Mirror Resonators  
 

1-Wave– optical perspective 

      The simplest possible optical resonator is a stable paraxial two-mirror 

resonator. Its eign modes are the familiar Hermit-Gaussian or Laguerre-

Gaussian modes. For a fundamental Gaussian beam, calculating the phase 

is straightforward. If we choose z=0 at the location of the focus of the 

beam, and calculate the phase difference relative to this focus find that: 

)arctan()(
Rz

z
z                                                                             …(1) 

 

       Where zR is the Raleigh range of the beam (Siegman, 1986). The Phase 

upon going from a plane at z0 to a plane at z1 is then given by  
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     The round trip Phase  for the fundamental Gaussian mode of a 

resonator can be found by choosing an arbitrary reference plane zr inside 

the resonator, and calculating the total phase going from this reference 

plane to the plane of one of two end mirrors, located at z2, then to other end 
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mirror at z1 (taking into account the fact that we are now traveling in the 

opposite direction), and back again to zr,   

    )()(2)()()()()()( 121212 zzzzzzzz rr      

…(2a) 

       Where we have assumed that z1< zr < z2.we see that this result is 

independent of the choice of reference plane. One useful way to 

parameterize the geometry of a two- mirror resonator is through the so 

called "g parameters" g1,2= 1-L/R1,2 , where L is the length of the resonator 

and R1 and R2 are the radii of curvature of the two mirrors. We then find, 

from elementary geometrical optical considerations (Siegman, 1986), that 

the case 0 ≤ g1g2 ≤ 1 corresponds to a so called stable resonator. In a wave 

– optical context, a resonator is called stable when its eign modes have 

finite trans- verse dimensions on the mirrors. The 1/e2 intensity radii of the 

spots on the mirrors w1 and w2, as well as the 1/e2 – radius of the focus of 

the beam wo (the " waist”), can be calculated using (Milonni & Eberly, 

1988).  
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     In Fig.1, plot the stability diagram for two – mirror resonators, where 

we have indicated three familiar configurations.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1: Stability diagram or g1-g2 diagram for two-mirror optical   

resonators, where g1,2=1-L/R1,2 . The shaded region 0 ≤ g1g2 ≤ 1 contains all 

stable resonator configurations, where, in the paraxial limit, light remains 
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confined inside a resonator indicated are the Plano- Plano, confocal and 

concentric resonator configurations (Milonni & Eberly , 1988). 
 

        To find the eign modes of a resonator parameterized by g1 and g2, we 

require the curvature of the wave fronts at the mirrors to match the shape of 

those mirrors, as in Fig.2.  

 

 

 

 
      
 

Fig.2: schematic indication of the wave fronts of the eign modes of a 

two-mirror resonator. At the two-mirrors, the wave fronts must match 

the curvature of the mirrors.  

       Then Rayleigh range zR and the locations of the mirrors z1 and z2 are 

uniquely determined by the resonator length L=z2-z1 and the radii of 

curvature of the mirrors R1 and R2.  For the Phase, only the ratios z1\zR and 

z2\zR are relevant. Expressed in terms of g1 and g2 these ratios are: 
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Substituting Eq.1 into Eq 2a we find, after some algebra that for the round 

trip Phase. 

 212 ggsarcc                                                                       …(7) 
 

      For a Hermit – Gaussian mode with transverse mode indices m and n, 

or for a Laguerre – Gaussian mode with transverse mode indices p and L, 

the round trip Phase is given by  
 

  10,0  nn          

  and    

  1323                                                                              …(8) 
                           

       The Eign frequencies of a two – mirror paraxial resonator are then 

given by 
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         The resulting spectrum consists, for every longitudinal mode index q, 

of combs of equidistant frequencies, where the distance between 

frequencies is the transverse mode spacing   L =c/2L. . These combs 
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 are offset by the longitudinal mode spacing L =c/2L, as illustrated in 

Fig.3.  

 

 

 

 

 

 

 

 

 
 

Fig.3: Schematic representation of the structure of the eign frequency 

spectrum of paraxial two- mirror resonator. Indicated are, for several 

values of q, the equidistant frequency combs, with spacing between the 

peaks of   . The combs are offset by the longitudinal mode spacing 

L. Also indicated is the full spectrum resulting from summing over 

all possible values for q. (Siegman, 1986). 

        In this figure, all transverse modes are indicated by bars of the same 

height. We see that modes that have equal longitudinal mode indices q and 

equal sums of the transverse mode indices m+n have the same frequency. 

Therefore, every eign frequency in the comb corresponding to a single 

value for q is a (m+n+1) fold degenerate of transverse modes. 

 
 

Ray-Optical perspective 
    To describe the ray behaviors of a paraxial two-mirror resonator, we 

consider a single plane containing the optical axis, and locally describe 

each ray by a vector r=(x, x
/
). This vector contain the distance of the ray to 

the axis x and its slope x
/
 in a given reference plane perpendicular to the 

axis. Next, we calculate the round trip ABCD- matrix, where we choose 

mirror M1 as reference plane. Propagation from mirror to mirror, over a 

distance L, is given by (Kogelnik et al., 1966): 
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      While the focusing effect of mirrors M1 and M2 is described by  
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     The full round trip ABCD- matrix then equal 

…(10)                         
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    Where in the second step we have immediately rewritten everything in 

terms of g1 and g2. The eign values for this round trip matrix are: 

21
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Where, in the last step, we have used that the resonator is stable, so 

that (0≤g1g2≤1). In ray optics, a resonator is called stable when a paraxial 

ray that is injected into the resonator does not escape, but instead remains 

confined close to the axis of the resonator. Combining these expressions for 

the eign values with eq. (7) and standard trigonometric relations, we find  

)exp(2,1  i
 

 

 

Degenerate paraxial two – mirror resonators. 
          The discussion in the previous section is valid for all possible 

values of the Phase (0≤ө≤2). However, when the Phase is a rational 

number times 2, that is  2where K and N do not share common 

factors, these equations have unexpected consequences. Then, Eq. (9) can 

be rewritten to:  
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         From this we see that raising the sum of the transverse mode indices 

m+n by N, while at the same time lowering the longitudinal mode index q 

by K, will leave the resonance frequency unaltered, irrespective of the 

choice of q,m or n . Therefore, a part from the mode degeneracy within 

"families" of transverse modes mentioned in section 2, the resonator now 

also shows degeneracy between different transverse mode families, 

separated by K in longitudinal mode index and N in total transverse mode 

index. The entire eign frequency spectrum collapses into these strongly 

degenerate clumps, spaced at  =1/NL =c/2LN, Fig.4. Thus, a single 

free spectral range will contain N of these degenerate clumps of modes, a 

fact that was first observed as early as 1964 (Herriott et al., 1964). 

 

 

 

 

 

  …(14)        
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     Fig.4: Schematic representation of the structure of the eign 

frequency spectrum of a typical degenerate paraxial two- mirror 

resonator, with  2. Indicated for three values of q, the 

equidistant frequency combs, with spacing between the peaks of  

L. The combs are offset by the longitudinal mode spacing 

L. Also indicated is the full eign frequency spectrum obtained from 

summing over all possible q. (Herriott et al., 1964). 
 

      The eign values of the round trip matrix of a resonator for which         

 2 follow from eq. (14): 

              

 )/(2exp2,1 NKi                                                                    …(16) 

 

      We see that for degenerate resonators, we can distinguish two basic 

classes of periodic orbits. The first class consists of generic orbit, where the 

ray never strikes a mirror at normal incidence, such as in Fig. 5b and 5e. 

The second class consist of reciprocating orbits, where the orbit strikes a 

mirror at normal incidence, reverse direction and re-traces itself, as in Fig. 

5a,c,d and f. 

 

 

 

 

 

 

 

 

     Fig.5: Typical closed periodic orbits in degenerate resonators. (a) 

K/N =1/3, reciprocating path ("Z-shaped"),(b) K/N=1/3, generic path, 

(c) K/N=2/5, reciprocating path, (d) K/N=1/4, reciprocating path ("W-

shaped"), (e) K/N=1/4, generic path, (f) K/N=1/4, reciprocating path 

("M-shaped").(Herriott et al., 1964) 
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Folded three-mirror resonators  
        A more complicated optical resonator than the two-mirror resonators 

considered so far is a folded three- mirror resonator. Our interest in this 

type of resonator stems from the fact that. In Fig.6 we draw a simple folded 

three-mirror resonator.  

 

 

 

 

 
 

Fig.6: Schematic drawing of a three-mirror resonator. MF is the curved 

folding mirror; M1 and M2 are the resonator end mirrors. The 

resonator is folded through 2, so that the angle of incidence of the 

axis on the folding mirror MF is    

 

        It is essential that the folding mirror MF is a curved mirror. If not, the 

resonator can be trivially transformed back into a two-mirror resonator. 

Because of the non- normal incidence on the folding mirrors, the effective 

radius of curvature of that mirror, and hence the focal power, will be 

different for different planes containing the axis. Here, it is sufficient to 

consider the behavior in two perpendicular planes, both containing the 

optical axis, the so called principal planes.  

      The first of these is the plane defined by the two segments of the 

optical axis. This is customarily called the tangential plane, and the 

effective radius of curvature of the folding mirror in this plane is (Dingjan 

et al., 2002):  

  RTR.cos                                                                                …(17) 

    When the folding angle 2 increases, RT will decrease and hence the 

focusing effect of the folding mirror in the tangential plane will increase. 

     The second plane is the plane perpendicular to the tangential plane and 

containing the optical axis. Because the optical axis is folded, this plane is, 

real space, folded as well.  Customarily, it is called the sagittal plane. The 

effective radius of curvature of the folding mirror in this plane is (Dingjan 

et al., 2002):   

          RSR/cos…(18)

     So that, for increasing folding angle 2, RS will increase and hence the 

focal power will decrease. 

      As a result, the total focal power in a single round trip through the 

resonator depends on whether one considers the tangential or the sagittal 

plane. A direct consequence of this is that the eign modes of a paraxial 
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three-mirror resonator are astigmatic Hermite- Gaussian modes, with 

generally an elliptical cross-section. Also, instead of a single phase to 

describe the structure of. The eign frequencies of the astigmatic Hermit –

Gaussian eign modes of a folded three-mirror resonator are given by 

Siegman (1986), Hanna (1969). 
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       Where  ands are the phases for the tangential and the sagittal 

plane, respectively. These phases depend on the folding angle 2 of the 

resonator. Using the appropriate effective radii of curvature of Eqs(

 17and 18) for the folding mirror. The eign values of these round trip 

matrices will then be exp(±iand exp(±iS

In Fig.(7) plot  and S versus half folding angle  , for a resonator 

with three- mirrors with a radius of curvature R=1m. One arm of the 

resonator has a length L1=10cm, while the other arm has a length L2 

=20cm.      

 

 

 

 

 

 

 

 

 
 

       Fig.7: Tangential and sagittal phases T and S versus half folding 

angle , for a folded three-mirror resonator consisting of three-

mirrors with radius of curvature R=1m. The length of one arm of the 

resonator L1=10cm, while the length of the other arm L2=20cm 

(Siegman, 1986). 
 

    I can re-order the terms in eq. (19) to get the more practical form. 
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        Where we have introduced the average phase  ST   / 2 and the 

phase difference  ST   . Using this equation we see that the eign 

frequency spectrum of a paraxial folded three- mirror optical resonator has 

a more interesting structure than that of a two-mirror optical resonator. For 

every longitudinal mode index q there is a "super-family", an equidistant 
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series of mode families with constant total transverse mode index m+n. The 

centers of each family are spaced at  c/2L, similar to the 

transverse mode spacing  for a two-mirror resonator. From eq.(20) we 

see, after noting that for a family of modes m+n is a constant so that the 

difference m-n can only change in steps of 2, that the distance between the 

different members of a single family is equal to c/2L. 

(Siegman, 1986). 

 

Degenerate resonator as high-resolution interferometer 
          As we saw in section 4, a degenerate two-mirror optical resonator 

has an eign frequency spectrum consisting of evenly spaced resonance, 
with an inter-resonance distance of c/2L. The best known 

example of such a degenerate resonator is a confocal Fabry-Perot resonator, 

with N=2, as already mentioned on eq.15 Here, I will consider resonators 

with much larger N. We may consider using such a degenerate resonator as 

a high- resolution interferometer for sensing changes in length, as changing 

the length of the resonator will shift its resonance frequencies. If we inject 

monochromatic light (He-Ne Laser) at a fixed frequency into a 

resonator, and monitor the amount of transmitted light as the length of 

resonator changes, I will see maximum transmission when a resonator eign 

frequency coincides with the frequency of the injected light. To first 

approximation, the eign frequencies of a resonator change linearly with the 

length of the resonator, and changing the length of the resonator by , 

where  is the wave length of  the He-Ne laser, will shift all frequencies by  

Lc/2L, a single free spectral range.  

         For a degenerate resonator where the distance between resonances is 

1/N.c/2L, that is a factor of 1/N smaller than for non degenerate mode- 

matched interferometer, the change in length of the resonator required to 

get from one resonance to the next is also a factor 1/N smaller, L =1/N. .  

          In reality, conventional, non degenerate resonators also offer a 

resolution that is higher than the fundamental mode spacing Because 

the intensity reflectivity of the mirrors R1,2 <1 , every resonance has a finite 

width (FWHM). The ratio of the free spectral range to this line width is 

called the finesse F, and is, for R1,2 close to 1, given by  

    
RL

c
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                                                                      …(21)                 

With 

         R= R1.R2.  
 

      There are several limitations to using a degenerate optical resonator as a 

high- resolution interferometer.  The first is that a resonator is only 
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perfectly degenerate at a single resonator length LK/N. Changing this length, 

even by tiny fractions of , will destroy this perfect degeneracy.  

       A second limitation is that it is not possible to increase N at will. To 

get a nicely developed degenerate spectrum, with inter- resonance spacing 

1/N.c/2L, one wishes to excite more than N families of modes, each with 

constant (m+n).  

       A final limitation on a high- resolution interferometer, one that is 

shared between both conventional and degenerate resonator types, is the 

line width of individual resonances. Therefore, a resolution that is many 

orders of magnitude smaller than this minimum line width cannot be 

reached. However, using present day technology, a finesse F as high as 10
5 

or 10
6
 is possible allowing, in principle, an inter-resonance spacing as small 

as 

pm. (K.An et al., 1997, Katherine Kerner, 2000).        

 

Conclusion  
1. I have seen in this research that consideration of both wave and ray 

properties of optical resonators in combination can help improve the 

understanding of both. There exist close ties between the structures of the 

eign frequencies spectrum of a resonator.  

2. The behavior of rays in the resonator’s a result, a convenient way of 

calculating. 

3. The phase of a resonator, =2k\N, that resonator has at the same time 

a highly degenerate eign frequency spectrum, and supports periodic orbits.  

4.  At least some of these periodic orbits survive outside the paraxial limit, 

but, where in the paraxial limits all periodic orbits for a given K/N occur at 

the same resonator length LK/N, parax, non paraxial periodic K/N-orbits are 

only possible at resonator lengths that depend strongly on the exact shape 

of the orbit. 

5. The behavior of these periodic orbits outside the paraxial limit, we may 

conclude that the round trip phase for none paraxial eign modes will be 

larger than the paraxial phase.  

6. A full calculation of non paraxial eign modes has to be performed.        

7. A folded three-mirror optical resonator has properties that resemble 

those of a two-mirror resonator. A crucial difference is that eign modes are 

astigmatic, so that now phase's and S are needed to fully describe both 

the structure of the eign frequency spectrum and general ray behavior 

inside such a resonator.  

8. Degenerate eign frequency spectra and periodic orbits are still possible, 

but now with the stricter requirement that both and S are rational 

fractions of 2 



Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011 

 

 

 641 

 

9. We saw that a degenerate two-mirror resonator may be used as a high-

resolution interferometer for length –sensing purposes, where the benefit 

over a more conventional standing wave interferometer lies in the extended 

working rang.  
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عالية  مرنان ذي مراتين كمدخال حساس ذي قابلية تفريقية  
 

 سوران ذوالنون ياسين
 اربيل /جامعة صلاح الدين كلية الزراعة _

62/2/6112, تاريخ الاستلام: 62/4/6122تاريخ القبول:  
 
 الخلاصة

 

لحزمي. وتلعب هذذه  الموجي و المرنان ا –خلال هذه الدراسة, حققت بعض خصائص للمرنان البصرى         
 الخصائص دورا فعالًا لتحديد صفات الطيفية للمرنان البصرى و سلوك الحزم داخل المرنان .

استخدم الطور كفكرة توحيدية. اضافة الى ذلك لوحظ الصيغ الاساسية للمحاور المرنان المذزدو  كحالذة        
في هذه الحالة المحذاور المرنذان    .( 2πk/N= ) خاصة حيث أن الطوريمكن افتراصه بأن له قيمة صحيحة

 Nالمزدو  له في نفس الوقت, انحلال عالي لتردد ذاتي للطيف ويزود مدارات مغلقة دورية حيث يتكرر بعذد  
 من دورات المعادة.

جعل صيغة عامة حول سلوك للطور ارات دورية تكون مفيدة خار  نطاق هذا المحور لتسمح لنا دهذه الم       
بتمديد صيغ المحاور المرنان المزدو  حيذث يمكذن اسذتخدام     بالاضافة قمت –غير محموري لانماط الذاتية 

لتحليل محاور مرنان مع عيوب انماط ذاتية. اقترحت تطبيقاً ممكنا لانحلال المرنان المذزدو  كتفريذق عذالي    
 للعملية وملاحظة تقيدات .لطول المدخال الحساس ومبادئه الاساسية 

 

 

 

 

 

 

 

 

 

 


