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Abstract 
 

The text of this paper covers a generalization of the radial two-body nuclear 

potentials and then derivation of a new formula to evaluate their matrix element. A new 

formula was derived and applied successfully to calculate the single-particle matrix 

elements of the spin-isospin dependent and spin-isospin independent potentials by using 

a mathematica code. 

 

Introduction 
The basic technical problem in nuclear-shell theory involves the 

calculation of matrix elements of the physically relevant operators such as 

one- and two-body operators, pair creation operators, etc., between definite 

states of an n-particle configuration. The standard technique for the 

evaluation of such matrix elements makes use of the fractional parentage 

expansion which is defined as the coefficients for the expansion of 

antisymmetrical wave - function in terms of the complete set of the vector - 

coupled parent states with a lower degree of antisymmetry (Kaminski. et al, 

1975). 

From the fact that the atomic nucleus is a quantal and many-body 

system (containing A-nucleons), the A-body matrix elements of the 

measurable single- and two- body operators (which are more predominant 

operators) can be transformed to a spin-isospin included matrix elements 

corresponding to one-and two-body opertaors. In such transformation the 

one-body and two-body coefficients of fractional parentage can be used for 

the one- and two-body operators, respectively (Langanke. et al, 1993). 

One of the important features of the nuclear interactions from the other 

types of the interactions is the absence of a perfect mathematical formula of 

them. Therefore, in the calculations of nuclear shell models many different 

types of the empirical and phenomenological potentials have been proposed 

to represent the nuclear force and hence the nuclear interactions between 

the nucleons. In most nuclear shell model applications the nuclear 
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interactions were restricted to be two-body interaction (more predominant 

type) and then the higher order of the interactions were ignored. 

In the basics of nuclear shell theory, the isospin-included two-body matrix 

element corresponding to the operator of a measurable quantity can be 

classified into two kinds: JJ-coupling and LS-coupling. Each of such types 

of the couplings (JJ and LS) can also be written either in terms of the two 

individual nucleon coordinates (position, spin and isospin) correlative-and 

center of mass- coordinates (Brussaard & Glaudemans, 1977).  

From the review of literature one finds that the nuclear two-body 

interactions with central, spin-orbit, and tensor types, are dependent on the 

relative coordinates, the Brody-Moshinsky coefficients must be used to 

transform from the individual coordinate representation to the relative- and 

center of mass-coordinates then remove algebraically the center of mass 

coordinates to remain the reduced single-particle (radial) matrix element 

only. 

Actually, the reduced single-particle matrix elements were obtained 

in two methods; the first one is perfect numerical method by which the 

reduced matrix element can be treated as integral of an integrand function 

and then it is obtained numerically. This method was widely used from the 

works Radhi (Radhi. et al, 2008) to calculate single-particle reduced matrix 

element for study the nuclear structure (electron scattering form factors). In 

the other hand, the second method represents a mathematical technique by 

which the single-particle matrix element can be expressed as the Talmi 

integrals; this method was applied by Ursescu (Ursescu. et al, 2005) to 

determine the reduced matrix elements. 

The aim of the present study is to derive a new mathematical formula 

to compute the single-particle reduced matrix elements. The main text of 

this paper is divided into three sections. In section two, a general formula 

will be proposed to represent the nuclear potentials (i.e. central, spin-orbit, 

tensor, types). In section three we will try to obtain a new derived formula 

to calculate the single-particle matrix element for some famous two-body 

interactions. Finally, in the fourth section, a mathematica code has been 

used to compute the results and compared with thoseinref. (Ursescu et al, 

2005). 

1-  General representation of nuclear two-body potentials  

Because the nuclear two-body operators depend on the relative coordinates, 

any two nucleon spin-isospin included state in jj-coupling form, i.e 
|                 ⟩, must be transformed to the LS-coupling form 
|                 ⟩, then from the Brody-Moshinsky coefficients the single-

particle coordinates in the LS-state is transformed to the intrinsic and 

center-of-mass coordinates |             ⟩ (Ursescu. et al, 2005) and 
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(Moshinsky, 1959); and from the recoupling process intrinsic coordinates 

can be separated from the center-of-mass coordinates |            ⟩. Thus, 

the matrix element for a nuclear two-body potential is given by van Hees 

(van Hees & Glaudemans, 1983): 

⟨             | |             ⟩    ∑      
         

      

        

  
       

      

  
  
 

 
  

  
 

 
  
(     ) 

 
  
 

 
  

  
 

 
  
(       )      

     (     )      
      

(       ) 

 

[  (  )     ][  (  ) 
      ]

 √(     )(     )
⟨      | |         ⟩

  
                                  ( ) 

 

Where the coefficients B and F are symbolized to the Brody-Moshinsky 

brackets and the normalized 9j-symbols, respectively; while 

 ⟨      | |         ⟩
  

  is the spin-isospin matrix element of the potential V in 

the relative coordinates. 

In general, the nucleon-nucleon interaction V may be classified into 

two classes: central and noncentral (i.e. tensor, two-body spin-orbit…ect 

interactions). They can conveniently be written in three kinds: Wigner-

Majorana-Bartlett-Heisenberg representation with the space and spin 

exchange operators; spin and isospin representation with dot product of the 

individual two position-, two spin-, and two isospin- operators; and triplet-

singlet even-odd representations with the singlet-odd, singlet-even, triplet-

odd, and triplet-even operators (Schiffer & True, 1976). 

All the local potentials may have different strengths and radial dependence 

with exponential, a Yukawa and a Gaussian shapes (Schiffer & True, 1976) 

and (Negele & Vogt, 2003). Thus, the different proposed types of the 

nuclear two-body interactions will be the coefficients of the above three 

mentioned forms including spin-isospin effects, that can be removed the 

spin-isospin operators by finding their expectation values for two-body 

spin-isospin states (Bydžovský. et al, 2007). Therefore to define a general 

formula covers exponential, Yukawa and Gaussian potentials,  ( )can be 

replaced by its generalized formula (             )that contains m-terms 

and given by: 

 (           )   ∑
    

  (   
       )

   

 

   

                                                                       ( ) 

Here,           and    are some parameters where as for the Gaussian 

potentials      and       for the exponential types; while    is used for 

the strengths of the interaction.  
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Serber force is an example which has Gaussian shape with the formula 

(Negele & Vogt, 2003):  
 

 ( )     
 (   ⁄ ) [     ]                                                                                       ( ) 

 

, where                                

Knowing that          where        and     exchange the position, spin, 

and isospincoordinates,respectively. Both    and   can be obtained from 

the inner product of the two Pauli spins and isospins, respectively from the 

relations 
 

{
   (   ⃗   ⃗ )  ⁄

   (   ⃗   ⃗ )  ⁄
                                                                                                         ( ) 

 With their eigenvalue in the two-body spin-isospin state |   ⟩(Sitenko 

&Victor, 1997; Heyde, 1994): 

{
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  |  ⟩  (  )
   |  ⟩

                                                                                             ( ) 

In ref. [13] by replacing the inner products by their corresponding operators 

   and    in eq. (5), we can use the Serber-Yukawa force,that is an example 

of the Yukawa and hence exponential shapes: 
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knowing that           
                  

                   
            . 

By using the eigenvalue equations in eq. (5) and the orthonormality 

condition           , both operators    and    can be re-written in terms 

of their respective eigenvalues, and hence, both formulae in eqs. (3 & 6) 

become net radial dependent, ( ), or 
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Comparing eqs. (7 & 8) with eq. (2), we find that the potential in eq. (7) 

contains one term only (i.e.,   ) then: 
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         [   (  )     ]                 
 ⁄   

  
                                                                                                              ( ) 

and similarly, for the potential of eq.(8)    , the parameters are given 

by: 

 

      [  (  )
 ][  (  )     ]    ⁄                     

      [  (  )
   ][  (  )     ]    ⁄                     

} (  ) 

The final potential which is used to calculate its matrix element is the 

central part of the generalized density-dependent M3Y-interaction that is 

ST-independent and given by (El-Shal, 2003): 

 ( )   ( )   ∑
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, with the coefficients: 

     (        ⁄           ⁄                ⁄ )   

  (     )   (     )       (             )   
}                              (  ) 

2- Derivation of the reduced matrix element elementof  ( ) 
By introducing the successive transformations mentioned in Sec.2, and 

knowing that the final matrix element of the nuclear two-body potential 

 ( ) will be in the relative-coordinates, symbolized by ⟨    | ( )|   ⟩, then 

the single-particle state vectors |   ⟩ and |     ⟩ are chosen to be the 

harmonic oscillator wave functions with    (   )  ⟨ |  ⟩, such that 

(Suhonen, 2007): 
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Where  is the length parameter of the harmonic oscillator and it differs for 

different nuclei;  and   represent the respective principal and orbital 

quantum numbers;          and            
Thus, by using eqs. (13-14) in the single-particle matrix 

element⟨    | ( )|   ⟩, it can be re-expressed as: 

⟨    | (             )|   ⟩   
      

(           ) 
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Now by defining     and                , eq. (15) takes the 

form: 
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Here, the coefficients A and G are given by: 
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To find the integral in eq. (19), we must change the element of the 

integration from the relation: 
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For the case     the term      can be separated by the binomial method 

expansion of the bracket (Znidaric, 2009), or 
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 and thus,  (       ) in eq. (22) is given by: 
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The integral in eq. (25) depends on the range-values of the quantity( ). For 

the cases     the integral must be determined numerically and hence 

 (       ) does not have analytical value, for    , the integral will be a 

gamma function of (     )  ⁄ ; while for the values       , the  

integral can be divided in to two parts which can be evaluated from the 

definitions of the gamma function ( ) and the confluent hypergeometric  

function ( ), or (Boros & Moll, 2004): 
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Finally, by taking into consideration the cases     and (    and 

     )in eq. (26), the integral  (     ) in eq. (26). Hence  (       ) 
in eq. (24) and the coefficients in eqs. (17 & 18) can be substituted in eq. 

(16) to find its final formula given by: 
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Discussion  
Practically all microscopic calculations in nuclear structure use the 

matrix element of the residual (effective) two –body interaction between 

valence nucleons corresponding to the matrix elements in, either jj- or LS-

coupling, that can be abbreviated to some coefficients and a reduced radial 

matrix element in the relative coordinates, eq. (1). The two-body nuclear 

potentials tensor- and non-tensor types can be represented in relative 

coordinates and also their radial component be written in exponential, 
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Yukawa, and Gaussian functions; they were generalized and expressed in 

eq.(2). 

After generalization the radial component of the nuclear two-body 

potentials, a new method was proposed to derive a relation to calculate the 

net radial matrix elements, eq. (27), either will be completely numerical or 

depends on the confluent hyper geometric and gamma functions, eq.(26). 

In general the nuclear two body potentials, tensor and non-tensor types, are 

spin-and isospin dependent. Thus, to find their matrix elements two ways 

can be followed. In the first way, the potential has a net radial form because 

S, T, and their Pauli components  ,  ,    and     are absent, eq. (11); 

while in the second way we must first remove the spin- and isospin effects 

and then comes the rule of the radial part to be found that is under the 

scope of this study for finding the radial matrix elements. 

To test the derived relation in eq.(27), three types of nuclear potential have 

been chosen representing a spin-isospin dependence with Gaussian and 

Yukawa shapes (Seiber and Yukawa potentials, eq.(7 & 8), respectively), 

spin-isospin independent which also has a Yukawa shape , eq.(11).All three 

interactions can be distinguished from their parameters used in their 

mathematical representations of the interactions. 

In the present study for the quantum numbers         and       
 , the radial matrix elements have been found and then the results were 

compared with those determined from ref. (Ursescu. et al, 2005). 

Interactions in eqs. (7-8) include both two-particle spin and isospin (  and 

  respectively), eq. (7) involves coefficient (  )      ; while eq.(8) 

includes both coefficients (  ) , (  )     and (  )     . For the values 

         the coefficient(  )       , accordingly, the parameter 

   in eq. (9),   and   in eq. (10) vanish and hence  ( ) in eqs. (7 & 8) and 

the their corresponding radial matrix elements vanish also. Therefore, in 

determination of the radial matrix element of the interactions in eqs.(7-8) 

we must use those values of   and   with        ,     and     

,which makes one of the terms in eq.(8),[  (  ) ]or [  (  )   ], 
vanish.  

For the Serber interaction with the parameters given by eq.(7),the 

radial matrix elements has been determinedfor the coefficients in eq.(9) and 

by the method of ref.[5]then they are listed in the fifth and sixths columns 

in Table(1).In addition, Yukawa potential with the coefficients in eq.(10) 

has been used in eq.(27) to find its matrix element by the two proposed 

methods, the results are tabulated in the seventh and eighth columns in the 

table; while eq.(11) was used as a spin-isospin independent potential with 

its parameters, in eq.(12), to find the radial matrix element in both methods 

that are listed in the two last columns in the same table. 
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Table (1) shows that the calculated radial matrix elements in the present 

study for the three proposed potentials were all in full agreement with those 

that were evaluated by the reference (Ursescu. et al, 2005). 

 

Table (1): The calculated radial matrix element for the Serber, 

Yukawa, and the generalized density-dependent M3Y-interaction 

comparing with those determined by ref. (Ursescu. et al, 2005). 

(       ) 

          

Serber Int. for 
    and      

Yukawa Int. 
    and      

M3Y Int. 
 

Present 
work 

[5] 
Present 

work 
[5] 

Present 
work 

[5] 

1 0 1 0 15.338 15.338 15.2208 15.2208 -26.6863 -26.6863 

3 0 2 1 1.60268 1.60268 5.14783 5.14783 -8.80296 -8.80296 

2 0 3 3 0.209398 0.209398 1.01331 1.01331 -1.19267 -1.19267 

1 1 1 1 12.3776 12.3776 5.77754 5.77754 -4.3986 -4.3986 

3 1 3 1 8.72025 8.72025 5.97343 5.97343 -6.31827 -6.31827 

3 1 2 2 2.92205 2.92205 2.82327 2.82327 -2.38404 -2.38404 

2 1 1 3 -0.50517 -0.50517 0.974741 0.974741 -0.63738 -0.63738 

3 1 2 3 -0.90364 -0.90364 0.965288 0.965288 -0.81515 -0.81515 

1 2 3 0 -3.91017 -3.91017 0.296797 0.296797 -1.45005 -1.45005 

3 2 1 0 7.87282 7.87282 5.01769 5.01769 -4.58117 -4.58117 

1 2 2 1 3.17136 3.17136 2.63219 2.63219 -1.86797 -1.86797 

2 2 2 1 7.3478 7.3478 3.62633 3.62633 -2.59194 -2.59194 

3 2 1 1 7.15705 7.15705 4.064 4.064 -2.80461 -2.80461 

3 2 3 1 6.07552 6.07552 3.63397 3.63397 -3.02661 -3.02661 

1 2 2 2 6.91516 6.91516 2.71456 2.71456 -1.38734 -1.38734 

2 2 1 2 6.91516 6.91516 2.71456 2.71456 -1.38734 -1.38734 

2 2 3 2 6.6724 6.6724 3.01522 3.01522 -1.78961 -1.78961 

3 2 2 2 6.6724 6.6724 3.01522 3.01522 -1.78961 -1.78961 

1 2 1 3 7.8882 7.8882 1.92678 1.92678 -0.78829 -0.78829 

1 2 3 3 5.98968 5.98968 2.18375 2.18375 -0.99238 -0.99238 

2 2 2 3 6.61791 6.61791 2.09904 2.09904 -0.9851 -0.9851 

3 2 1 3 0.663707 0.663707 1.04392 1.04392 -0.55978 -0.55978 

3 2 2 3 3.32264 3.32264 1.68965 1.68965 -0.87628 -0.87628 

3 2 3 3 5.76421 5.76421 2.20393 2.20393 -1.17248 -1.17248 

1 3 1 0 0.049863 0.049863 0.976832 0.976832 -0.8075 -0.8075 

1 3 2 0 -4.85362 -4.85362 -0.18695 -0.18695 -0.32281 -0.32281 

1 3 3 0 -3.12717 -3.12717 -0.4648 -0.4648 -0.17721 -0.17721 

2 3 1 0 3.5979 3.5979 1.85559 1.85559 -1.34494 -1.34494 

2 3 2 0 -2.69588 -2.69588 0.338994 0.338994 -0.733 -0.733 

2 3 3 0 -4.66937 -4.66937 -0.40477 -0.40477 -0.34902 -0.34902 

3 3 1 0 5.29179 5.29179 2.55701 2.55701 -1.82847 -1.82847 
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Serber Int. for 
    and      

Yukawa Int. 
    and      

M3Y Int. 
 

Present 
work 

[5] 
Present 

work 
[5] 

Present 
work 

[5] 

3 3 2 0 0.209398 0.209398 1.01331 1.01331 -1.19267 -1.19267 

3 3 3 0 -3.68209 -3.68209 -0.06335 -0.06335 -0.67193 -0.67193 

1 3 1 1 5.57148 5.57148 1.90234 1.90234 -0.93925 -0.93925 

1 3 2 1 -0.50517 -0.50517 0.974741 0.974741 -0.63738 -0.63738 

1 3 3 1 -2.13715 -2.13715 0.406343 0.406343 -0.4764 -0.4764 

2 3 1 1 7.67609 7.67609 2.57774 2.57774 -1.30606 -1.30606 

2 3 2 1 3.2257 3.2257 1.76159 1.76159 -1.09307 -1.09307 

2 3 3 1 -0.90364 -0.90364 0.965288 0.965288 -0.81515 -0.81515 

3 3 1 1 7.50916 7.50916 2.93002 2.93002 -1.56616 -1.56616 

3 3 2 1 5.68758 5.68758 2.41336 2.41336 -1.47711 -1.47711 

3 3 3 1 1.88249 1.88249 1.62322 1.62322 -1.22929 -1.22929 

1 3 1 2 7.8882 7.8882 1.92678 1.92678 -0.78829 -0.78829 

1 3 2 2 3.53163 3.53163 1.49915 1.49915 -0.66553 -0.66553 

1 3 3 2 0.663707 0.663707 1.04392 1.04392 -0.55978 -0.55978 

2 3 1 2 7.77439 7.77439 2.20438 2.20438 -0.93545 -0.93545 

2 3 2 2 6.61791 6.61791 2.09904 2.09904 -0.9851 -0.9851 

2 3 3 2 3.32264 3.32264 1.68965 1.68965 -0.87628 -0.87628 

3 3 1 2 5.98968 5.98968 2.18375 2.18375 -0.99238 -0.99238 

3 3 2 2 7.18421 7.18421 2.40121 2.40121 -1.1648 -1.1648 

3 3 3 2 5.76421 5.76421 2.20393 2.20393 -1.17248 -1.17248 

1 3 1 3 7.77399 7.77399 1.5677 1.5677 -0.58347 -0.58347 

1 3 2 3 5.80934 5.80934 1.52694 1.52694 -0.57653 -0.57653 

1 3 3 3 3.32893 3.32893 1.30314 1.30314 -0.53077 -0.53077 

2 3 1 3 5.80934 5.80934 1.52694 1.52694 -0.57653 -0.57653 

2 3 2 3 7.08831 7.08831 1.80129 1.80129 -0.73436 -0.73436 

2 3 3 3 5.76171 5.76171 1.76997 1.76997 -0.74828 -0.74828 

3 3 1 3 3.32893 3.32893 1.30314 1.30314 -0.53077 -0.53077 

3 3 2 3 5.76171 5.76171 1.76997 1.76997 -0.74828 -0.74828 

3 3 3 3 6.58174 6.58174 1.97014 1.97014 -0.88311 -0.88311 

3 3 1 0 5.29179 5.29179 2.55701 2.55701 -1.82847 -1.82847 

3 3 2 0 0.209398 0.209398 1.01331 1.01331 -1.19267 -1.19267 

3 3 3 0 -3.68209 -3.68209 -0.06335 -0.06335 -0.67193 -0.67193 

1 3 1 1 5.57148 5.57148 1.90234 1.90234 -0.93925 -0.93925 

1 3 2 1 -0.50517 -0.50517 0.974741 0.974741 -0.63738 -0.63738 

1 3 3 1 -2.13715 -2.13715 0.406343 0.406343 -0.4764 -0.4764 

2 3 1 1 7.67609 7.67609 2.57774 2.57774 -1.30606 -1.30606 

2 3 2 1 3.2257 3.2257 1.76159 1.76159 -1.09307 -1.09307 

2 3 3 1 -0.90364 -0.90364 0.965288 0.965288 -0.81515 -0.81515 

3 3 1 1 7.50916 7.50916 2.93002 2.93002 -1.56616 -1.56616 

3 3 2 1 5.68758 5.68758 2.41336 2.41336 -1.47711 -1.47711 
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Serber Int. for 
    and      

Yukawa Int. 
    and      

M3Y Int. 
 

Present 
work 

[5] 
Present 

work 
[5] 

Present 
work 

[5] 

3 3 3 1 1.88249 1.88249 1.62322 1.62322 -1.22929 -1.22929 

1 3 1 2 7.8882 7.8882 1.92678 1.92678 -0.78829 -0.78829 

1 3 2 2 3.53163 3.53163 1.49915 1.49915 -0.66553 -0.66553 

1 3 3 2 0.663707 0.663707 1.04392 1.04392 -0.55978 -0.55978 

2 3 1 2 7.77439 7.77439 2.20438 2.20438 -0.93545 -0.93545 

2 3 2 2 6.61791 6.61791 2.09904 2.09904 -0.9851 -0.9851 

2 3 3 2 3.32264 3.32264 1.68965 1.68965 -0.87628 -0.87628 

3 3 1 2 5.98968 5.98968 2.18375 2.18375 -0.99238 -0.99238 

3 3 2 2 7.18421 7.18421 2.40121 2.40121 -1.1648 -1.1648 

3 3 3 2 5.76421 5.76421 2.20393 2.20393 -1.17248 -1.17248 

1 3 1 3 7.77399 7.77399 1.5677 1.5677 -0.58347 -0.58347 

1 3 2 3 5.80934 5.80934 1.52694 1.52694 -0.57653 -0.57653 

1 3 3 3 3.32893 3.32893 1.30314 1.30314 -0.53077 -0.53077 

2 3 1 3 5.80934 5.80934 1.52694 1.52694 -0.57653 -0.57653 

2 3 2 3 7.08831 7.08831 1.80129 1.80129 -0.73436 -0.73436 

2 3 3 3 5.76171 5.76171 1.76997 1.76997 -0.74828 -0.74828 

3 3 1 3 3.32893 3.32893 1.30314 1.30314 -0.53077 -0.53077 

3 3 2 3 5.76171 5.76171 1.76997 1.76997 -0.74828 -0.74828 

3 3 3 3 6.58174 6.58174 1.97014 1.97014 -0.88311 -0.88311 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011 

 

 

140 
 

References 

 Brussaard P. J. & Glaudemans P. W. M., Shell-model applications in 

nuclear spectroscopy, North-Holand Publishing Company, Amsterdam 

(1977). 

 Bydžovský P., Gal A. & J. Mareš (Eds.), Topics in Strangeness, 

Springer-Verlag Berlin Heidelberg (2007).  

 Boros G. & Moll V., Irresisitible Integrals, Cambridge Univ., New 

York (2004). 

 Donnelly T. W., Phys. Rev. C1, (1970)833. 

 El-Shal A. O.  , Physics of Atomic Nuclei, Vol. 66, No. 12(2003)2117. 

 Heyde G. L. K.,”The nuclear shell model”,Springer-Verlag, Berlin 

(1994). 

 Kaminski W., Szpicowski S., and Hecht K. T., Atomic data and 

Nuclear data tables 16(1975) 311-381. 

 Langanke K., Maruhn J. A., & Koonin S. E., Computational nuclear 

physics2, Springer-Verlag, New York (1993). 

 Moshinsky M., Nucl. Phys., 13, (1959)104. 

 Negele J. W.  & Vogt E. W.  , Adv. In Nucl. Phys. 27(2003)1. 

 Radhi R.A., Abdullah A. A.  & Raheem A.H., Nucl. Phys. A 798 

(2008) 16. 

 Schiffer J. P.   & True W. W., Rev. Mod. Phys. 48, 2(1976)191. 

 Sitenko A.,Victor Tartakovskii,”Theory of Nucleus”,Nethrlands (1997). 

 Suhonen J., From Nucleons to Nucleus, (Springer-Verlag Berlin 

Heidelberg) 2007. 

 Ursescu D., Tomaselli M., Kuehl T. & Fritzsche S., Comp. Phys. 

Comm. 173 (2005) 140. 

 Van Hees A. G. M.  & Glaudemans P. W. M., Z. Phys. A-Atoms and 

Nuclei 314(1983)323. 

 Znidaric M.,The Open Statistics & Probability Journal 1(2009)7. 

 

 
 
 
 
 
 



Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011 

 

 

141 
 

تعميم الجهود النووية الثنائية المركزية واشتقاق معادلة جديدة لإيجاد 
 المصفوفة لها رعناص

 
 احتف رحيم هعزيز حم

 كلية العلوم_ جامعة السليمانيةقسم الفيزياء/ 
2011/4/26 , تاريخ الاستلام: 2011/2/14 تاريخ القبول:   

 
 ةصلالخا

 
صر التقييم عنصيغة جديدة  اشتقاقو نص هذه الورقة تغطي تعميم لجهود الثنائية الشعاعية للنواة 

للجسيم الواحد حساب عناصر المصفوفة لمشتقة بنجاح الجديدة الصيغة تم تطبيق ال. المصاحبة لها المصفوفة
 .Mathematicaكتوب بلغة مبرنامج  باستخدامو ذالك  ألنظيريللجهود المعتمدة على البرم و البرم 

 
 

 

 

 

 

 

 


