
Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

43

Propose Method to Access Protected Mode of Windows

Operating System

Enas F. Aziz
Department of Computer Systems, Technical Institute_ Kirkuk

Accepted:2011/4/26, Received: 2010/11/1

Abstract

 Current day computer systems allow multiple programs to be loaded into memory

and to be executed concurrently. This evolution required protection among those

various programs. To ensure this protection, operating systems provide protected mode

that contains descriptor tables that in its turn, control access to memory segment.

 In the Intel Architecture, and more precisely in protected mode, most of the memory

management and Interrupt Service Routines are controlled through tables of descriptors.

Each descriptor stores information about a single object (e.g. a service routine, a task, a

chunk of code or data, whatever) the CPU might need at some time.

 In this research, these tables with their contents are studied and given a method to

know the contents of these tables and to study the behavior of the O.S, In other words,

access to the protected status and work with printing the contents of some special

registers that cannot be accessible only within the protected mode (Ring 0).

 The program in this research is written in Assembly language (MASM version 7)

and tested under Windows Me. The program executed with 32-bit microprocessor,

because it contains instruction that can deal with the special registers (GDTR & LDTR)

that contains addresses of descriptor tables.

Introduction
 The purpose of protected mode is not to protect your program. The

purpose is to protect everyone else (including the operating system) from

your program. Protected mode has a number of features designed to

enhance an operating system's control over application software, in order

to increase security and system stability.

 This research tries to reach GDT and LDT in protected mode and

locate for empty entry in the LDT, especially entry zero and put inside it

the offset address of new routine that includes reading the contents of

CR0-CR3 and DR0-DR3 that cannot be accessible unless by this

condition. This research executed under Windows Me. (Sreyh, 2004)

Privilege Rings
 The processor provides four levels of privilege called Privilege

Rings. Windows uses only two of the privilege levels. The operating

system supervisor runs in ring 0. Ring-Zero code can alter any location

http://wiki.osdev.org/Category:X86
http://wiki.osdev.org/Protected_mode
http://wiki.osdev.org/Memory_management
http://wiki.osdev.org/Memory_management
http://wiki.osdev.org/Interrupt_Service_Routines

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

44

in memory and any processor register. Application software runs in ring

3. Ring 3 programs cannot access system control registers, nor can they

read or write to memory areas the operating system designated as

protected. An Intel processor generates the address of a memory

operand by combining a segment register with offset values held in one

or two registers. Processors compatible with the Intel 80386 through

Pentium Pro offer several modes of operation (real, V86, and protected)

modes (Oney, 1996).

Protected mode
 In protected mode the segment part is replaced by 16 bit selector, the 13

upper bits (bit 3 to bit 15) of the selector contains the index of an entry

inside a descriptor table. The lowest two bits define the privilege of the

request, from 0 to 3 where 0 has the highest priority and 3 the lowest. The

remainder bit specifies if the operation is against the GDT or LDT. Each

entry contains:-

 the real linear address of the segment

 a limit value for the segment size

 some attribute bits (flags) (Wikipedia**,2010)

 Descriptor is chosen from the descriptor table by the segment register.

Figure (1) shows segment registers. The 13-bit selector chooses one of the

8192 descriptor from the descriptor table. The TI bit selects either the

global descriptor table (TI=0) or the local descriptor table (TI=1).the

requested privilege level (RPL) requests the access privilege level of a

memory segment. The highest privilege level is 11. If the request privilege

level matches or is higher in priority than the privilege level set by the

access rights byte, access is granted .For example, if the requested privilege

level is 10 and the access rights byte sets the segment privilege level at 11,

access is granted because 10 is higher in priority than privilege 11 (Brey,

1997) (Kaplan, 1997-2010).

Fig. (1): contents of segment register during protected mode of the

80286 through Pentium Pro

15 3 2 1 0

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

45

Tables in Protected mode

 In protected mode, the OS build several tables in the system, these tables are

used to store information about processes (Solomon, 1998).These tables

called: - 1- Interrupt Descriptor table (IDT)

2- Global Descriptor table (GDT)

3- Local Descriptor table (LDT)

 Each table is defined as a (size, linear address) to the CPU through the

LIDT, LGDT, LLDT instructions respectively. The IDT is used for

descriptors of interrupt Handlers, only the GDT and LDT can hold

segment descriptors, as shown in figure (2) (Kaplan,1997-2010). Every 8-

byte entry in the GDT is a descriptor, but these can be Task State Segment

(TSS) descriptors, Local Descriptor Table (LDT) descriptors

(Wikipedia***, 2010).

Fig. (2): Descriptor tables

 The locations of these two tables inside two special registers, the Global

Descriptor Table Register (GDTR) and the Interrupt Descriptor Table

Register (IDTR). The GDTR and IDTR both use a 48-bit format,

containing the 32-bit base address of the table and the 16-bit limit. Each

table can contain up to 64KB or 8192 descriptor. Each descriptor in GDT is

64 bits long and contains many different fields. When the system is

multitasking, all tasks share the GDT. This is also true of the IDT, each

task uses same one. If one task changes the GDT or IDT, all tasks are

affected. The LDT is commonly used to define descriptor used by a single

process; normally, each process has its own LDT. The location of the LDT

is defined by the (LDTR). The LDTR is a 16-bit register, which contains a

global selector, this selector refer to an entry in the GDT containing the

base, limit, etc. of the LDT. The contents of the LDTR are normally

changed on each context switch, allowing each process to refer to its own

LDT (Oney, 1996).

http://wiki.osdev.org/index.php?title=Linear_address&action=edit
http://en.wikipedia.org/wiki/Task_State_Segment
http://en.wikipedia.org/wiki/Task_State_Segment
http://en.wikipedia.org/wiki/Local_Descriptor_Table

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

46

Global and Local Descriptor Table Format
 The first entry of GDT is reserved, and the corresponding selector called

null segment selector. There are two groups of descriptor in GDT:-

 A- CODE/DATA or SEGMENT Descriptors

 The descriptor contains a base address, a segment limit, and access

control flags that govern memory access, as shown in (fig.3) (Brey, 1997).

 B- System Descriptors

 The structure of this descriptor is similar to Code/Data descriptor and

there are some differences as in figure (3) in this figure bit (44, 52, 53, and

54) are always zero (Brey, 1997).

Fig. (3): DATA/CODE & System descriptors for the Intel 80386

through the Pentium pro microprocessor

 LLDT and SLDT are two instructions that can be used to load the

address of the LDT into LDTR and to store this address. The LLDT is a

privilege instruction, while the SLDT is not (Brey, 1997). The LDT is

accessed in the manner as the GDT. The only different in access is that the

TI bit is cleared for a global access and set for a local access (show in

fig.1). Another difference exits if the LDTR and GDTR are examined. The

first 16 descriptors in LDT are always empty (Oney, 1996).

Special Registers
 Below list of special registers used in 80386 microprocessor and above

are:-
1- GDTR (Global Descriptor Table Register)

2- IDTR (Interrupt Descriptor Table Register)

3- LDTR (Local Descriptor Table Register)

4- TR (Task Register): identifies the currently executing task by

pointing to the Task state segment (TSS).

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

47

5- CR0-CR3 (Control Registers): are special read-only registers that

store a constant. Attempts to write to a constant register are illegal or

ignored.

6- DR0-DR7 (Debug Registers): These registers are accessed by variants

of the MOV instruction. A debug register may be either the source

operand or destination operand. The debug registers are privileged

resources; the MOV instructions that access them can only be

executed at privilege level zero. Any attempt to read or write the

debug registers when executing at any other privilege level causes a

general protection exception (Oney, 1996).

Work Method
1- Store the address of new routine (The routine contain reading the special

register like (CR0-CR3) and (DR0-DR3) in memory location that cannot be

accessed just in protected mode (ring 0).

Mov ebx, offset subrot

Mov [NLOC], bx

Shr ebx, 16

Mov [NLOC+6], bx

2- Attempt to reach the GDT by reading the contents of GDTR (Last four

bytes) that contain the base address of GDT using SGDT assembly

instruction

3- Reading the content of LDTR using SLDT and add it with the base

address of GDT to reach to LDT entry in GDT and then take from this

entry the base address of LDT

4- Because the first 16 entry of LDT is empty we take advantage of this

feature by storing the offset address of the above new routine inside one of

them, in this work it selects entry 0

{Eax=address LDT (entry 0)

Mov edi, eax

Mov esi offset NLOC

Movsd

Movsd

Call [new routine address] }

5- By running that entry it should jump to the new service routine and

execute it

Conclusion
1- By this work we can access to protected mode Ring 0 (System mode).

2- It is possible to access special registers inside processor.

3- Also by this work it's possible to add additional service to OS.

4- It is possible to add malicious program (virus) in GDT and LDT.

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

48

References

 Brey, B., (1997): The Inte l8086 /8088, 80186 /80188, 80286, 80386,

80486, Pentium, and Pentium Pro processor, architecture,

programming, and interfacing , Prentice-Hall.Inc., pp.643-644,

pp.57-58.

 Kaplan,Y., (1997-2010): Protected mode memory management.

 Oney,W., (1996): System programming for Windows 95.United

state, Redmond, Washington, pp.68-89.

 Solomon,D.A., (1998): Inside Windows NT, second edition

,Microsoft Press.

 Sreyh,R.J., (2004): Simple Middleware for Windows NT, MSc.

Theses, Baghdad University, Baghdad.

 Wikipedia**, the free encyclopedia, (2010): An X86 Processor

Mode, Protected Mode, Share Alike License.

 Wikipedia***, the free encyclopedia, (2010): Global Descriptor

Table, Share Alike License.

http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

Journal of Kirkuk University –Scientific Studies, vol.6, No.2, 2011

49

 في نظام التشغيل ويندوز وصول الى وضع المحميةلوب مقترح للأس

 زإيناس فائق عزي
 كركوك _المعهد التقني ،سم أنظمة الحاسوبق

 0200/4/02,تاريخ القبول: 0202/00/0الاستلام:تاريخ

 الخلاصة

امن. هذا التطوور , ويتم تنفيذها بشكل متزتحميل برامج متعددة في الذاكرةنظم الحاسوب اليوم تسمح ب
التشغيل نظاما محميوا نون طريو أنظمةتوفر , مج المختلفة. لتأمين هذه الحمايةيتطلب حماية بين تلك البرا

 جداول وصفية تحمل هذه الجداول وصف للذاكرة وتسيطر نلى الوصول لمناط مختلفة من الذاكرة.
ارات الذاكرة و روتينات المقاطعة يتم السيطرة , إدشكل أكثر تحديدا في الوضع المحمي, وبفي معمارية إنتل

, د)نلى سبيل المثال روتين الخدموة نليهم من خلال جداول وصفية. كل جدول تخزن معلومات حول كائن واح
 ., مقطع من برنامج , أيا كان(وحدة المعالجة المركزية قد تحتاج لهذه المعلومات في بعض الوقتمهمة

مع توضيح طريقة لتغيير أيضاتمت دراسة هذه الجداول ومداخلها ودراسة محتوياتها في هذا البحث ,
, بمعنى أخر الوصول إلى وضع المحمية والعمل فيه مع محتويات بعض المداخل لدراسة سلوك نظام التشغيل

 طبانة محتويات بعض المسجلات التي لا يمكن الوصول إليها إلا داخل وضع المحمية.
لكونهوا تحتوو Windows Me(تحت بيئوة 7الإصدار MASM)البحث باستخدام لغة التجميع هذا أنجز

(والذ بودورهما GDTR and LDTRايعازات تستطيع التعامل مع مسجلات خاصة نحتاجها في هذا البحث)
 يحتويان نناوين تلك الجداول.

