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Abstract 
 

       The aim of this paper is to explain the probability of the existence of five regular 

and thirteen semi regular polyhedra; and we indicate that among these thirteen 

geometrical figures there are only three lattice polyhedra. Also in this work we present a 

proof of the existence of three regular lattice polygons.  

 

Introduction 
       In 1985 two mathematicians, Peter Hilton and Jean Pederson have 

done a research on the folding regular star polygons. They have taken 

benefit from a practical method which is, folding paper, for proving the 

number of existence of regular polygons (Hilton & Pederson, 1985), and 

the way they have used is similar to the way which we used. In 1988, 

Bokowski and Wills described some fundamental ideas in the study of 

regular maps and their polyhedral realizations in the Euclidean 3-space 

(Bokowski & Wills, 1988). In collecting information, we faced some 

problems and the greatest problem seems to be the shortage of sources. 

Lattice's subject includes two aspects, geometric and algebraic. In our 

district we can find those sources which have been dealt with algebraic 

aspect. The alert reader will have surmised by now that we are prepared to 

go along way with this topic. But we restrain ourselves! We will focus our 

attention, and organize this article, to bring out the special features of this 

subject. 

Definition [1]. (Diested,2005). 

       A polygon is a simple closed curve which comes in to existence by union 

of some intersecting straight parts in which each two parts cut each other, 

and it is regular if it is both equilateral and equiangular. The polygon is said 

to be convex if we take any gon, the polygon be in one side of it.  

Definition [2]. (Fraleigh, 2003 ; Scott, 1987) 

       A point ),,( zyx  in coordinates 3- space 3R  is called a lattice point if 
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yx,  and z  are all integers, and so a polygon in 3R is called  lattice polygon 

if all its vertices are lattice point. 

Definition [3]. (Diested,2005; Scott, 1987) 

       A polyhedra is a solid which comes to existence by union of some 

intersecting planes in which any two planes cut each other, and it is regular 

if its faces are congruent regular polygons; and each vertex has the same 

number of faces surrounding it. A semiregular polyhedra has regular 

polygons as faces and all vertices congruent, but they admit a variety of 

such polygons in one solid. A polyhedra in 3R is called lattice if all its 

vertices are lattice points. 

 

Some information about the main subject 
       Before talking about our main subjects it is necessary to have some 

information about: 

1) Those regular polygons which can be drawn and those which can not 

be drawn.  

2) The angle between two gones of a regular polygon. 

The regular polygons which the number of their gons indicated bellow are 

those which can be drawn : 
n22×  , n23×  and  n25×  ,2,1,0n = . For instance 3, 4, 5, 6, …. Also 

Gauss proved that if a prime number 12P
n2 +=  then P gons can be 

drawn. The prime numbers which are in this form are 3, 5, 17, 257, 65537, 

…. And the regular 7, 9, 11, 13, 14, 19, 23,… gons can not be drawn.  

To find the angle btween two gons of regular polygon, we divide regular n-

gons in to traingles by drawing diagonals from one of the vertex and the 

polygon will divide into ( n-2 ) traingles. Hence the mesure of each angle 

btween two gons is 
n

)2n(180
α

×
=  for example n= 5  so 

o108
5

)25(180
α =

×
= . 

Theorem [4]. (Scott, 1987) 

       A covex lattice n-gon is equiangular if and only if n = 4 or 8.  

Theorem [5]. (Scott, 1987) 

       A regular n-gon can be embeded is the three dimentional integral 

lattice if and only if n = 3, 4  or 6.  

 

 

 

 



Journal of Kirkuk University – Scientific Studies , vol.6, No.1,2011 

 301 

Regular and Semi Regular Lattice Polyhedra 

       In coordinate 3– space R 3  there are five regular and thirteen semi 

regular polyhedra. To prove the existence of five regular polyhedra let β  

be the sum of all angles around a vertex of a regular polyhedra and we shall 

use n  to  indicate the type of the faces meeting at a vertex and m is the 

number of all faces around a vertex . ( it is clear that m )3   

If n=3 then o60α =  (   is the angle btween any two gons of n-gon ) and if 

m=3 then oo0 360180603β <=×=  is acceptable case and other cases 

when 0360β < are also acceptable ( which are m= 4, 5 ) and do not 

acceptable when 0360β ≥ which are the cases 5m > . 

If n= 4 then 090α =  the only acceptable case is m=3 because 
o0 360270β <= . 

If n=5 then 0108α =  here also the only acceptable case is m=3 because 
o0 360324β <= . For other choice of n 6 the cases are not acceptable and 

hence there are only five polyhedra [figure 1]. 

                         
Figure 1 ( The five regular polyhedra) 

Now we want to prove that there are thirteen semiregular polyhedra 

First we take the all possible arrangements(orders) of 1n -gon, 2n -gon, …, 

rn -gon around a vertex. We note that the only regular polygons which are 

candidates to participate in our proof are  3-gon, 4-gon, 5-gon, 6-gon, 8-

gon, and 10-gon. Then A  the number of all arrangments is given by: 

For 3m =  we have   50(6(A 5
1

6
3 =×+=  

For 4m =  we have   195((6(62(A 4
1

5
1

5
1

6
4 =××+××+=  

For 5m =  we have   4
1

5
1

5
1

6
5 ((62(62(A ××+×××+= 666(((6 3

1
4
1

5
1 =×××+  

If m=3 we shall use )n,n,n( 321 to indicate the faces meeting at a vertex 

where =321 n,n,n 3,4,5,6,8,10 then the all accept possible arrangments 

which o360β < are: 
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)n,n,n( 321         β               )n,n,n( 321           

-------------------------------------------------------------- 

(3,3,4)           o210              (3,8,8)           o330  

(3,3,5)           o228              (3,8,10)         o339  

(3,3,6)           o240              (3,10, 10)      o348  

 (3,3,8)           o255              (4,4,5)           o288   

 (3,3,10)         o264              (4,4,6)           o300   

 (3,4,4)           o240              (4,4,8)           o315    

(3,4,5)           o258              (4,4,10)         o324  

(3,4,6)           o270              (4,5,5)           o306  

(3,4,8)           o285              (4,5,6)           o318  

(3,4,10)         o294              (4,5,8)           o333  

(3,5,5)           o276              (4,5,10)         o342  

(3,5,6)           o288              (4,6,6)           o330  

(3,5,8)           o303              (4,6,8)           o345  

(3,5,10)         o312              (4,6,10)         o354  

(3,6,6)           o300              (5,5,6)           o336  

(3,6,8)           o315              (5,5,8)           o351  

(3,6,10)         o324              (5,6,6)           o348  

 

"Collection 1" 

       By a similar method we shall use )n,n,n,n( 4321  to indicate the faces 

meeting at a vertex for m=4, where =4321 n,n,n,n 3,4,5,6,8,10, then the 

accept arrangements for which o360β <  are:  

)n,n,n,n( 4321       β         )n,n,n,n( 4321           β  

---------------------------------------------------------------- 

 (3,3,3,4)         o270          (3,4,3,6)           o330    

 (3,3,3,5)          o285          (3,4,3,8)           o345    

 (3,3,3,6)         o300          (3,4,3, 10)        o354    

(3,3,3,8)         o315          (3,4,4,4)           o330  

(3,3,3,10)       o324          (3,5,3,5)          o336  

(3,4,3,4)         o300          (3,5,3,6)           o348  

(3,4,3,5)         o315          (4,3,4,5)           o348  
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"Collection 2" 

For m=5 the accept arrangements for which o360β < are: 

 )n,n,n,n,n( 54321            β   

------------------------------------- 

(3,3,3,3,4)                   o330  

(3,3,3,3,5)                   o348  

 

"Collection 3" 

       In collection (1) we refuse all cases which  one of n1 ,n 2 or n 3  equal to 

3 and the other two are distinct with each other. [to refuse this cases we use 

a practical methode]. To explain this wording suppose that n1 = 3 and 

n1  n 3 then the vertex  A of that polyhedra which constract by n1 , n 2 , n 3  

has three polygons which at least two of them are distinct, and they are in 

the form 3-gon, n 2 -gon and n 3 -gon. [ Figure 2 ] 

To complete this polyhedra the vertix C needs a polygon with n 2 -gons. 

After drawing n 2 -gon for vertix C the vertix B takes two n 2 -gons, which is 

contradiction.  

 

Figure 2 

       We note that some of the other cases of collection (1) can not construct 

a semireguar polyhedra also. For example, we take the cases (4, 5, 4) and 

(4, 5, 8) see [Figure 3 ] and [Figure 4]. 

 

 
Figure 3                                                 

The vertex D takes the  polygons in the form (5, 4, 5) which is 

contradiction. 
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Figure 4 

       In this case the vertex D takes the  polygons in the form (4, 5, 4,) 

which is contradition In our list of collection (1) only (3, 6, 6), (3, 10, 10) , 

( 4, 6, 6) , (4, 6, 8 ) , ( 4, 6,10) and (5, 6, 6) occur as a polyhedron in 

cordinate 3-space R 3 . In collection 2 also there are these contradicitons, 

and only in the cases (3, 4, 3, 4), (3, 5, 3, 5), (4, 3, 4, 5) and (3, 4, 4,4) do 

not occur this contradiction. If we choose a case from collection (2) 

arbitrary as  (3, 4, 3, 5) see [Figure 5] 

 

Figure 5 

Here we have a conrtadiction also since the vertex D takes two 5-gon at 

once. In collection (3) there is no contradiction in surrounding polygons 

around any vertex. 

       Then we obtain that there are only seven semiregular polyhedra in 

collection (1) and four semiregular polyhedra in collection (2) and two 

semiregular polyhedra in collection (3). Hence there are thirteen 

semiregular polyhedra, which we shall use (n1 ,n 2 …….,n r ) where n1 ,n 2 , 

…, n r =  3, 4, 5, 6, 8, 10 to indicate the faces meeting at a vertex are 

successively an n1 -gon, an n 2 -gon,… ,and n r -gon as we cycle a round a 

vertex. The thirteen semiregular polyhedra are shown in the Figure 6. 
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Figure 6 (The thirteen semiregular polyhedra) 
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Theorem [6]. (Scott, 1987) 

       Let there be thirteen semiregular polyhedra, then only the truncated 

tetrahedron, the truncated octahedron and cuboctahedra occur as lattice 

polyhedron.  

Proof: 

       Since every face of a lattice polyhedron is a lattice polygon , by 

theorem (5) the only semiregular polyhedra in our list which are candidates 

to be lattice polyhedra are those with triangles, squares or hexagons as 

faces; that is, numbers (1), (4), (6), (8) and (12) [See figure 6]. 

   Number (8) the rhombicuboctahedron is quickly excluded sicne the 

vertices along an edge of one of the encircling bands of squares determine a 

regular octagon by theorem (8), these points can not be embedded in the 

integral lattice. 

       Let us now show that number (12), the snub cube , can not occur as a 

lattice polyhedron. To do this we first observe that the volume of a 

tetrahedron with vertices (X i  , Y i  , Z i ) (1  i4) is given by 1/6 the 

modulus of :  

1ZYX

1ZYX

1ZYX

1ZYX

444

333

222

111

 

       We see from this , that any lattice tetrahedra has rational volume. We 

show that if the snub cube can occur as a lattice polyhedra, then there exists 

a lattice tetrahedron T with irrational volume. 

By symmetry, the six square faces of the snub cube lie one on each face of 

a cube   with the gaps filled by bands of eqilateral triangles. Experiment 

shows that this is impossible , if the sides of the squares are parallel to the 

edges or diagonals of the faces of  . From this observation and the regular 

nature of the snub cube, we deduce that its squares lie obliquely, centrally, 

and in the exactly congruent positions in the faces of the cube   [ see 

figure 7]. Suppose  has side length 2a. Choose the origin at the centre O of 

the cube  , and let the axes be drawn parallel to the edges of  . 

Now the vertices of the sqare face ABCD lying in the face X= a of  .Will 

be represented for some  b ,  c  by     A (a, b, -c) ,    B(a, c, b),    C(a, -b, c),         

D(a, -c, -b) [ The coordinates of the other vertices of the snub cube are 

obtained by suitable permutation and change of sign]. 

If E is the vertex (b, -c, a) then equating the lengths BE and BC of the 

eqilatral triangle BCD gives C 2 = a(2b-a)   …  (1) 
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Figure 7 

Similarly, equating the side lengths CE and BC gives (a+b) C = a(a – b) 

Now substituting C = a(a – b) / (a + b) in to (1) and setting : 

Y – 1 = b / a,   we obtain  

Y 3  – 2 y 2  +2y – 2 = 0                (2) 

Y = 2 ( 1+y 2  ) / ( 2 + y 2 )          (2a ) 

Consider now the tetrahedron T which has vertices A, B, C and the vertex 

(-a,-b,c) of the snub cube. This tetrahedron has altitude 2a, and its base the 

isosceles right – angled triangle ABC with AB and BC of equal length, say 

S. Let us assume that the snub cube can be placed as a lattice polyhedron. 

Then in particular, T will be a lattice tetrahedron. Since S gives the distance 

between two lattice points, we deduce (from Pythagora , s theorem) that S 2  

is  an integer. Since the volume of T is V(T)=2a (S 2 /6)         (3)   and V(T) 

is rational, we deduce that a is rational. Also by substitution  

S 2 =AB 2 =2(b 2 +c 2 ) from eq (3) we get 

     V(T)= 2a(b 2 +c 2  )/3 

            = 2a(b 2 +2ab – a 2 )/3    [ form (1)] 

            =2a 3 [(b/a) 2 +2(b/a) – 1 ]/3 

            =2a 3 (y 2  – 2 )/3 

       Since V(T) and  a  are rational, so is y 2 ,and hence from (2a), so is y. 

But the polynominal in equation (2) is monic and has integer ocefficients. 

Therefore, any rational root must be a divisor of the constant term – 2. 

since non  of 2,1 ±±   is a root of (2) , we have a contradiction. This 

establishes that the snub cube can not occur as a lattice polyhedra. Finally, 

we must show that the three remaining semiregular polyhedra can occur as 

a lattice polyhedra. We observe that the truncated tetrahedron (1) is 

obtained by joining the points of trisection of the edges of the parent 

tetrehedron. Thus choosing the tetrahedra to have vertices (0, 0, 0), (3, 3, 
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0), ( 3, 0, 3) and (0, 3, 3) we obtain the truncated tetrahedron with every 

vertix at a lattice point. Similary, the vertices of the truncated octahedron 

(3) are the points of trisection of the edges of the parent octahedra. 

Choosing the octahedron to have vertices ( 0,3,0(,)0,0,3 ±± ) and (0,0, )3  

ensures that the truncated octahedron is a lattice polyhedron. The vertices 

of the cuboctahedra (6) are the midpoints of the edges of  a cube. Hence 

choosing the cube to have vertices ( )1,1,1 ±±± we obtain a corresponding 

lattice cuboctahedra.  This  completes the   proof of Theorem [6].  
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 متعددة السطوح الشبكية شبه المنتظمة

 
 نفيا حميد محمد     قمري حيدر حمكو     نازنين قادر محمد سعيد

 قسم الرياضيات
 جامعة صلاح الدين -كلية التربية للعلوم 

 4/03/0339، تاريخ القبول:  03/5/0339تاريخ الاستلام: 
 

 خلاصةال
الهدف من هذا البحث هو دراسة احتمالية وجود خمس متعددات سطوح منتظمة  وثلاثة عشرة متعددات        

سطوح شبه المنتظمة وتبين انة ثلاثة فقط من هذه الاشكال الهندسية هي متعددات سطوح شبكية و بالاضافة الى 
 ذلك برهنا وجود ثلاثة مضلعات شبكية منتظمة .

 


