On Smarandache Semigroups

Parween A. Hummadi Pishtewa M. Dashtiy
Department of Mathematics
College of Science Education - University of Salahaddin

Received:1/5/2009, Accepted:4/10/2009

Abstract

In this work we study some type of Smarandache semigroups and Smarandache subgroups of a semigroup such as Smarandache cyclic semigroups, Smarandache pSylow subgroups and Smarandache normal subgroups. In addition we introduce the concept of Smarandache ideal of a semigroup and study its relation with Smarandache normal subgroup.

Introduction

A semigroup S called a Smarandache semigroup if there is a proper subset of S which is a subgroup of S (Raual, 1998), (by a subgroup A of S we mean a subset A of S which is a group under the same operation of S). It is known that if e is an idempotent of a semigroup S then $\mathrm{G}_{\mathrm{e}}=\{a \in \mathrm{~S} \mid$ $a=a e$ and $e=a_{1} a=a a_{1}$ for some $\left.a_{1} \in \mathrm{~S}\right\}$ equal to S or it is the maximal subgroup of S having e as its identity (Mario, 1973).

Many Smarandache concepts introduced by Kandasamy, V. W. and many open research problems are given(Kandasamy, 2002). A Smarandache semigroup S called Smarandache cyclic semigroup if every subgroup of S is cyclic (Kandasamy, 2002). If S be a finite Smarandache semigroup, P a prime which divides the order of S, then a subgroup of S of order p or $p^{t}(t$ >1) called Smarandache p-Sylow subgroup. In this work we give complete answer of the following problems given in (Kandasamy, 2002).
1- Find condition on n, n a non prime so that Z_{n}, the semigroup under multiplication modulo n is a Smarandache cyclic semigroup.
2- Let $\left(\mathrm{Z}_{2}{ }^{\mathrm{n}},.\right)$ be the semigroup of order 2^{n}. For $\mathrm{n}>3$ arbitrarily large find the number of Smarandache 2-Sylow subgroup of $Z_{2}{ }^{n}$.
In addition we introduce the concepts of Smarandache ideal, Smarandache prime ideal and study some of their properties and we give the relation between Smarandache ideals and Smarandache normal subgroups.

S1: Smarandache cyclic semigroups

In this Section we discuss Smarandache cyclic semigroups, and find the number of cyclic subgroups of $\left(Z_{p}{ }^{n}\right.$, ., $)$ for $n>2$.
Lemma1.1.
($\mathbb{Z}_{\mathrm{p}}{ }^{\mathrm{n}}{ }^{2}$.) p prime, has no nontrivial idempotent.
Proof: The proof is easy.

Theorem 1.2.

$\left(\mathbb{Z}_{\mathrm{p}}{ }^{\mathrm{n}},.\right) \mathrm{p}$ an odd prime, $\mathrm{n}>2$, is a Smarandache cyclic semigroup.
Proof: Since $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}$ the number of elements in $\mathbb{Z}_{\mathrm{p}^{\mathrm{n}}}$ which have inverses form a group under multiplication, and then $\mathbb{Z}_{\mathrm{p}^{\mathrm{n}}}$ have a subset which is a group of order $p^{n}-p^{n-1}$. This subgroup is the largest subgroup with 1 as its identity. Since there exists an element $a \in S$ which is a primitive root of p^{n} (Kenneth, 2004), $a^{p^{n}-p^{n-1}} \equiv 1\left(\bmod p^{n}\right)$ and a generates S, thus S is cyclic. Hence all subgroups of $\mathbb{Z}_{\mathrm{p}}{ }^{\mathrm{n}}$ are cyclic, and $\mathbb{Z}_{\mathrm{p}}{ }^{\mathrm{n}}$ is a Smarandache cyclic semigroup.

Lemma 1.3.

Let (G,.) be a semigroup with identity 1 and $\mathrm{S}=\left\{\mathrm{x} \in \mathrm{G}: \mathrm{x}^{2}=1\right\}$. Then (S,.) is a cyclic group if and only if S contains at most two elements.
Proof: The proof is easy.

Proposition 1.4.

1- The semigroup $\left(Z_{2^{k}},.\right), \mathrm{k}>2$ is a Smarandache semigroup which is not a Smarandache cyclic semigroup.

2- The semigroup $\left(Z_{2^{k} p},.\right), \mathrm{k} \geq 2, \mathrm{p}$ an odd prime, is a Smarandache semigroup which is not a Smarandache cyclic semigroup.
Proof: 1- Since $\left(2^{k-1}-1\right)^{2}=\left(2^{k-1}+1\right)^{2}=1,\left(2^{k-1}-1\right)\left(2^{k-1}+1\right)=2^{k}-1$, and $\left(2^{k}-1\right)^{2}=1$, then $S=\left\{1,\left(2^{k-1}-1\right),\left(2^{k-1}+1\right),\left(2^{k}-1\right)\right\}$ is a subgroup of $\left(Z_{2^{k}},.\right)$ and by Lemma $1.3, \mathrm{~S}$ is not cyclic. Hence $\left(Z_{2^{k}},.\right)$ is not a Smarandache cyclic semigroup.
2- Similar to part 1.

Theorem1.5.

($Z_{2 p^{n}}$, .), p odd prime is a Smarandache cyclic semigroup.
Proof: First we show that $Z_{2 p^{n}}$ has two maximal subgroups of $\operatorname{order} \varphi\left(2 p^{n}\right)$. It is known that there exists a number a belonging
to $\varphi\left(2 p^{n}\right)\left(\bmod 2 p^{n}\right)$, $\operatorname{so} \varphi\left(2 p^{n}\right) \equiv 1\left(\bmod 2 p^{n}\right)$, and a generates a group $\left(\mathrm{G}_{1}\right)$ of order $\varphi\left(2 p^{n}\right)$ with 1 as its identity. Since $\left.\varphi\left(2 p^{n}\right) \equiv 1+2 k p^{n}\right)$ for some $k \geq 1$, then $\varphi\left(2 p^{n}\right)+p^{n} \equiv\left(p^{n}+1\right)+2 k p^{n}$. Therefore $\varphi\left(2 p^{n}\right)+p^{n} \equiv\left(p^{n}+1\right)\left(\bmod 2 p^{n}\right)$. We claim that $a+p^{n}$ generates a group of order $\varphi\left(2 p^{n}\right)$ and $1+p^{n}$ is its identity element. $\left(p^{n}\right)^{2} \equiv\left(p^{n}\right)\left(\bmod 2 p^{n}\right) \quad$ and $\left(1+p^{n}\right)^{2} \equiv\left(1+p^{n}\right)\left(\bmod 2 p^{n}\right)$, hence $\left(a+p^{n}\right)^{2} \equiv\left(a^{2}+p^{n}\right)\left(\bmod 2 p^{n}\right)$ and $\left(a+p^{n}\right)^{3} \equiv\left(a^{3}+p^{n}\right)\left(\bmod 2 p^{n}\right)$. If a is even, then $a p^{n}=p^{n}$, consequently $\left(a+p^{n}\right)^{3} \equiv\left(a^{3}+p^{n}\right)\left(\bmod 2 p^{n}\right)$. If a is odd, then $a p^{n} \equiv p^{n}\left(\bmod 2 p^{n}\right)$ which implies that $\left(a+p^{n}\right)^{3} \equiv\left(a^{3}+p^{n}\right)\left(\bmod 2 p^{n}\right)$. Continuing in this manner we get $\left(a+p^{n}\right)^{\varphi\left(p^{n}\right)} \equiv 1+p^{n}\left(\bmod 2 p^{n}\right)$, and $\left(a+p^{n}\right)^{\varphi\left(p^{n}\right)+1} \equiv a+p^{n}\left(\bmod 2 p^{n}\right)$.
This means that $\left(a+p^{n}\right)$ generates a subgroup of order $\varphi\left(2 p^{n}\right)$, and since $\left(a^{l}+p^{n}\right)\left(l+p^{n}\right)=a^{l}+p^{n}$, for each $1 \leq l \leq \varphi\left(p^{n}\right)$ then $\left(1+p^{n}\right)$ is the identity element of the group generated by $\mathrm{a}+\mathrm{p}^{\mathrm{n}}$ which is cyclic (the group $\left.\mathrm{G}_{1+\mathrm{p}}{ }^{n}\right)$. Note that $\left\{p^{n}\right\}$ is a subgroup of $Z_{2 p^{n}}$. Since the maximal subgroups are cyclic, $Z_{2 p^{n}}$ is a Smarandache cyclic semigroup.

Proposition 1.6.

($Z_{p^{n} q^{m}}$, .), where p, q are odd primes, is a non cyclic Smarandache semigroup.
Proof: Since the congruence $x^{2}=1\left(\bmod p^{n} q^{m}\right)$ has exactly 4 solutions(Kenneth,2004,p.152), the set $S=\left\{x ; x^{2}=1\right\}$ contains four elements and by Lemma 1.3, S is a non cyclic subgroup of $Z_{p^{n} q^{m}}$. Then $Z_{p^{n} q^{m}}$ is not a Smarandache cyclic semigroups.

The direct product of two Smarandache cyclic semigroups need not be a Smarandache cyclic semigroup in general.

Example 1.7.

$\left(\mathbb{Z}_{5},.\right)$ and $\left(\mathbb{Z}_{7},.\right)$ are Smarandache cyclic semigroups but $Z_{5} \times Z_{7}$ is not a Smarandache cyclic semigroup since $G=\left\{(x, y): 0 \neq x \in Z_{5}\right.$ and $\left.0 \neq y \in Z_{7}\right\}$ is a non cyclic group.

Now, we give a condition under which the direct product of a finite number of Smarandache cyclic semigroups is Smarandache cyclic.

Theorem 1.8.

Let $\left(S_{i},.\right), i=1 \ldots n$ be finite Smarandache cyclic semigroups, such that for any maximal subgroups $G_{1}, G_{2}, \ldots, G_{n}$ of $S_{1}, S_{2}, \ldots, S_{\mathrm{n}}$ respectively, $\operatorname{order}\left(G_{\mathrm{i}}\right)$ and $\operatorname{order}\left(G_{\mathrm{j}}\right)$ are relatively prime for each $\mathrm{i} \neq \mathrm{j}$. Then $S_{1} \times S_{2} \times \ldots \times S_{n}$ is a Smarandache cyclic semigroup.
Proof: Let G_{i} be a maximal subgroup of S_{i} for $1 \leq i \leq n$. Since G_{i} is a cyclic group, $G_{i} \cong Z_{p_{i}}, i=1,2, \ldots n$, and since $\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=1$ for each i, j, then $\mathbb{Z}_{\mathrm{p}_{1}} \times \mathbb{Z}_{\mathrm{p}_{2}} \times \cdots \times \mathbb{Z}_{\mathrm{p}_{\mathrm{n}}} \cong \mathbb{Z}_{\mathrm{p}_{1} \mathrm{p}_{2} \cdots \mathrm{p}_{\mathrm{n}}} \quad$ which is a cyclic group and $\mathbb{Z}_{\mathrm{p}_{1}} \times \mathbb{Z}_{\mathrm{p}_{2}} \times \cdots \times \mathbb{Z}_{\mathrm{p}_{\mathrm{n}}} \cong \mathrm{G}_{1} \times \mathrm{G}_{2} \times \cdots \times \mathrm{G}_{\mathrm{n}} \quad$ which \quad is a subgroup of $S_{1} \times S_{2} \times \ldots \times S_{n}$,then $S_{1} \times S_{2} \times \ldots \times S_{n}$ is a Smarandache cyclic semigroup.

Proposition 1.9.

$S_{n \times n}=\left\{\left(a_{i j}\right), a_{i j} \in \mathbb{Z}_{2^{\mathrm{k}}}, \mathrm{k} \geq 3\right\}$ under matrix multiplication is not a Smarandache cyclic semigroup.
Proof: Since
$\left\{\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ \vdots & 1 & & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1\end{array}\right),\left(\begin{array}{cccc}2^{\mathrm{k}-1}-1 & 0 & \cdots & 0 \\ \vdots & 2^{\mathrm{k}-1}-1 & & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{\mathrm{k}-1}-1\end{array}\right)\right.$,
$\left.\left(\begin{array}{cccc}2^{\mathrm{k}-1}+1 & 0 & \cdots & 0 \\ \vdots & 2^{\mathrm{k}-1}+1 & & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{\mathrm{k}-1}+1\end{array}\right),\left(\begin{array}{cccc}2^{\mathrm{k}}-1 & 0 & \cdots & 0 \\ \vdots & 2^{\mathrm{k}}-1 & & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{\mathrm{k}}-1\end{array}\right)\right\}$
is a non cyclic subgroup of $S_{n \times n}$, then $S_{n \times n}$ is not a Smarandache cyclic semigroup.

Theorem 1.10.

Consider the multiplicative semigroup $\left(\mathbb{Z}_{\mathrm{n}} G\right.$..) of the group ring $\mathbb{Z}_{\mathrm{n}} G$, $n \geq 3$, and G is a cyclic group of order m . Then
1 - If $\mathrm{n}=2^{\mathrm{k}}$ for some $k>2$, then the Smarandache semigroup $\left(\mathbb{Z}_{\mathrm{n}} G\right.$.. $)$ is not cyclic
2- If m is an even number then the Smarandache semigroup ($\mathbb{Z}_{n} G,$.) is not cyclic.
Proof: 1- By Proposition 1.4, $\left(\mathbb{Z}_{2}{ }^{\mathrm{k}},.\right)$ has a non cyclic subgroup which is a subgroup of ($\mathbb{Z}_{2}{ }^{\mathrm{k}} \mathrm{G}$, .).
2- Suppose G is generated by g. Since m is even, $g_{m}^{\frac{m}{2}} \in \mathbb{Z}_{\mathrm{n}} \mathrm{G}$ and $(\mathrm{n}-1) g^{\frac{m}{2}} \in$ \mathbb{Z}_{n} G. Moreover $\left(g^{\frac{m}{2}}\right)^{2}=1,\left((\mathrm{n}-1) g^{\frac{m}{2}}\right)^{2}=1$, so $\left\{1, g^{\frac{m}{2}},(\mathrm{n}-1) g^{\frac{m}{2}}, \mathrm{n}-1\right\}$ is a non cyclic subgroup of ($\mathbb{Z}_{\mathrm{n}} \mathrm{G}$..).

S2: Smarandache p-Sylow subgroups

In this Section we study Smarandache p- Sylow subgroups of a semigroup, and we find the number of p - Sylow subgroups in $\left(\mathbb{Z}_{2}{ }^{n}\right.$, .).

Theorem 2.1.

The semigroup $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}},.\right) n>2$, has three Smarandache 2-Sylow subgroups of order two.

Proof: The congruence $x^{2} \equiv 1\left(\bmod 2^{n}\right)$ has exactly 4 solutions (Kenneth,(2004),p.152), namely $1,2^{n}-1,2^{n-1}+1,2^{n-1}-1$. Then $A_{1}=\left\{1,2^{n}-1\right\}, A_{2}=\left\{1,2^{n-1}-1\right\}$ and $A_{3}=\left\{1,2^{n-1}+1\right\}$ are Smarandache 2Sylow subgroups of order two. Hence $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ has three Smarandache 2-Sylow subgroups of order 2.

Theorem 2.2.

The semigroup $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}}\right.$, .), $\mathrm{n}>3$ has three Smarandache 2-Sylow subgroups of order four.
Proof: Since $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ has four elements each one is its own inverse (Kenneth, 2004) namely, $1,2^{n}-1,2^{n-1}+1,2^{n-1}-1$.Then
$A_{1}=\left\{1,2^{n}-1,2^{n-1}+1,2^{n-1}-1\right\}$ is a Smarandache 2-Sylow subgroup of order 4 . Since only one of the four solutions which is $2^{n-1}+1$ is a solution of the congruence $y \equiv 1(\bmod 8)$, then the congruence $x^{2} \equiv 2^{n-1}+1\left(\bmod 2^{n}\right)$ has four solutions (Edmund, 1966) they are

$$
x_{1}=2^{n-2}-1, \quad x_{2}=2^{n}-2^{n-2}+1, \quad x_{3}=2^{n-2}+1
$$

and $x_{4}=2^{n}-2^{n-2}-1$.
Now $x_{1}^{2}=\left(2^{n-2}-1\right)^{2}=2^{n-1}+1 \bmod \left(2^{n}\right)$.
$x_{1}^{3}=\left(2^{n-1}+1\right)\left(2^{n-2}-1\right)=x_{4} \bmod \left(2^{n}\right)$,
and $x_{1}^{4}=\left(2^{n-1}+1\right)^{2}=1 \bmod \left(2^{n}\right)$. Hence $A_{2}=\left\{1, x_{1}, x_{4}, 2^{n-1}+1\right\}$ is a
Smarandache 2-Sylow subgroup of order 4 generated by x_{4} and also generated by x_{1}. Let us compute $x_{2}^{2}, x_{2}^{3}, x_{2}^{4}$,
$x_{2}^{2}=2^{n-1}+1 \bmod \left(2^{n}\right)$,
$x_{2}^{3}=2^{2 n-1}-2^{2 n-3}+2^{n-1}+2^{n}-2^{n 2}+1=x_{3} \bmod \left(2^{n}\right)$,
$x_{2}^{4}=\left(2^{n-1}+1\right)^{2}=1 \bmod \left(2^{n}\right)$. Hence $A_{3}=\left\{1, x_{2}, x_{3}, 2^{n-1}+1\right\} \quad$ is a Smarandache 2-Sylow subgroup of order 4 generated by x_{2} and also it is generated by x_{3}. Hence $\mathbb{Z}_{2}{ }^{n}$ has three Smarandache 2-Sylow subgroups of order four namely A_{1}, A_{2} and A_{3}.

Theorem 2.3.

The semigroup $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}},.\right), \mathrm{n}>4$ has three Smarandache 2-Sylow subgroups of order 8 .
Proof: Similar to the proof of Theorem 2.2.

Theorem 2.4.

The semigroup $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}}\right.$, .), $\mathrm{n}>5$ has three Smarandache 2-Sylow subgroups of order 16.
Proof: As we have seen in the last theorem that $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ has eight elements of order 8 which are
$y_{1}=2^{n-3}+1, \quad y_{2}=2^{n-2}-2^{n-3}+1, \quad y_{3}=2^{n-1}+2^{n-3}+1, \quad y_{4}=2^{n}-2^{n-3}-1$
$z_{1}=2^{n-3}-1, \quad z_{2}=2^{n-1}-2^{n-3}+1, \quad z_{3}=2^{n}-2^{n-3}+1$, and $z_{4}=2^{n-1}+2^{n-3}-1$.
Since $y_{1} \equiv 1(\bmod 8), y_{3} \equiv 1(\bmod 8), z_{2} \equiv 1(\bmod 8)$ and $z_{3} \equiv 1(\bmod 8)$. As before each of the following congruence has four solutions

$$
\begin{align*}
& x^{2}=y_{1}\left(\bmod 2^{n}\right) \tag{1}\\
& x^{2}=y_{3}\left(\bmod 2^{n}\right) \tag{2}\\
& x^{2}=z_{2}\left(\bmod 2^{n}\right) \tag{3}\\
& x^{2}=z_{3}\left(\bmod 2^{n}\right) \tag{4}
\end{align*}
$$

So there are 16 elements of $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ of order 16 which are
$A_{1}=2^{n-4}-1, A_{2}=2^{n}-2^{n-4}+1, A_{3}=2^{n-1}+2^{n-4}-1, A_{4}=2^{n-1}-2^{n-4}+1$
$B_{1}=2^{n-2}-2^{n-4}+1, B_{2}=2^{n-2}+2^{n-4}-1, B_{3}=2^{n}-2^{n-2}-2^{n-4}+1$,
$B_{4}=2^{n}-2^{n-3}-2^{n-4}-1, C_{1}=2^{n-4}+1, C_{2}=2^{n-1}+2^{n-4}+1, C_{3}=2^{n}-2^{n-4}-1$,
$C_{4}=2^{n-1}-2^{n-4}-1, D_{1}=2^{n-2}-2^{n-4}-1, D_{2}=2^{n-2}+2^{n-4}+1$
$D_{3}=2^{n}-2^{n-2}-2^{n-4}-1$, and $D_{4}=2^{n}-2^{n-3}-2^{n-4}+1$. Then $E_{1}=\left\{C_{1}, y_{3}\right.$,
$\left.B_{3}, x_{1}, D_{2}, z_{3}, A_{2}, w_{1}, C_{2}, y_{1}, x_{1}, B_{1}, D_{4}, z_{4}, A_{4}, l\right\}$
where $\mathrm{w}_{1}=2^{\mathrm{n-1}}+1$, is a cyclic group generated by any one of the elements $\mathrm{C}_{1}, B_{3}, D_{2}, A_{2}, C_{2}, B_{1}, D_{4}$, and A_{4}. Hence E_{1} is a Smarandache 2-Sylow subgroup of order 16. $E_{2}=\left\{A_{1}, z_{2}, D_{3}, x_{2}, B_{2}, C_{3}, y_{1}, w_{1}, A_{3}, z_{3}, D_{1}, x_{1}, B_{4}, y_{3}\right.$, $\left.C_{4}, l\right\}$ is a cyclic group of order 16 generated by any one of elements A_{1}, $D_{3}, B_{2}, C_{3}, A_{3}, D_{1}, B_{4}$, and C_{4}. Since by the last theorem
$\left\{y_{1}, x_{1}, z_{2}, w_{1}, y_{3}, x_{2}, z_{3}, 1\right\}$ and $\left\{y_{2}, x_{1}, z_{1}, w_{1}, y_{4}, x_{2}, z_{4}, 1\right\}$ and $A_{3}=\left\{x_{1}, x_{4}, w_{1}, 1, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}\right\}$ are subgroups of order 8 then $\mathrm{E}_{3}=\left\{y_{1}, x_{1}, z_{2}, w_{1}, y_{3}, x_{2}, z_{3}, 1, y_{2}, z_{1}, y_{4}, z_{4}, y_{1} y_{2}, y_{1} z_{1}, y_{1} y_{4}, y_{1} z_{4}\right\}=$ $\left\{y_{1}, x_{1}, z_{2}, w_{1}, y_{3}, x_{2}, z_{3}, 1, x_{3}, x_{4}, x_{1} x_{3}, x_{1} x_{4}, y_{1} x_{3}, y_{1} x_{4}, y_{1} x_{1} x_{3}, y_{1} x_{1} x_{4}\right\}=$ $=\left\{y_{2}, x_{1}, z_{1}, w_{1}, y_{4}, x_{2}, z_{4}, 1, x_{3}, x_{4}, x_{1} x_{3}, x_{1} x_{4}, y_{2} x_{3}, y_{2} x_{4}, y_{2} x_{1} x_{3}, y_{2} x_{1} x_{4}\right\}$,

Is a Smarandache 2- Sylow subgroup of order 16. Then $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ has three Smarandache 2-Sylow subgroups of order 16.

Combining the previous theorems, we get the following result.

Theorem 2.5.

$\left(\mathbb{Z}_{2}{ }^{\mathrm{n}}\right.$, .) $\mathrm{n}>1$, has ($3 \mathrm{n}-5$) Smarandache 2- Sylow subgroups
Proof: It is well known that $\mathbb{Z}_{\mathrm{m}}^{*}$, the set of all invertible elements in \mathbb{Z}_{m}, the ring of the integer modulo m contains $\varphi(\mathrm{m})$ elements, so $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ has $\varphi\left(2^{n}\right)$ $=2^{n-1}$ invertible elements. Hence the semigroup $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}},.\right)$ Contains a subgroup of order $2^{\mathrm{n}}-1$ which is the largest subgroup with 1 as its identity namely G_{1}. By Theorem 2.1 for large $\mathrm{n}, \mathbb{Z}_{2}{ }^{\mathrm{n}}$ has 3 -Sylow subgroup of order 2 and by Theorems 2.2, 2.3 $\left(\mathbb{Z}_{2}{ }^{\mathrm{n}},.\right)$ Has three subgroup of order 8 and three subgroup of order 16 . Continuing in this manner we get that $\mathbb{Z}_{2}{ }^{\mathrm{n}}$ contains three subgroup of order 2^{k} for each $1 \leq k \leq n-2$. Hence the number of Sylow subgroup equal to $3(n-2)+1=3 n-5$.

Example 2.6.

The Smarandache semigroup (\mathbb{Z}_{64}. .), has the following 2-Sylow subgroups, $\mathscr{A}_{1}=\{1,63\}, \mathcal{A}_{2}=\{1,31\}, \mathcal{A}_{3}=\{1,33\}, \mathcal{A}_{4}=\{1,63,31,33\}$, of order 2 .
It has three Smarandache 2 - Sylow subgroups of order 4, three Smarandache 2- Sylow subgroups of order 8, three Smarandache 2- Sylow subgroups of order 16 and one Smarandache 2-Sylow subgroup of order 32.

Theorem 2.7.

If $k \mid \varphi\left(2 p^{n}\right)$, then $\mathbb{Z}_{2 \mathrm{p}^{\mathrm{n}}}$ has two cyclic subgroups of order k .
Proof: Suppose $k \mid \varphi\left(2 p^{n}\right)$. By Theorem 1.6, $\mathbb{Z}_{2 \mathbf{p}^{\mathrm{n}}}$ has two maximal
Subgroups of order $\varphi\left(2 p^{n}\right)$ and since $k \mid \varphi\left(2 p^{n}\right)$, each maximal subgroup has exactly one cyclic subgroup of order k (Neal \& Thomas, 1977), then $\mathbb{Z}_{2 \mathrm{p}^{\mathrm{n}}}$ has two cyclic subgroups of order k .

Corollary 2.8.

If $k^{m} \mid \varphi\left(2 p^{n}\right)$ where k, p are prime numbers, then $\mathbb{Z}_{2 \mathrm{p}^{\mathrm{n}}}$ has 2 m Smarandache k-Sylow subgroups.

S3. Smarandache ideals and Smarandache normal subgroups

A non empty subset T of a semigroup S is a left ideal of S if $\mathrm{s} \in \mathrm{S}, \mathrm{t} \in T$ imply st $\in T, T$ is a right ideal if $s \in S, t \in T$ imply $t s \in T$, T is a two-sided ideal if it is both a left and right ideal(Mario, 1973, p.5). In this section we study Smarandache normal subgroups and we introduce the concepts of Smarandache ideal and Smarandache prime ideal of a semigroup and discuss the relation between Smarandache ideals and Smarandache normal subgroups.

Definition 3.1.

Let S be a semigroup and I an ideal of S. Then I is said to be a Smarandache ideal of S if I contains a proper subset which is a group.

Clearly every Smarandache ideal of a semigroup is an ideal of the semigroup but the converse need not be true, for example, (\mathbb{Z}, .) is a semigroup and $\mathrm{I}=3 \mathbb{Z}$ is an ideal of \mathbb{Z} but not a Smarandache ideal because no subset of I is a subgroup.

Remark 3.2.

If I_{1} and I_{2} are Smarandache ideals of the semigroup S, then $I_{1} \cap I_{2}$ need not be a Smarandache ideal, for example in(\mathbb{Z}_{20}..) take $\mathrm{I}_{1}=$ $\{0,2,4,6,8,10,12,14,16,18\}$ and $\mathrm{I}_{2}=\{0,5,10,15\} . \mathrm{I}_{1}$ and I_{2} are Smarandache ideals but $\mathrm{I}_{1} \cap \mathrm{I}_{2}=\{0,10\}$ is an ideal but not a Smarandache ideal of $\left(\mathbb{Z}_{20,}\right)$

Theorem 3.3.

Let S be a Smarandache semigroup and I is a Smarandache ideal of S. Then I contain a maximal subgroup of S.
Proof: Let A be a subgroup of S with identity e. Then G_{e} is the maximal subgroup of S with e as its identity. Clearly A is a subgroup of G_{e}. If $G_{\mathrm{e}} \notin \mathrm{I}$, then there exists $x \in G_{e}, x \notin I$. Since I is an ideal, hence $x=x . e \in \mathrm{I}$, contradiction. Therefore $\mathrm{G}_{e} \subseteq I$ and I contains a maximal subgroup of S .

Definition 3.4.

Let S be a semigroup. A Smarandache ideal I of S is a Smarandache prime ideal if it is a prime ideal of S.

Example 3.5.

$I=\{2,4,6,8,10,12,14,16,18,0\}$ is a Smarandache prime ideal of the multiplicative semigroup Z_{20}.

Note that if M be a Smarandache maximal ideal of a semigroup S with identity, then M is a Smarandache prime ideal.

Proposition 3.6.

Let $S_{1}, S_{2}, \ldots, S_{n}$ be Smarandache semigroups, I_{i} be an ideal of S_{i} for each i. Then $I_{1} \times I_{2} \times \ldots \times I_{n}$ is a Smarandache ideal of $S_{1} \times S_{2} \times \ldots \times S_{n}$.

Proof: Suppose that I_{i} is a Smarandache ideal of S_{i}, we will show that $I_{1} \times I_{2} \times \ldots \times I_{n}$ is a Smarandache ideal of $S_{1} \times S_{2} \times \ldots \times S_{n}$. Let $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ be an element of $I_{1} \times I_{2} \times \ldots \times I_{n}$ and $\left(b_{1}, b_{2}, \ldots b_{n}\right)$ be an element in $S_{1} \times S_{2} \times \ldots \times S_{n}$ then $\left(a_{1}, a_{2}, . . a_{n}\right) .\left(b_{1}, b_{2}, . . b_{n}\right)=\left(a_{1} . b_{1}, a_{2} \cdot b_{2}, \ldots, a_{n} \cdot b_{n}\right) \in I_{1} \times I_{2} \times \ldots \times I_{n}$. Since I_{i} is an ideal, $a_{i} \cdot b_{i} \in I_{i}$ for each $1 \leq \mathrm{i} \leq \mathrm{n}$. Hence $I_{1} \times I_{2} \times \ldots \times I_{n}$ is an ideal of $S_{1} \times S_{2} \times \ldots \times S_{n}$. Let A_{i} be a subgroup of I_{i} for each i , then $\left(A_{1}, A 2 \ldots A n\right)$ Is a subgroup of $I_{1} \times I_{2} \times \ldots \times I_{n}$. Then $I_{1} \times I_{2} \times \ldots \times I_{n}$ is a Smarandache ideal of the semigroup $S_{1} \times S_{2} \times \ldots \times S_{n}$.

Definition 3.7 (Mario, 1973).
An element 0 of a semigroup S (if exists) called the zero of S if $x 0=0 x=0$ for each $x \in S$.

Definition 3.8(Kandasamy, 2002).
A subgroup A of a Smarandache semigroup S is called a Smarandache normal subgroup of S if $x A \subseteq A$ and $A x \subseteq A$ or $x A=\{0\}$ and $A x=\{0\}$ for all $x \in S$ (0 is the zero of S)

Theorem 3.9.

Let S be a Smarandache semigroup with identity 1 . If 1 is the identity of all subgroups of S, then S has no Smarandache normal subgroup
Proof: Suppose that A is a proper subgroup of S and $1 \in \mathrm{~A}$, let $0 \neq x \in S \backslash A$. Then $0 \neq x .1=x \notin A$, which implies $x A \not \subset A$ and $x A \neq\{0\}$. Hence A is not a Smarandache normal subgroup of S.

Theorem 3.10.

Let S be a Smarandache semigroup. If A is a Smarandache normal subgroup of S, then A is a maximal subgroup of S.
Proof: Suppose A is a Smarandache normal subgroup of S contained in a subgroup $A^{\prime} \neq S$ i.e $A \subset A^{\prime}$.Then there is an element $x \in A^{\prime} \backslash A$. This implies $0 \neq x=x . e \notin A$ where e is the identity of A, thus $x A \not \subset A$ and $x A \neq\{0\}$ contradiction.

Theorem 3.11.

Let S be a Smarandache semigroup with 0 , and A be Smarandache normal subgroup of S. Then $A \cup\{0\}$ is a Smarandache ideal of S.

Proof: Since $x A \subseteq A$ or $x A=\{0\}$ for $x \in S$, then clearly $A \cup\{0\}$ is an ideal of S and A is a subgroup of $A \cup\{0\}$. There fore $A \cup\{0\}$ is a Smarandache ideal of S.

The converse of the last theorem need not be true in general for example, $I=\{2,4,6,8,10,12,14,16,18,0\}$ is a Smarandache ideal of $\left(\mathrm{Z}_{20},.\right)$ but not a Smarandache normal subgroup.

Theorem 3.12.

The Smarandache semigroup ($\mathbb{Z}_{2 p^{n}, .}$), has only one Smarandache normal subgroup which is trivial.
Proof: We show that no non trivial subgroup is normal. We saw (Theorem 1.5) that $\mathbb{Z}_{2 p^{n}}$ has two maximal subgroups one of them is generated by a primitive root a of $2 p^{\mathrm{n}}$ and the other generated by $a+p^{\mathrm{n}}$, and both of them are of order $\varphi\left(2 p^{\mathrm{n}}\right)=p^{\mathrm{n}-1}(p-1)$. The subgroup generated by a cannot be normal, since it contains 1 . It remains to prove that the subgroup generated by $a+p^{n}$ is not normal. Remember that $\left(1+p^{n}\right)$ is the identity of this Subgroup which usually denoted by $G_{p}{ }^{\mathrm{n}}+1$, and it is the maximal subgroup having $1+\mathrm{p}^{\mathrm{n}}$ as its identity. We claim that $2 \in G_{p+1}{ }^{\mathrm{n}}$. First $2\left(1+p^{\mathrm{n}}\right)=2(\bmod$ $\left.2 p^{\mathrm{n}}\right)$. Next consider the congruence $2 x=p^{\mathrm{n}}+1\left(\bmod 2 p^{\mathrm{n}}\right)$, which has exactly two solutions (Edmund, 1966, p.62). So $2 \in G_{p}{ }^{\mathrm{n}}+1$. Since $p\left(p^{\mathrm{n}}+1\right)=p^{\mathrm{n}}+p$ $\left(\bmod 2 p^{\mathrm{n}}\right) \neq p\left(\bmod 2 p^{\mathrm{n}}\right)$ hence $p \notin G_{p+1}^{\mathrm{n}}$ moreover $2 p \notin G_{p+1}^{\mathrm{n}}$ and $2 \mathrm{p} \neq 0$, hence $\mathrm{G}_{\mathrm{p}+1}^{\mathrm{n}}$ is not a Smarandache normal subgroup of $\mathbb{Z}_{2 p^{n}}$. So no non trivial subgroup is Smarandache normal subgroup.

Theorem 3.13.

$\left(\mathbb{Z}_{\mathrm{pq}}{ }^{\mathrm{n}},.\right) \mathrm{p}, \mathrm{q}$ are odd prime numbers is a Smarandache semigroup which has a nontrivial Smarandache normal subgroup.
Proof: Let $S_{1}=\left\{q^{n}, 2 q n \ldots(p-1) q n\right\}$. We claim that S_{1} is a Smarandache normal subgroup. Its well known that $\mathbb{Z}_{\mathrm{pq}}{ }^{\mathrm{n}} \cong \mathbb{Z}_{\mathrm{p}} \times \mathbb{Z}_{\mathrm{q}}{ }^{\mathrm{n}}$ as rings so $\mathbb{Z}_{\mathrm{pq}}{ }^{\mathrm{n}}$ has a subring isomorphic to \mathbb{Z}_{p}, that is $F_{1}=\left\{0, q^{n}, 2 q^{n}, \ldots,(p-1) q^{n}\right\}$ is a field with addition and multiplication $\bmod p q^{n}$. Hence S_{1} is a group under multiplication. It remains to show that S_{1} is a normal subgroup of $\mathbb{Z}_{\mathrm{pq}}{ }^{n}$. Let $x \notin S_{1}$. If $x=l q$ then $l q a=0$ for each $a \in S_{1}$. If $x \neq l p$ and $0<x<p$, then $x q^{n} \in S_{1}$. If $x \neq l p$ and $x>p$, then by Euclidean Algorithm $x=s p+r 0 \leq r<p$, thus $x^{n}=$ $(\mathrm{sp}+\mathrm{r}) \mathrm{q}^{\mathrm{n}}=\mathrm{spq}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}} \in \mathrm{S}_{1}$. Hence $x S_{1} \subseteq S_{1}$ or $x S_{1}=0$ Finaly if $x \in S_{1}$ then $x S_{1} \subseteq S_{1}$. This means that S_{1} is normal. Similarly $\mathbb{Z}_{\mathrm{pq}}{ }^{\mathrm{n}}$ has a subring isomorphic to $\mathbb{Z}_{\mathrm{q}}{ }^{\mathrm{n}}$ which is $T=\left\{0, p, 2 p, \ldots,\left(q^{\mathrm{n}}-1\right) p\right\}$ and T has a subfield namely $F_{2}=\left\{0, p, 2 p, \ldots(q-1) p,(q+1), \ldots(2 q-1) p,(2 q+1) p, \ldots\left(q^{\mathrm{n}}-1\right) p\right\}, \quad$ then $S_{2}=\left\{p, 2 p, \ldots(q-1) p,(q+1), \ldots(2 q-1) p,(2 q+1) p, \ldots\left(q^{\mathrm{n}}-1\right) p\right\}$ with multiplication is a group which is not a normal subgroup, since $\mathrm{q} \in \mathbb{Z}_{\mathrm{pq}}{ }^{\mathrm{n}}$, but $p q \neq 0$ and $p q \notin S_{2}$. There are three maximal subgroups $S_{1}, S 2$ and S_{3} where $S_{3}=\{a:(a$,
$\left.\left.p q^{\mathrm{n}}\right)=1\right\}, S_{1}$ is Smarandache normal subgroup, but $\mathrm{S}_{2}, \mathrm{~S} 3$ are not Smarandache normal subgroups.

Theorem 3.14.

Let $n=p_{1} p_{2} \ldots p_{n}$, where p_{i} are prime numbers. Then the semigroup \mathbb{Z}_{n} has at least n Smarandache normal subgroup.
Proof: For each $1 \leq j \leq n, \mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}} \times \mathbb{Z}_{p_{j}}$ as rings and $\mathbb{Z}_{p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}} \cong \mathbb{Z}_{p_{1} \cdots p_{j-1} p_{j+1} \cdots p_{n}} \times\{0\}$ which is a subring of $\mathbb{Z}_{p_{1} \cdots p_{n}}$. put $k=p_{i} \cdots p_{j-1} p_{j+1} \cdots p_{n}$. Then $\left(\left\{0, k, 2 k, \cdots,\left(p_{j}-1\right) k\right\},+,.\right\} \cong\left(\mathbb{Z}_{p_{i}}+_{p_{j}, p_{j}}\right)$ which is a field. Hence $S_{j}=\left\{k, 2 k, \cdots,\left(p_{j}-1\right) k\right\}$ is a group under multiplication which is a subgroup of the semigroup $\left(\mathbb{Z}_{\mathrm{n}},{ }_{\mathrm{n}}\right)$. Now if $\mathrm{x} \in \mathbb{Z}_{\mathrm{n}}$, and $x=t p_{\mathrm{j}}$, $0<t<n$ then $x k=0$ so $x S=\{0\}$. If $0<x<p_{\mathrm{j}}-1$, then $x S \subseteq S$, otherwise $x=t p_{\mathrm{j}}+r$, $0<r<p, x k=x t p_{\mathrm{j}}+r x \in S$. Hence S is a Smarandache normal subgroup. Then \mathbb{Z}_{n} has at least n Smarandache normal subgroups.

References

- David, S. D. and Richard, M. F., (2004): Abstract Algebra, John Wiley and Sons, New York, 932p.
\bullet Edmund, L., (1966): Elementary Number Theory, Chelsea Publishing Company, New York, 256p.
- Kandasamy,V.W., (2002): Smarandache Semigroups, American Research press Rehoboth, 93p.
- Kenneth, H.R., (2004): Elementary Number Theory and its Applications, ddison Wesley, Reading, 725p.
- Mario,p., (1973): Introduction to Semigroups, Bell and Howell Company, Ohio, 198p.
\bullet Neal, H.M. and Thomas, R. B., (1977): Algebra: Groups, Rings and Other Topics. Allyn and Bacon, Boston, 657p.
\bullet Raual, P., (1998): Smarandache Algebraic Structures, Bull of pure and applied Sciences, Delhi, Vol. 17E, No.1, pp. 119-121.

حول شبه الزمر السمرنداشبية

$$
\begin{aligned}
& \text { بروين على حمـادى بيشةوا محمد دشتىى } \\
& \text { قسم الرياضيات } \\
& \text { كلية تربية العلوم - جامعة صلاح الاين }
\end{aligned}
$$

في هذا البحث درسنا بعض انواع شبه الزمر السمرنداثية و الزمر الجزئية السمرنداثية لثبه زمرة ، مثل شبه الزمرة السمر انشية الائرية والزمر الجزئية p-سايلو السمرنداثية و الزمر الجزئية السمرنداثية الناظمية. بالاضافة الى ذلك عرضنا مفهوم مثالية سمرنداثثية لثبه زمرة ودرسنا العلاقة بينها و بين الزمــرة الجزئيـــة السمرنداشية الناظمية.

