On Smarandache Semigroups

Parween A. Hummadi Pishtewa M. Dashtiy Department of Mathematics College of Science Education - University of Salahaddin

Received:1/5/2009, Accepted:4/10/2009

<u>Abstract</u>

In this work we study some type of Smarandache semigroups and Smarandache subgroups of a semigroup such as Smarandache cyclic semigroups, Smarandache p-Sylow subgroups and Smarandache normal subgroups. In addition we introduce the concept of Smarandache ideal of a semigroup and study its relation with Smarandache normal subgroup.

Introduction

A semigroup S called a Smarandache semigroup if there is a proper subset of S which is a subgroup of S (Raual, 1998), (by a subgroup A of S we mean a subset A of S which is a group under the same operation of S). It is known that if e is an idempotent of a semigroup S then $G_e = \{a \in S | a = ae \text{ and } e = a_1 a = a a_1 \text{ for some } a_1 \in S\}$ equal to S or it is the maximal subgroup of S having e as its identity (Mario, 1973).

Many Smarandache concepts introduced by Kandasamy,V. W. and many open research problems are given(Kandasamy, 2002). A Smarandache semigroup S called Smarandache cyclic semigroup if every subgroup of S is cyclic (Kandasamy, 2002). If S be a finite Smarandache semigroup, P a prime which divides the order of S, then a subgroup of S of order p or p^{t} (t >1) called Smarandache p-Sylow subgroup. In this work we give complete answer of the following problems given in (Kandasamy, 2002).

- 1- Find condition on n, n a non prime so that Z_n , the semigroup under multiplication modulo n is a Smarandache cyclic semigroup.
- 2- Let $(Z_2^n,.)$ be the semigroup of order 2^n . For n>3 arbitrarily large find the number of Smarandache 2-Sylow subgroup of Z_2^n .

In addition we introduce the concepts of Smarandache ideal, Smarandache prime ideal and study some of their properties and we give the relation between Smarandache ideals and Smarandache normal subgroups.

S1: Smarandache cyclic semigroups

In this Section we discuss Smarandache cyclic semigroups, and find the number of cyclic subgroups of $(Z_p^n, .)$ for n>2.

Lemma1.1.

 $(\mathbb{Z}_p^{\ n},.)$ p prime, has no nontrivial idempotent.

Proof: The proof is easy.

Theorem 1.2.

 $(\mathbb{Z}_p^{n},.)$ p an odd prime, n>2, is a Smarandache cyclic semigroup.

Proof: Since $\varphi(p^n) = p^n - p^{n-1}$ the number of elements in \mathbb{Z}_{p^n} which have inverses form a group under multiplication, and then \mathbb{Z}_{p^n} have a subset which is a group of order $p^n - p^{n-1}$. This subgroup is the largest subgroup with 1 as its identity. Since there exists an element $a \in S$ which is a primitive root of p^n (Kenneth, 2004), $a^{p^n - p^{n-1}} \equiv 1 \pmod{p^n}$ and a generates *S*, thus *S* is cyclic. Hence all subgroups of \mathbb{Z}_p^n are cyclic, and \mathbb{Z}_p^n is a Smarandache cyclic semigroup.

Lemma 1.3.

Let (G,.) be a semigroup with identity 1 and $S = \{x \in G: x^2 = 1\}$. Then (S,.) is a cyclic group if and only if S contains at most two elements.

Proof: The proof is easy.

Proposition 1.4.

1- The semigroup $(Z_{2^k},.)$, k>2 is a Smarandache semigroup which is not a Smarandache cyclic semigroup.

2- The semigroup $(Z_{2^k p}, .)$, k≥2, p an odd prime, is a Smarandache semigroup which is not a Smarandache cyclic semigroup.

Proof: 1- Since $(2^{k-1}-1)^2 = (2^{k-1}+1)^2 = 1, (2^{k-1}-1)(2^{k-1}+1) = 2^k - 1$, and $(2^k - 1)^2 = 1$, then $S = \{1, (2^{k-1} - 1), (2^{k-1} + 1), (2^k - 1)\}$ is a subgroup of $(Z_{2^k}, .)$ and by Lemma 1.3, S is not cyclic. Hence $(Z_{2^k}, .)$ is not a Smarandache cyclic semigroup.

2- Similar to part 1.

Theorem1.5.

 $(Z_{2p^n},.)$, p odd prime is a Smarandache cyclic semigroup.

Proof: First we show that Z_{2p^n} has two maximal subgroups of order $\varphi(2p^n)$. It is known that there exists a number *a* belonging

to $\varphi(2p^n) \pmod{2p^n}$, so $\varphi(2p^n) \equiv 1 \pmod{2p^n}$, and *a* generates a group (G₁) of order $\varphi(2p^n)$ with 1 as its identity. Since $\varphi(2p^n) \equiv 1 + 2kp^n$) for some $k \ge 1$, then $\varphi(2p^n) + p^n \equiv (p^n + 1) + 2kp^n$. Therefore

 $\varphi(2p^n) + p^n \equiv (p^n + 1) \pmod{2p^n}$. We claim that $a + p^n$ generates a group of order $\varphi(2p^n)$ and $1+p^n$ is its identity element. $(p^n)^2 \equiv (p^n) \pmod{2p^n}$ and $(1+p^n)^2 \equiv (1+p^n) \pmod{2p^n}$, hence $(a + p^n)^2 \equiv (a^2 + p^n) (\text{mod} 2p^n)$ and $(a + p^n)^3 \equiv (a^3 + p^n) (\text{mod} 2p^n)$. If a is even, then $ap^n = p^n$, consequently $(a + p^n)^3 \equiv (a^3 + p^n) \pmod{2p^n}$. If a $ap^n \equiv p^n \pmod{2p^n}$ which odd. then is implies that $(a + p^n)^3 \equiv (a^3 + p^n) \pmod{2p^n}$. Continuing in this manner we get $(a + p^n)^{\varphi(p^n)} \equiv 1 + p^n (\text{mod}2p^n), \text{ and } (a + p^n)^{\varphi(p^n) + 1} \equiv a + p^n (\text{mod}2p^n).$ This means that $(a + p^n)$ generates a subgroup of order $\varphi(2p^n)$, and since $(a^{l}+p^{n})(1+p^{n})=a^{l}+p^{n}$, for each $1 \le l \le \varphi(p^{n})$ then $(1+p^{n})$ is the identity element of the group generated by $a+p^n$ which is cyclic (the group G_{1+p}^{n}). Note that $\{p^n\}$ is a subgroup of Z_{2p^n} . Since the maximal subgroups are cyclic, Z_{2p^n} is a Smarandache cyclic semigroup.

Proposition 1.6.

 $(Z_{p^nq^m},.)$, where p,q are odd primes, is a non cyclic Smarandache semigroup.

Proof: Since the congruence $x^2 = 1 \pmod{p^n q^m}$ has exactly 4 solutions(Kenneth,2004,p.152), the set $S = \{x; x^2 = 1\}$ contains four elements and by Lemma 1.3, S is a non cyclic subgroup of $Z_{p^n q^m}$. Then $Z_{p^n q^m}$ is not a Smarandache cyclic semigroups.

The direct product of two Smarandache cyclic semigroups need not be a Smarandache cyclic semigroup in general.

Example 1.7.

(\mathbb{Z}_5 ,.) and (\mathbb{Z}_7 ,.) are Smarandache cyclic semigroups but $Z_5 \times Z_7$ is not a Smarandache cyclic semigroup since $G = \{(x, y) : 0 \neq x \in \mathbb{Z}_5 \text{ and } 0 \neq y \in \mathbb{Z}_7 \}$ is a non cyclic group.

Now, we give a condition under which the direct product of a finite number of Smarandache cyclic semigroups is Smarandache cyclic.

Theorem 1.8.

Let $(S_i, .)$, i=1...n be finite Smarandache cyclic semigroups, such that for any maximal subgroups $G_1, G_2, ..., G_n$ of $S_1, S_2, ..., S_n$ respectively, order (G_i) and order (G_j) are relatively prime for each $i \neq j$. Then $S_1 \times S_2 \times ... \times S_n$ is a Smarandache cyclic semigroup.

Proof: Let G_i be a maximal subgroup of S_i for $1 \le i \le n$. Since G_i is a cyclic group, $G_i \cong Z_{p_i}$, i = 1, 2, ..., n, and since $(p_i, p_j) = 1$ for each i, j, then $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n} \cong \mathbb{Z}_{p_1 p_2 \cdots p_n}$ which is a cyclic group and $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n} \cong G_1 \times G_2 \times \cdots \times G_n$ which is a subgroup of $S_1 \times S_2 \times \ldots \times S_n$, then $S_1 \times S_2 \times \ldots \times S_n$ is a Smarandache cyclic semigroup.

Proposition 1.9.

 $S_{n \times n} = \{(a_{ij}), a_{ij} \in \mathbb{Z}_{2^k}, k \ge 3\}$ under matrix multiplication is not a Smarandache cyclic semigroup.

Proof: Since

$$\begin{cases} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \begin{pmatrix} 2^{k-1} - 1 & 0 & \cdots & 0 \\ \vdots & 2^{k-1} - 1 & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{k-1} - 1 \end{pmatrix}, \\ \begin{pmatrix} 2^{k-1} + 1 & 0 & \cdots & 0 \\ \vdots & 2^{k-1} + 1 & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{k-1} + 1 \end{pmatrix}, \begin{pmatrix} 2^k - 1 & 0 & \cdots & 0 \\ \vdots & 2^k - 1 & \vdots \\ 0 & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 2^{k-1} + 1 \end{pmatrix},$$

is a non cyclic subgroup of $S_{n \times n}$, then $S_{n \times n}$ is not a Smarandache cyclic semigroup.

Theorem 1.10.

Consider the multiplicative semigroup $(\mathbb{Z}_n G, .)$ of the group ring $\mathbb{Z}_n G$, $n \ge 3$, and G is a cyclic group of order m. Then

- 1- If $n=2^k$ for some k > 2, then the Smarandache semigroup ($\mathbb{Z}_n G_{,.}$) is not cyclic
- 2- If m is an even number then the Smarandache semigroup ($\mathbb{Z}_nG_{,.}$) is not cyclic.

Proof: 1- By Proposition 1.4, $(\mathbb{Z}_2^k, ...)$ has a non cyclic subgroup which is a subgroup of $(\mathbb{Z}_2^k G, ...)$.

2- Suppose G is generated by g. Since m is even, $g^{\frac{m}{2}} \in \mathbb{Z}_n G$ and $(n-1) g^{\frac{m}{2}} \in \mathbb{Z}_n G$. Moreover $(g^{\frac{m}{2}})^2 = 1$, $((n-1) g^{\frac{m}{2}})^2 = 1$, so $\{1, g^{\frac{m}{2}}, (n-1) g^{\frac{m}{2}}, n-1\}$ is a non cyclic subgroup of $(\mathbb{Z}_n G, .)$.

S2: Smarandache p-Sylow subgroups

In this Section we study Smarandache p- Sylow subgroups of a semigroup, and we find the number of p- Sylow subgroups in $(\mathbb{Z}_2^n, .)$.

Theorem 2.1.

The semigroup $(\mathbb{Z}_2^n, .)$ n>2, has three Smarandache 2-Sylow subgroups of order two.

Proof: The congruence $x^2 \equiv 1 \pmod{2^n}$ has exactly 4 solutions (Kenneth,(2004),p.152), namely 1, $2^n - 1$, $2^{n-1} + 1$, $2^{n-1} - 1$. Then

 $A_1 = \{1, 2^n - 1\}, A_2 = \{1, 2^{n-1} - 1\}$ and $A_3 = \{1, 2^{n-1} + 1\}$ are Smarandache 2-Sylow subgroups of order two. Hence \mathbb{Z}_2^n has three Smarandache 2-Sylow subgroups of order 2.

Theorem 2.2.

The semigroup $(\mathbb{Z}_2^n, .)$, n>3 has three Smarandache 2-Sylow subgroups of order four.

Proof: Since \mathbb{Z}_2^n has four elements each one is its own inverse (Kenneth, 2004) namely, 1, $2^n - 1$, $2^{n-1} + 1$, $2^{n-1} - 1$. Then

 $A_1 = \{1, 2^n - 1, 2^{n-1} + 1, 2^{n-1} - 1\}$ is a Smarandache 2-Sylow subgroup of order 4. Since only one of the four solutions which is $2^{n-1} + 1$ is a solution of the congruence $y \equiv 1 \pmod{8}$, then the congruence $x^2 \equiv 2^{n-1} + 1 \pmod{2^n}$ has four solutions (Edmund, 1966) they are

$$x_1 = 2^{n-2} - 1$$
, $x_2 = 2^n - 2^{n-2} + 1$, $x_3 = 2^{n-2} + 1$

and
$$x_4 = 2^n - 2^{n-2} - 1$$
.
Now $x_1^2 = (2^{n-2} - 1)^2 = 2^{n-1} + 1 \mod(2^n)$.
 $x_1^3 = (2^{n-1} + 1)(2^{n-2} - 1) = x_4 \mod(2^n)$,
and $x_1^4 = (2^{n-1} + 1)^2 = 1 \mod(2^n)$. Hence $A_2 = \{1, x_1, x_4, 2^{n-1} + 1\}$ is a
Smarandache 2-Sylow subgroup of order 4 generated by x_4 and also
generated by x_1 . Let us compute x_2^2 , x_2^3 , x_2^4 ,
 $x_2^2 = 2^{n-1} + 1 \mod(2^n)$,
 $x_2^3 = 2^{2n-1} - 2^{2n-3} + 2^{n-1} + 2^n - 2^{n-2} + 1 = x_3 \mod(2^n)$,

 $x_2^4 = (2^{n-1} + 1)^2 = 1 \mod(2^n)$. Hence $A_3 = \{1, x_2, x_3, 2^{n-1} + 1\}$ is a Smarandache 2-Sylow subgroup of order 4 generated by x_2 and also it is generated by x_3 . Hence \mathbb{Z}_2^n has three Smarandache 2-Sylow subgroups of order four namely A_1 , A_2 and A_3 .

Theorem 2.3.

The semigroup $(\mathbb{Z}_2^n, .)$, n>4 has three Smarandache 2-Sylow subgroups of order 8.

Proof: Similar to the proof of Theorem 2.2.

Theorem 2.4.

The semigroup $(\mathbb{Z}_2^{n},.)$, n>5 has three Smarandache 2-Sylow subgroups of order 16.

Proof: As we have seen in the last theorem that \mathbb{Z}_2^n has eight elements of order 8 which are

 $y_1 = 2^{n-3} + 1$, $y_2 = 2^{n-2} - 2^{n-3} + 1$, $y_3 = 2^{n-1} + 2^{n-3} + 1$, $y_4 = 2^n - 2^{n-3} - 1$ $z_1 = 2^{n-3} - 1$, $z_2 = 2^{n-1} - 2^{n-3} + 1$, $z_3 = 2^n - 2^{n-3} + 1$, and $z_4 = 2^{n-1} + 2^{n-3} - 1$. Since $y_1 \equiv 1 \pmod{8}$, $y_3 \equiv 1 \pmod{8}$, $z_2 \equiv 1 \pmod{8}$ and $z_3 \equiv 1 \pmod{8}$. As

before each of the following congruence has four solutions

$$x^{2} = y_{1} \pmod{2^{n}}$$
(1)

$$x^{2} = y_{3} \pmod{2^{n}}$$
(2)

$$x^{2} = z_{2} \pmod{2^{n}}$$
(3)

$$x^{2} = z_{3} \pmod{2^{n}}.$$
(4)

So there are 16 elements of
$$\mathbb{Z}_2^n$$
 of order 16 which are
 $A_1 = 2^{n-4} - 1, A_2 = 2^n - 2^{n-4} + 1, A_3 = 2^{n-1} + 2^{n-4} - 1, A_4 = 2^{n-1} - 2^{n-4} + 1$
 $B_1 = 2^{n-2} - 2^{n-4} + 1, B_2 = 2^{n-2} + 2^{n-4} - 1, B_3 = 2^n - 2^{n-2} - 2^{n-4} + 1,$
 $B_4 = 2^n - 2^{n-3} - 2^{n-4} - 1, C_1 = 2^{n-4} + 1, C_2 = 2^{n-1} + 2^{n-4} + 1, C_3 = 2^n - 2^{n-4} - 1,$
 $C_4 = 2^{n-1} - 2^{n-4} - 1, D_1 = 2^{n-2} - 2^{n-4} - 1, D_2 = 2^{n-2} + 2^{n-4} + 1$
 $D_3 = 2^n - 2^{n-2} - 2^{n-4} - 1, and D_4 = 2^n - 2^{n-3} - 2^{n-4} + 1.$ Then $E_I = \{C_1, y_3, y_3, x_1, D_2, z_3, A_2, y_1, C_2, y_1, x_1, B_1, D_4, z_4, A_4, I\}$

where $w_1=2^{n-1}+1$, is a cyclic group generated by any one of the elements C_1 , B_3 , D_2 , A_2 , C_2 , B_1 , D_4 , and A_4 . Hence E_1 is a Smarandache 2-Sylow subgroup of order 16. $E_2=\{A_1, z_2, D_3, x_2, B_2, C_3, y_1, w_1, A_3, z_3, D_1, x_1, B_4, y_3, C_4, 1\}$ is a cyclic group of order 16 generated by any one of elements A_1 , D_3 , B_2 , C_3 , A_3 , D_1 , B_4 , and C_4 . Since by the last theorem

 $\{y_1, x_1, z_2, w_1, y_3, x_2, z_3, 1\} \text{ and } \{y_2, x_1, z_1, w_1, y_4, x_2, z_4, 1\} \text{ and } A_3 = \{x_1, x_4, w_1, 1, x_2, x_3, x_1x_2, x_1x_3\} \text{ are subgroups of order 8 then} E_3 = \{y_1, x_1, z_2, w_1, y_3, x_2, z_3, 1, y_2, z_1, y_4, z_4, y_1y_2, y_1z_1, y_1y_4, y_1z_4\} = \{y_1, x_1, z_2, w_1, y_3, x_2, z_3, 1, x_3, x_4, x_1x_3, x_1x_4, y_1x_3, y_1x_4, y_1x_1x_3, y_1x_1x_4\} =$

$$=\{y_2, x_1, z_1, w_1, y_4, x_2, z_4, 1, x_3, x_4, x_1x_3, x_1x_4, y_2x_3, y_2x_4, y_2x_1x_3, y_2x_1x_4\},\$$

Is a Smarandache 2- Sylow subgroup of order 16. Then \mathbb{Z}_2^n has three Smarandache 2- Sylow subgroups of order 16.

Combining the previous theorems, we get the following result.

Theorem 2.5.

 $(\mathbb{Z}_2^n, .)$ n>1, has (3n-5) Smarandache 2- Sylow subgroups

Proof: It is well known that \mathbb{Z}_{m}^{*} , the set of all invertible elements in \mathbb{Z}_{m} , the ring of the integer modulo m contains φ (m) elements, so \mathbb{Z}_{2}^{n} has φ (2^{n}) $=2^{n-1}$ invertible elements. Hence the semigroup(\mathbb{Z}_{2}^{n} ,.) Contains a subgroup of order 2^{n} -1 which is the largest subgroup with 1 as its identity namely G₁. By Theorem 2.1 for large n, \mathbb{Z}_{2}^{n} has 3-Sylow subgroup of order 2 and by Theorems 2.2, $2.3(\mathbb{Z}_{2}^{n},.)$ Has three subgroup of order 8 and three subgroup of order 16. Continuing in this manner we get that \mathbb{Z}_{2}^{n} contains three subgroup of order 2^{k} for each $1 \le k \le n-2$. Hence the number of Sylow subgroup equal to 3(n-2) + 1 = 3n-5.

Example 2.6.

The Smarandache semigroup (\mathbb{Z}_{64} ,.), has the following 2-Sylow subgroups, $\mathcal{A}_1 = \{1,63\}, \mathcal{A}_2 = \{1,31\}, \mathcal{A}_3 = \{1,33\}, \mathcal{A}_4 = \{1,63,31,33\}$, of order 2. It has three Smarandache 2- Sylow subgroups of order 4, three Smarandache 2- Sylow subgroups of order 8, three Smarandache 2- Sylow subgroups of order 16 and one Smarandache 2-Sylow subgroup of order 32.

Theorem 2.7.

If $k | \varphi(2p^n)$, then \mathbb{Z}_{2p^n} has two cyclic subgroups of order k.

Proof: Suppose $k | \varphi(2p^n)$. By Theorem 1.6, \mathbb{Z}_{2p^n} has two maximal

Subgroups of order $\varphi(2p^n)$ and since $k | \varphi(2p^n)$, each maximal subgroup has exactly one cyclic subgroup of order k (Neal & Thomas, 1977), then \mathbb{Z}_{2p^n} has two cyclic subgroups of order k.

Corollary 2.8.

If $k^m | \varphi(2p^n)$ where k, p are prime numbers, then \mathbb{Z}_{2p^n} has 2m Smarandache k-Sylow subgroups.

S3. Smarandache ideals and Smarandache normal subgroups

A non empty subset T of a semigroup S is a left ideal of S if $s \in S$, $t \in T$ imply $st \in T$, T is a right ideal if $s \in S$, $t \in T$ imply $ts \in T$, T is a two-sided ideal if it is both a left and right ideal(Mario, 1973, p.5). In this section we study Smarandache normal subgroups and we introduce the concepts of Smarandache ideal and Smarandache prime ideal of a semigroup and discuss the relation between Smarandache ideals and Smarandache normal subgroups.

Definition 3.1.

Let S be a semigroup and I an ideal of S. Then I is said to be a Smarandache ideal of S if I contains a proper subset which is a group.

Clearly every Smarandache ideal of a semigroup is an ideal of the semigroup but the converse need not be true, for example, (\mathbb{Z} ,.) is a semigroup and I=3 \mathbb{Z} is an ideal of \mathbb{Z} but not a Smarandache ideal because no subset of I is a subgroup.

Remark 3.2.

If I_1 and I_2 are Smarandache ideals of the semigroup S, then $I_1 \cap I_2$ need not be a Smarandache ideal, for example in(\mathbb{Z}_{20} ,.) take I_1 = {0,2,4,6,8,10,12,14,16,18} and I_2 ={ 0,5, 10, 15}. I_1 and I_2 are Smarandache ideals but $I_1 \cap I_2$ = {0, 10} is an ideal but not a Smarandache ideal of (\mathbb{Z}_{20} ,.)

Theorem 3.3.

Let S be a Smarandache semigroup and I is a Smarandache ideal of S. Then I contain a maximal subgroup of S.

Proof: Let A be a subgroup of S with identity e. Then G_e is the maximal subgroup of S with e as its identity. Clearly A is a subgroup of G_e . If $G_e \not\subset I$, then there exists $x \in G_e$, $x \notin I$. Since I is an ideal, hence $x=x.e \in I$, contradiction. Therefore $G_e \subseteq I$ and I contains a maximal subgroup of S.

Definition 3.4.

Let S be a semigroup. A Smarandache ideal I of S is a Smarandache prime ideal if it is a prime ideal of S.

Example 3.5.

 $I = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 0\}$ is a Smarandache prime ideal of the multiplicative semigroup Z_{20} .

Note that if M be a Smarandache maximal ideal of a semigroup S with identity, then M is a Smarandache prime ideal.

Proposition 3.6.

Let $S_1, S_2, ..., S_n$ be Smarandache semigroups, I_i be an ideal of S_i for each i. Then $I_1 \times I_2 \times ... \times I_n$ is a Smarandache ideal of $S_1 \times S_2 \times ... \times S_n$.

Proof: Suppose that I_i is a Smarandache ideal of S_i, we will show that $I_1 \times I_2 \times ... \times I_n$ is a Smarandache ideal of $S_1 \times S_2 \times ... \times S_n$. Let $(a_1, a_2, ..., a_n)$ be an element of $I_1 \times I_2 \times ... \times I_n$ and $(b_1, b_2, ..., b_n)$ be an element in $S_1 \times S_2 \times ... \times S_n$ then $(a_1, a_2, ..., a_n)$. $(b_1, b_2, ..., b_n) = (a_1.b_1, a_2.b_2, ..., a_n.b_n) \in I_1 \times I_2 \times ... \times I_n$. Since I_i is an ideal, $a_i.b_i \in I_i$ for each $1 \le i \le n$. Hence $I_1 \times I_2 \times ... \times I_n$ is an ideal of $S_1 \times S_2 \times ... \times S_n$. Let A_i be a subgroup of I_i for each i, then $(A_1, A_2... A_n)$ Is a subgroup of $I_1 \times I_2 \times ... \times I_n$. Then $I_1 \times I_2 \times ... \times I_n$ is a Smarandache ideal of the semigroup $S_1 \times S_2 \times ... \times S_n$.

Definition 3.7 (Mario, 1973).

An element 0 of a semigroup S (if exists) called the zero of S if x0=0x=0 for each $x \in S$.

Definition 3.8(Kandasamy, 2002).

A subgroup A of a Smarandache semigroup S is called a Smarandache normal subgroup of S if $xA \subseteq A$ and $Ax \subseteq A$ or $xA = \{0\}$ and $Ax = \{0\}$ for all $x \in S$ (0 is the zero of S)

Theorem 3.9.

Let S be a Smarandache semigroup with identity 1. If 1 is the identity of all subgroups of S, then S has no Smarandache normal subgroup

Proof: Suppose that A is a proper subgroup of S and $1 \in A$, let $0 \neq x \in S \setminus A$. Then $0 \neq x$. $1 = x \notin A$, which implies $xA \not\subset A$ and $xA \neq \{0\}$. Hence A is not a Smarandache normal subgroup of S.

Theorem 3.10.

Let S be a Smarandache semigroup. If A is a Smarandache normal subgroup of S, then A is a maximal subgroup of S.

Proof: Suppose A is a Smarandache normal subgroup of S contained in a subgroup $A' \neq S$ i.e $A \subset A'$. Then there is an element $x \in A' \setminus A$. This implies $0 \neq x = x.e \notin A$ where e is the identity of A, thus $xA \not\subset A$ and $xA \neq \{0\}$ contradiction.

Theorem 3.11.

Let S be a Smarandache semigroup with 0, and A be Smarandache normal subgroup of S. Then $A \cup \{0\}$ is a Smarandache ideal of S.

Proof: Since $xA \subseteq A$ or $xA = \{0\}$ for $x \in S$, then clearly $A \cup \{0\}$ is an ideal of S and A is a subgroup of $A \cup \{0\}$. There fore $A \cup \{0\}$ is a Smarandache ideal of S.

The converse of the last theorem need not be true in general for example, $I=\{2,4,6,8,10,12,14,16,18,0\}$ is a Smarandache ideal of (Z₂₀,.) but not a Smarandache normal subgroup.

Theorem 3.12.

The Smarandache semigroup (\mathbb{Z}_{2p^n} ,.), has only one Smarandache normal subgroup which is trivial.

Proof: We show that no non trivial subgroup is normal. We saw (Theorem 1.5) that \mathbb{Z}_{2p^n} has two maximal subgroups one of them is generated by a primitive root a of $2p^n$ and the other generated by $a+p^n$, and both of them are of order φ ($2p^n$) = $p^{n-1}(p-1)$. The subgroup generated by a cannot be normal, since it contains 1. It remains to prove that the subgroup generated by $a+p^n$ is not normal. Remember that $(1+p^n)$ is the identity of this

Subgroup which usually denoted by G_{p+1}^n , and it is the maximal subgroup having $1+p^n$ as its identity. We claim that $2 \in G_{p+1}^n$. First $2(1+p^n) = 2 \pmod{2p^n}$. Next consider the congruence $2x=p^n+1 \pmod{2p^n}$, which has exactly two solutions (Edmund, 1966, p.62). So $2 \in G_{p+1}^n$. Since $p(p^n+1) = p^n+p(\mod{2p^n}) \neq p \pmod{2p^n}$ hence $p \notin G_{p+1}^n$ moreover $2p \notin G_{p+1}^n$ and $2p \neq 0$, hence G_{p+1}^n is not a Smarandache normal subgroup of \mathbb{Z}_{2p^n} . So no non trivial subgroup is Smarandache normal subgroup.

Theorem 3.13.

 $(\mathbb{Z}_{pq}^{n},.)$ p,q are odd prime numbers is a Smarandache semigroup which has a nontrivial Smarandache normal subgroup.

Proof: Let $S_1 = \{q^n, 2qn..., (p-1)qn\}$. We claim that S_1 is a Smarandache normal subgroup. Its well known that $\mathbb{Z}_{pq}^{n} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}^{n}$ as rings so \mathbb{Z}_{pq}^{n} has a subring isomorphic to \mathbb{Z}_p , that is $F_1 = \{0, q^n, 2q^n, \dots, (p-1)q^n\}$ is a field with addition and multiplication mod pq^n . Hence S₁ is a group under multiplication. It remains to show that S_1 is a normal subgroup of \mathbb{Z}_{pq}^{n} . Let $x \notin S_1$. If x=lq then lqa=0 for each $a \in S_1$. If $x \neq lp$ and 0 < x < p, then $xq^n \in S_1$. If $x \neq lp$ and x > p, then by Euclidean Algorithm $x = sp + r \quad 0 \leq r < p$, thus $xq^n = r$ $(sp+r)q^n = spq^n + q^n \in S_1$. Hence $xS_1 \subseteq S_1$ or $xS_1 = 0$ Finally if $x \in S_1$ then $xS_1 \subseteq S_1$. This means that S_1 is normal. Similarly \mathbb{Z}_{pq}^n has a subring isomorphic to \mathbb{Z}_q^n $T = \{0, p, 2p, \dots, (q^n - 1)p\}$ and T has subfield is a which namely $F_2 = \{0, p, 2p, \dots (q-1)p, (q+1), \dots (2q-1)p, (2q+1)p, \dots (q^n-1)p\},\$ then $S_2 = \{p, 2p, \dots, (q-1)p, (q+1), \dots, (2q-1)p, (2q+1)p, \dots, (q^n-1)p\}$ with multiplication is a group which is not a normal subgroup, since $q \in \mathbb{Z}_{pq}^{n}$, but $pq \neq 0$ and $pq \notin S_2$. There are three maximal subgroups S_1 , S_2 and S_3 where $S_3 = \{a: (a, a)\}$

 pq^n) =1], S_1 is Smarandache normal subgroup, but S_2 , S3 are not Smarandache normal subgroups.

Theorem 3.14.

Let $n = p_1 p_2 \dots p_n$, where p_i are prime numbers. Then the semigroup \mathbb{Z}_n has at least n Smarandache normal subgroup.

Proof: For each $1 \le j \le n, \mathbb{Z}_n \cong \mathbb{Z}_{p_1 \cdots p_{j-1} p_{j+1} \cdots p_n} \times \mathbb{Z}_{p_j}$ as rings and $\mathbb{Z}_{p_1 \cdots p_{j-1} p_{j+1} \cdots p_n} \cong \mathbb{Z}_{p_1 \cdots p_{j-1} p_{j+1} \cdots p_n} \times \{0\}$ which is a subring of $\mathbb{Z}_{p_1 \cdots p_n}$. put $k = p_i \cdots p_{j-1} p_{j+1} \cdots p_n$. Then $(\{0, k, 2k, \cdots, (p_j - 1)k\}, +, \cdot\} \cong (\mathbb{Z}_{p_i}, +_{p_j}, \cdot_{p_j})$ which is a field. Hence $s_j = \{k, 2k, \cdots, (p_j - 1)k\}$ is a group under multiplication which is a subgroup of the semigroup (\mathbb{Z}_n, \cdot_n) . Now if $x \in \mathbb{Z}_n$, and $x = tp_j$, 0 < t < n then xk = 0 so $xS = \{0\}$. If $0 < x < p_j - 1$, then $xS \subseteq S$, otherwise $x = tp_j + r$, 0 < r < p, $xk = xtp_j + rx \in S$. Hence S is a Smarandache normal subgroup. Then \mathbb{Z}_n has at least n Smarandache normal subgroups.

References

- David, S. D. and Richard, M. F., (2004): Abstract Algebra, John Wiley and Sons, New York, 932p.
- •Edmund, L., (1966): Elementary Number Theory, Chelsea Publishing Company, New York, 256p.
- •Kandasamy, V.W., (2002): Smarandache Semigroups, American Research press Rehoboth, 93p.
- •Kenneth, H.R., (2004): Elementary Number Theory and its Applications,

ddison Wesley, Reading, 725p.

- •Mario, p., (1973): Introduction to Semigroups, Bell and Howell Company, Ohio, 198p.
- •Neal, H.M. and Thomas, R. B., (1977): Algebra: Groups, Rings and Other Topics. Allyn and Bacon, Boston, 657p.
- •Raual, P., (1998): Smarandache Algebraic Structures, Bull of pure and applied Sciences, Delhi, Vol. 17E, No.1, pp. 119-121.

حول شبه الزمر السمرنداشية

بروین علی حمادی بیشةوا محمد دشتی قسم الریاضیات کلیة تربیة العلوم – جامعة صلاح الدین تاریخ الاستلام: ۲۰۰۹/۰/۱، تاریخ القبول:۲۰۰۹/۱۰/٤

الخلاصة

في هذا البحث درسنا بعض انواع شبه الزمر السمرنداشية و الزمر الجزئية السمرنداشية لشبه زمرة ، مثل شبه الزمرة السمراندشية الدائرية والزمر الجزئية p–سايلو السمرنداشية و الزمر الجزئية السمرنداشية الناظمية. بالاضافة الى ذلك عرضنا مفهوم مثالية سمرنداشية لشبه زمرة ودرسنا العلاقة بينها و بين الزمـرة الجزئيـة السمرنداشية الناظمية.