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Abstract 

 
     This paper presents a new method for solving fractional partial differential equations 

(FPDE) which is called the polynomial approximation method based on the polynomial 

approximation uN(x,t) and on its general fractional derivative formula.By modifying the 

general fractional derivative formula of uN(x,t) and with the aid of the linear FPDE,  

another new formula can be found for the approximation uN(x,t). This is the basic idea 

of the proposed method. Furthermore, the mathematical proof of the convergence and 

stability of this method have been studied. Some numerical examples show that the 

proposed method exhibits a satisfactory results. 

 

Introduction 
     Fractional ordinary differential equation (FODE) is an equation that 

contains fractional derivatives of an unknown function of a single variable, 

while fractional partial differential equation (FPDE) is an equation that 

contains fractional partial derivatives of an unknown function of several 

variables. Analytical solutions of FODEs and FPDEs are now an available 

in some special cases. But the solution to many FDEs (ordinary and partial) 

will have to relay on approximate and numerical methods, just like their 

integer-order counterparts. Fractional derivatives have been a round for 

centuries but recently they have found new applications in many fields of 

science and engineering. Applications of fractional ordinary derivatives in 

viscoelasticity may be found in (Diethelm, 1999). Also, some mechanical 

damping models have been presented in (Yuan & Agrawal,1998) as 

FODEs.Moreover, fractional ordinary time derivatives have been used in 

(Tseng, Pei & Hsia,2000) to compute the velocity and acceleration of some 

applications in signal processing, such as, radar and sonar applications. 

      Applications of FPDEs are found in physics (Shen & Liu, 2004), 

seismology (Hanyga, 2002), hydrology (Meerschaert,2005), and perhaps 

surprisingly, FPDEs have been linked with stable distributions, where a 

FPDE was introduced in (Lix,2003) whose solution gives nearly all the 

stable distributions. 
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This work is focused on solving the linear FPDEs with constant 

coefficients of the form: 

Dtxtxg
x

txu
txuDt 




 ),(,),(

),(
),(                                           … (1) 

when the Riemann- Liouville integral operator is invertible,   and D 

={(x,t): cxd, atb}.  

 

New Formulation of the Approximation uN(x,t) 
     It is popular to use the approximation 
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                                                                       … (2) 

in the two-dimensional polynomial, orthogonal polynomial, and spline 

approximations. Many authors and researchers used the approximation (2), 

such as, Hopkins (Hopkins & Phillips, 1988) which used the above 

approximation in two-dimensional orthogonal polynomial, and spline 

approximations while Iglesias (Iglesias, 2001) used this approximation in 

two-dimensional spline approximation. It’s popularity was due to it’s 

simple shape, but this simple shape hide several disadvantages, such as, the 

difficulty in the matrix formulation of the used method (if it needed), and 

the number of additional terms in (2) that add worthless work. Here a new 

formulation for the approximation uN(x,t) will be derived. This formulation 

was constructed using some ideas given in (Davies, 1980) as it will be 

illustrated below. It was given in (Davies,1980) that each one of the 

approximations of the form 
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has the form              u(x,t)  p(x,t) a 

where p(x,t) is a row vector of linearly independent functions, and a is a 

column vector of constants. For example, if we want to approximate the 

unknown function u(x,t) in the partial differential equation: 
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one may guess that the following approximation could be used 
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Particularly, it is not easy to give definite rules which are applicable in all 

cases. For this reason complete polynomials are often favorite. The 

necessary terms for all possible polynomials up to complete quintic are 

shown below (Davies, 1980): 
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Thus a complete linear polynomial is of the form 

taxaa 210   

while a complete cubic polynomial is of the form 
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The above ideas are the outlines that we used to establish the following 

new formulation uN(x,t) of the function u(x,t): 


 










32

1

1

1 110

),(
n

k

m

j

kj

jp

n

j

j

jn

n

j

j

jN

k

k
txataxatxu                                              … (3) 

where p1=n1 + n2, pk+1= pk + mk;k = 1, 2,,n3, such that n1, n2, n3, and mk, 

for      k =1, 2,,n3, are given nonnegative integers, and N is the number of 

terms in this approximation, i.e. N is the number of the unknowns 

coefficients aj. Eq. (3) represents the general polynomial approximation 

that may be used to approximate u(x,t). A special case is given when n1 = 

n2 = n, n3 = n − 1, and    mk = n  k, as follows:  
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where p1 = 2n, pk+1= pk + (n  k); k = 1, 2,,n 1, and n is a given 

nonnegative integer. It is obvious that eq.(4) represents the complete 

polynomial approximation for u(x,t). To illustrate this let n = 2, then: 
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which is the complete polynomial of order two. 
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New General Formula of the Fractional Derivative of  uN(x,t) 
     In this section a new general formula of the fractional derivative of the 

approximation uN(x,t) was established. 

Proposition(1): 

     Let   0 and uN(x,t) be the two dimensional polynomial approximation 

which was given in eq.(4). The fractional derivative of uN(x,t) is given by: 
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Proof: 

Recall eq.(4): 
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where  p1 = 2n, pk+1= pk + (n  k); for k = 1, 2,,n 1. 

Then the fractional derivative of ),( txuN is given by 
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Rearrangement the above equation to get  
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Since  
   (n + 1 – ) = (n – ) (n – )= (n – ) (n – 1 – ) ··· (3 – ) (2 – ) (1 – ) (1 – 

) 

then for any integer i, 0  i < n we have:  
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Put eq.(8) into  eq.(7) , then using eq. (6) to get: 
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Since 
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From equations (4) and (5) we conclude that: 
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Construction of the Polynomial Approximation Method 
     Our aim is to solve the linear FPDE with constant coefficients (1) when 

the R-L integral operator is invertible. Here, the approximated solution 

uN(x,t) will have the form  
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Accordingly, the fractional derivative of uN(x,t) which have been given in 

proposition (1) will be:  
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and uN(x,t) is defined in eq.(9). 

Now, recall eq. (1): 
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where      D = {(x,t): 0  x  d, 0  t  b}. 
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Differentiate eq.(9)with respect to x and put the result with eq.(10)into 

eq.(1) to get:  
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Simple arrangements in eq.(12) yield:  
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and f (x,t) is defined in eq.(11). 

Now, equations (9) and (13) will be used to find the unknown coefficients 

aj’s. Let us first consider the unknowns jpk
a  , for k = 0,n –m –1; 

j=0,n–k –m. Since when n = m such terms do not exist in the 

approximated solution uN(x,t), we shall find equations for the unknowns 

jpk
a   for all n  m + 1. It is clear that differentiating both sides of equations 

(9) and (13) with respect to t , r-times ,and with respect to x  s-times, and 

equating them at a certain point in D will give the unknowns jpk
a  . So, 

differentiate both sides of eq.(13) with respect to t, we obtain 
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Repeat differentiation m-times to get: 
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Hence, for r  m we have: 
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Now, differentiate eq.(15) with respect to x, we get 
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Continue this process to get: 
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In the same manner we can differentiate eq.(9) with respect to t ,  r-times, r 

 m, to get: 
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Then differentiate eq.(17) with respect to x  , s-times: 
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Now, let (0, t ) be any point in D which satisfies: 

 0 < t   T;        1,))1(2(min nmRmn                                       …(19) 
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Condition (19) insure the convergence of this method as it will be 

illustrated later.Equate eq.(16) with eq. (18) at the point (0, t ) to get: 
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This implies that: 
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Dividing both sides of eq.(21) by the coefficient of sp mr
a 

 yield: 
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Eq. (22) represents M equations with M unknowns jpk
a  ,where 
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Our next aim is to find (n – m +1) equations for the (n – m +1) unknowns  

aj, j = 0, 1, , n – m. To this end, equate equations (15) and (17) at the 

points (0, t ) to get: 
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Put r = n in eq. (23) to get: 
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Hence, for r  n – 1 we get: 
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This implies: 
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Eqs.  (22), (24) and (25) are the N equations needed for the evaluation of 

the N unknowns a0, a1, , aN-1. These equations may be written in matrix 

form as:                   H a = B                                                                …(26) 

where  

         H = [hij]NN, H = [bi]N ;  i, j = 0, 1, , N-1,         a = (a0, a1, , aN-1)
T
 and 
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    Finally, the approximate solution uN(x,t) in eq.(9) can be obtained by 

solving system (26) for the unknowns a0, a1, , aN-1 using the Jacobi or 

Gauss-Seidel methods.The next two sections are concerned with the 

conditions that must be satisfied if the approximate solution (9) is to be 

reasonably accurate approximation to the solution of the FPDE, eq.(1). 

These conditions are associated with two problems, stability and 

convergence of the approximate solution to the solution of the FPDE 
 

Stability Analysis 
     The stability of the polynomial approximation method will be discussed 

by investigating the stability of methods used to solve a system of 

equations. The stability of these methods are examined by determining the 

condition number of the matrix H, which is defined by:  
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where  (H) denotes the set of all eigenvalues of H. The stability of such 

methods insured when this number is nearly one. Notice that the condition 

number of any matrix is always bounded below by one, i.e. we always 

have:   cond (H)  1 

Theorem (1): 

     The polynomial approximation method is unconditionally stable when it 

used to the FPDE, equ. (1). 

Proof: 

     Our aim is to find the condition number of the matrix HNN which is 

represented by eq. (27), i.e. finding the eigenvalues of HNN. Since there is 

no direct procedure that we could follow to find (H – I)NN, and when n 

= m there will be only one unknown in the approximate solution (9) which 

is a0, so we shall find (H – I)NN for the special cases n = m + 1, m + 2, ,  

and stop when we are able to construct a procedure that could be followed 
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to find this determinate for any n > m. To this end, we shall use the column 

expansion method. Consider first H22 for n = m + 1 
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h
               (H – I)22 = (1 − )

2
 = (1 − )

N
 

Next, consider H66 for n = m + 2 
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Hence (H – I)66 can be found by using columns 0, 1 and 2 respectively, 

where n – m = 2, then using columns 4 and 6 respectively, where p0 + 1 = 4 

and p1 + 1 = 6. This procedure yields: 

       (H – I)66 = (1 − )
6
 = (1 − )

N
 

Also, for n = m + 3 we have:                
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Thus using columns 0, 1, 2 and 3 respectively yield: 

               (H – I)1010 = (1 − )
n–m+1

 (p – I)MM 

where n–m+1 = 4 and 





1

)(
n

mr

rn = 6 and 
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Now, by using columns 4 = p0 + 1, 7 = p1 + 1, 9 = p2 + 1, 5 = p0 + 2  and 

  8 = p1 + 2 respectively we get: 
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                       (H – I)1010 = (1 − )

n–m+1
 (1 − )

M
 = (1 − )

N
. 

Now, it is clear that for any n > m we have:  

           (H – I)NN = (1 − )
n–m+1

 (p – I)MM                                       …(28) 

where 
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Accordingly, we can find (H – I)NN if we find (p – I)MM. Now, we  are  

able  to construct a procedure which may be used to find     (H – I)NN for 

any n > m as follows: 

1. Use columns 0, 1, , n – m respectively. 

2. Use columns pk+1, k = 0, 1, , n – m – 1 respectively. 

3. Use columns pk+2, k = 0, 1, , n – m – 2 respectively. 

  
(M-1). Use columns pk+ (n – m – 1), k = 0, respectively. 
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This procedure will always result: 

             (H – I)NN = (1 − )
N  

      , for any n > m                              …(29)
                                   

 

Eq. (29) implies that  i = 1, i = 0, 1,, N – 1,  i.e. for all n > m we have 

            (H) = {1}, which means that 
 )(

max


 = 
 )(

min


 = 1 

Therefore;           cond (H) = 1 

Hence, the polynomial approximation method is unconditionally stable for 

all    n  m, where n is the order of the polynomial that used to approximate 

the exact solution of the FPDE (1). 
 

Convergence Analysis 
     From the stability analysis of this method we conclude that we may use 

any method for solving system (26) and the method will be unconditionally 

stable. But to insure the convergence of this method, we shall use either 

Jacobi or Gauss-Seidel method. These two methods converge if 

                
ii

N

ij
j

ij hh 





1

0

        , for i = 0, 1,, N – 1                          …(30) 

From eq. (27) we have hii = 1, for all, i = 0, 1,, N–1, so eq.(30) becomes: 

                     1
1

0







N

ij
j

ijh            , for i = 0, 1, , N–1                       …(31) 

Eq. (31) will be used in the prove the following convergence result: 
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Theorem (2): 
     The condition  Tt 0  is true then the polynomial approximation 

method converges to the unique solution of the FPDE (1). 

Proof:  
Based on the range of i in eq. (27), this proof was divided into two parts: 

Part 1: For i = 0, 1, n – m 

Since           
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therefore        ik
mn

ij

mn

k

ij
N

ij
j

ij tQntQh 














    )()1()( 2

1

1

0

1

1

0

 

                                 








 










1

01

)()(
mn

k

ik
mn

ij

ij ttR   

where Q1, Q2 and R are defined in eq. (20). 

Now, since t  1, then ( t ) 
j – i

  ( t )
 – i

 and ( t ) 
 + k – i

 < ( t )
 – i

 

Put this into eq. (32) to get: 
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Part 2:  For i = pr-m+ s; r = m, n 1, s = 1, n  r 

Since    
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    i = pr-m+s; r = m, , n 1, s = 1, , n  r Now, since t   1  

and i = 0, 1, n – m, r = m, n 1 then: 
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Combining inequalities (33)-(35) yield 

           Rtmnh nm
N

ij
j

ij







 )()1(2
1

0

   , i = 0, 1, , N – 1                    …(36) 

Notice that, inequality (36) is true for all i = 0, 1, N – 1 because hij = 0, for 

all i  not in the range of the two previous parts. Accordingly, if the right 

hand side of inequality (36) is less than or equal to one, then inequality (31) 

is satisfied for all i = 0, 1, N – 1. This happens if: 
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mnRmn
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1
 

Which is true from condition (19). 

Remark: 

 In fact theorem (2) insures the convergence and stability of the polynomial 

approximation method when the Jacobi iterative method is used to solve 

system (26). 

 

Numerical Examples 

Example (1): 

Consider the FPDE           ),(
),(

),(1.1 txg
t

txu
txuDt 




         , 0  x  2, 0  t  4 

where                             29.19.0 5
)9.2(

18

)9.1(

10
),( tttxtxg 





  

while the exact solution is   u(x,t) = 5 x t
2
+ 3 t

3
 

Let n = 3, then  
2

2

3

1

2

03 ),( txatatatxu  , since we may take any value 

of t  in the interval (0, 0.528), so let t = 1/3. The results of the 

polynomial approximation method are obtained. These results are given by 

a0 = 0, a1= 3 and  a2 = 5. 
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Example (2): 

Consider the FPDE       

                            ),(
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 ,and the exact solution is u(x,t) = t
3
 e

x
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 let n = 7. Since m = 3, then we get: 
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Let t  = 1 10
-15

, or any value in (0, 1.628810
-15

). The results of the 

polynomial approximation method with the least square error and the 

running time are listed in table (1): 

                 

Table(1) 
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Also, more accurate results 

may be obtained by 

increasing the number of the parameters aj’s. Depending on the least square 

error and running time, a comparison has been made in table (2) between 

the exact and approximate solutions, where the approximate solution was 

obtained with n=10 and  

t  = 5 10
-35

 ( t   

(0,8.77310
-35

). 

 

 

 

 
 

Journal of Kirkuk University – 

Scientific Studies , vol.3, No.1,2008 

 

 

Table (2) 

x t u(x,t) = t
3
e

x 
Poly. Approx 

0 0 0.00000000 0.00000000 

0.1 0.1 0.00110517 0.00110517 

0.2 0.2 0.00977122 0.00977119 

0.3 0.3 0.03644619 0.03644558 

0.4 0.4 0.09547678 0.09547085 

0.5 0.5 0.20609016 0.20605452 

0.6 0.6 0.39357766 0.39342210 

0.7 0.7 0.69071718 0.69017411 

0.8 0.8 1.13947696 1.13786809 

0.9 0.9 1.79305067 1.78884654 

LSE 0.00002058 

Running Time 0:0:3:14 

x t u(x,t) = t
3
e

x 
Poly. Approx 

0 0 0.00000000 0.00000000 

0.1 0.1 0.00110517 0.00110517 

0.2 0.2 0.00977122 0.00977121 

0.3 0.3 0.03644619 0.03644616 

0.4 0.4 0.09547678 0.09547675 

0.5 0.5 0.20609016 0.20609023 

0.6 0.6 0.39357766 0.39357838 

0.7 0.7 0.69071718 0.69072035 

0.8 0.8 1.13947696 1.13948777 

0.9 0.9 1.79305067 1.79308224 

LSE 0.00000000 
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Discussion 
     A new efficient method, which is called the polynomial approximation 

method, was introduced to find the approximate solution of FPDEs. Several 

examples were included for illustration. The following points have been 

identified: 

1. This method gives the exact solution when the unknown function is a 

polynomial of degree n, while for other types of functions, the accuracy of 

the solution depends on the degree of the used approximation. 

2. A disadvantage of this method is the hand evaluation of the partial 

derivatives of the function G(x t) . 

3. An advantage of this method is the few number of computations which is 

clear from its short running time. 

4. The convergence condition of this method gives us a range of values 

from which the value of t  may be chosen. This range depends on the 

given values of n and m. 
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التفاضلية الجزئية الكسرية طريقة كفوءة لحل المعادلات  
 
 

 عمر محمد الفاعور

 جامعة التكنولوجية
 

 الخلاصة
 

لحل المعادلات التفاضلية الجزئية الكسرية , هي طريقة التقريب بمتعدددات  يقدم هذا البحث طريقة جديدة      
),(الحدود و التي تعتمد على التقريب بمتعددات الحدود  txuN .إيجادتم و على الصيغة العامة لمشتقتها الكسرية 

),(صيغة جديدة أخرى لتقريب  txuN    بعد تطوير صيغة المشتقة الكسرية لها. علاوة على ذلد  تدم دراسدة 
البرهان الرياضي لتقارب وأستقرارية الطريقة المقترحة. بعض الأمثلة العددية تريندا أن الطريقدة المقترحدة    

 تعرض نتائج مقنعة. 
      

 


