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Abstract—The synchronization of chaos is a well-known topic
which attracted the attention of the scientific community in the
last two decades. However, the robustness of the synchronous
state has been not widely studied, especially considering real
cases in which the effects introduced by the physical channel
through which chaotic circuits interact, may deeply influence the
quality of synchronization and even the onset of it. In this paper,
the synchronization of two chaotic circuit coupled through a non–
ideal channel is investigated. In particular, the effects of channels
introducing a frequency–independent or frequency–dependent
time–delay are investigated. Furthermore, two different design
strategies to obtain a linear compensation block able to compen-
sate the considered channel effects are presented and the recovery
of the synchronous state is discussed.

I. INTRODUCTION

Synchronization of two or more dynamical, in particular
chaotic, systems is a phenomenon of great scientific interest
in many different fields [1]. In particular, concerning syn-
chronization of chaotic circuits, the first evidence has been
observed and discussed in suitably coupled electronic circuits
in [2]. Since then, different coupling schemes and techniques
for the synchronization of nonlinear chaotic circuits have been
developed.

Synchronization of chaos is based on the main idea that
the suitable exchange of information between two or more
circuits allows them to behave following a common dynamics
[1]. However, the transmission channel along which coupled
circuits interact introduces effects which may play a crucial
role on the onset of synchronization.

In real cases, the transmission of the signal which couples
two or more chaotic circuits has to be realized through a phys-
ical connection which may introduce distortion or undesired
noise. The robustness of chaotic synchronization in presence
of noisy transmission channel has been investigated in [3],
where the suitability of chaos–based communication for binary
signals is assessed. The effects introduced by a transmission
channel in the synchronization of chaotic systems have been
also studied in [4], [5] where the case of amplitude distortion
and offset introduction are considered and a suitable recovery
procedure presented.

Aim of this paper is to investigate the case in which
the transmission channel introduces a different kind of dis-
tortion, i.e. the introduction of a time–delay. Moreover, the

Fig. 1. Synchronization scheme of two Chua’s circuit in presence of a non–
ideal transmission channel H(s).

synchronization of two Chua’s circuits [6], coupled through
a Master-Slave configuration, is considered when the chan-
nel provides either a frequency–independent or a frequency–
dependent time–delay. The effects of the introduction of a
distortion on the coupling signal will be characterized in terms
of suitably defined synchronization indices. Two strategies
for the compensation of the two considered effects will be
outlined, showing the possibility to recover the synchronous
state even in presence of non–ideal transmission channel.

The paper is organized as follows: in Section II the adopted
synchronization scheme is described; in Section III the effect
of a frequency–independent time–delay on synchronization
is investigated and the compensation strategy discussed; in
Section IV the effect of a frequency–dependent time–delay on
synchronization is investigated and the compensation strategy
discussed; finally, Section V draws some concluding remarks.

II. SYNCHRONIZATION SCHEME

The analysis of time–delay on the synchronization between
two chaotic systems has been performed considering as case
study a paradigmatic example of dynamical systems which
may show chaotic behavior, i.e the Chua’s circuit [6]. It
represents the first example of electronic circuit in which chaos
can be observed.

The synchronization scheme adopted to couple the two
considered Chua’s circuits is reported in Fig. 1. It is based
on a Master–Slave configuration, hence, one Chua’s circuit
acts as the Master driving the other, i.e. the Slave, through a
specific scalar signal. In particular, a negative feedback scheme
has been adopted. In this case, the driving signal is used to
create an error which is fed back in the slave system.

Particular attention should be given to properly choose the
driving signal, since the onset of synchronization is strictly
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related to this choice. Many strategies have been developed to
select the suitable coupling parameters in order to observe a
synchronous behavior [1]. Among these, the Master Stability
Function (MSF) approach [7] provides a simple method to
select the coupling parameters. Starting from the MSF ap-
proach, the two Chua’s circuits have been coupled by using
as driving signal the first state variable of the master system
and by building an error signal comparing the correspondent
variable of the slave system [8]. The obtained scalar error
signal has been fed back to the three state equation of the
slave. Hence, the two coupled circuits can be described by the
following equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋM (t) = α[yM (t)− xM (t)− h(xM (t))]
ẏM (t) = xM (t)− yM (t) + zM (t)
żM (t) = −βyM (t)− γzM (t)
ẋS(t) = α[yS(t)− xS(t)− h(xS(t))] + k(R(t)− xS(t))
ẏS(t) = xS(t)− yS(t) + zS(t) + k(R(t)− xS(t))
żS(t) = −βyS(t)− γzS(t) + k(R(t)− xS(t))

(1)
where h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|)

is the systems nonlinearity, α = 9, β = 14.286, γ = 0,
m0 = −1/7, and m1 = 2/7 are system parameters, k is the
coupling strength and R(t) is the driving signal as received
by the slave. In absence of coupling, the two circuits show a
chaotic behavior.

Let H(s) be the transfer function of the transmission
channel. If the channel does not introduce any effect on the
transmitted signal, i.e. in the ideal case, we can consider
H(s) = 1, and therefore R(t) = xM (t). In this case, fixing
the coupling strength k = 5 complete synchronization can be
observed.

However, in real cases, H(s) may introduce amplitude
and phase distortions which can affect the onset of complete
synchronization. In the following, the synchronization of the
two Chua’s circuits will be characterized with respect to
two possible transmission channel transfer functions, both
introducing a time–delay.

Let S(t) = xM (t) be the driving signal sent by the master. It
will pass trough the transmission channel and will be received
by the slave as R(t).

Two possible effects are now taken into account: the in-
troduction of a frequency–independent time–delay, and the
presence of a frequency–dependent phase distortion due to the
channel transfer function. Moreover, as shown in Fig. 2, aim of
this paper is also to propose a design strategy for suitable linear
dynamical systems able to recover the correct information in
order to observe a synchronous state, compensating the effect
of the transmission channel.

III. COMPENSATION OF A FREQUENCY–INDEPENDENT
TIME–DELAY

As a first case study, let us consider the introduction of
a frequency–independent time–delay τ , i.e. the transmission
channel can be considered as an ideal time–delay H(s) =
e−sτ . In this case the received signal is R(t) = S(t − τ) =

Fig. 2. Synchronization scheme of two Chua’s circuit in presence of a non–
ideal transmission channel H(s) and of the compensation block F (s).
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Fig. 3. Synchronization of two Chua’s circuit in presence of frequency–
independent time–delay introduced by the transmission channel: synchroniza-
tion error 〈δ〉 as a function of the time–delay τ without (continuous line) and
with (dotted line) compensation block F (s).

xM (t − τ) and, in general, complete synchronization cannot
be ensured.

The behavior of the two coupled circuits has been in-
vestigated with respect to increasing time–delay provided
by the channel. Let us define the synchronization error as
〈δ〉 = 〈

√
|xM−xS|2+|yM−yS|2+|zM−zS |2

3 〉 where the operator
〈·〉 identifies the average in time. The continuous line in Fig.
3 shows the trend of the synchronization error 〈δ〉 as a function
of the introduced time–delay τ . A drastic increase of the
synchronization error can be noticed even for small values
of τ .

Furthermore, it is interesting to observe that, even if com-
plete synchronization cannot be observed, the chaotic behavior
is preserved, as shown in Fig. 4, where the trend of the state
variables x of both master and slave systems are reported
for the different values of τ indicated in the figure caption.
Moreover, lag synchronization can be observed, hence the
slave system can be considered as synchronized with a time–
delayed copy of the master.

In order to compensate frequency–independent time–delays,
a linear block with transfer function F (s) based on the inverse
of a Bessel filter has been designed. Bessel filters are linear
active filters able to approximate an ideal delay in a given
range of frequencies [9]. A second order Bessel filter is
characterized by the following transfer function:

B(s) =
1

c0 + c1s+ c2s2
(2)
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Fig. 4. Synchronization of two Chua’s circuit in presence of time–delay
introduced by the transmission channel: behavior of state variables xM and
xS for different values of τ , i.e. τ = 0, τ = 0.1s, τ = 0.2s, τ = 0.3s,
τ = 0.4s, τ = 0.5s.
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Fig. 5. Dependence of the 3dB frequency ω0 of the Bessel filter on the
actual time–delay implented.

where c0, c1, and c2 are calculated as a function of the 3dB
frequency ω0. The main idea is that the inverse of B(s) is able
to compensate the phase distortion introduced by H(s) up to
ω0. Obviously, in order to obtain a realizable transfer function
F (s), three high frequency poles located at p have to be added.
Hence the complete transfer function of the compensation
block is F (s) = 1

B(s)
1

( s
p
+1)3 , where p is higher enough to

avoid effects on Chua’s circuit dynamics, i.e. p = 40.
Varying ω0 the corresponding second order Bessel filter is

able to compensate a given delay as reported in Fig. 5 in which
the time–delay τ is calculated as τ = − dΦ(B(jω))

dω
. Thus, in

order to compensate a time–delay τ = 0.1s, the compensation
block can be designed choosing ω0 = 10.6rad/s for which
the coefficients of the corresponding Bessel filter are c0 = 1,
c1 = 0.163, and c2 = 0.0089. The Bode diagrams reported in
Fig. 6 show that the compensation block is able to compensate
the time–delay introduced by the transmission channel.

This strategy is effective to compensate time–delays up to
1s as shown by the dotted line in Fig. 3 corresponding to
the error index 〈δ〉 in presence of the compensation block
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Fig. 6. Bode diagrams of the transmission channel H(s) with τ = 0.1s, the
Bessel filter based compensator F (s) for ω0 = 10.6rad/s, and the resulting
cascaded transfer function C(s).
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Fig. 7. Synchronization of two Chua’s circuit in presence of time–delay
introduced by the transmission channel with compensation block: behavior of
state variables xM and xS for different values of τ , i.e. τ = 0, τ = 0.1s,
τ = 0.2s, τ = 0.3s, τ = 0.4s, τ = 0.5s.

designed according to Fig. 5. In Fig. 7 the trend of the xM

and xS are reported for different values of τ showing that
complete synchronization can be recovered even in presence
of non–zero time–delays.

IV. COMPENSATION OF A FREQUENCY–DEPENDENT
DISTORTION

The second case considered takes into account that the
transmission channel may introduce a frequency–dependent
phase distortion. This effect can be studied approximating the
transmission channel as an all–pass filter characterized by the
following transfer function:

H(s) =
(a− s)

(a+ s)
(3)

where a is the absolute value of the zero–pole pair location
corresponding to the frequency at which input and output are
in quadrature.
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Fig. 8. Bode diagrams of an all–pass filter with transfer function H(s) and
a = 6.

All–pass filters have a frequency response characterized
by a flat unitary magnitude, i.e. amplitudes at all frequency
remain unaltered, and a frequency–dependent phase shift,
i.e. a propagation time–delay varying with the frequency, as
shown by the Bode diagrams reported in Fig. 8, in which the
frequency response of an all–pass filter with a = 6 is shown.
In particular, frequencies below (above) a decade from the
zero–pole pair location are shifted by π rad (0 rad).

This behavior significantly affects the synchronization of
the two coupled Chua’s circuits, since it gives rise to anti–
synchronous behavior. In order to quantify the synchroniza-
tion in this case, a peculiar error index, which tends to
zero in both cases of complete and anti–synchronization,
should be defined. Let us consider as synchronization error
〈δa〉 = 〈

√
||xM |−|xS||2+||yM |−|yS||2+||zM |−|zS||2

3 〉 whose be-
havior with respect to different values of a is reported in
Fig. 9. It is interesting to note that when the all–pass filter
has a quadrature frequency below the frequency range of
the Chua’s circuit, synchronization is preserved, otherwise
anti–synchronization occurs. The main distorting effects are
observed when the all–pass filter has a pole in the range of
frequency of the Chua’s circuit dynamics.

In order to compensate the all–pass-like effect which intro-
duces a frequency–dependent phase distortion, the following
compensating transfer function is introduced:

F (s) =
(a+ s)2

(b+ s)2
(4)

where a is the all–pass zero–pole pair location and b is the
location of two high frequency poles. The introduction of F (s)
allows to compensate the all–pass filter. In fact, cascading the
two transfer function H(s) and F (s), one obtains:

C(s) = H(s)F (s) =
(a− s)

(a+ s)

(a+ s)2

(b+ s)2
=

(a− s)(a+ s)

(b+ s)2
(5)

As shown by the Bode diagrams reported in Fig. 10, the
phase distortion observed considering the frequency response
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Fig. 9. Synchronization of two Chua’s circuit in presence of frequency–
dependent time–delay introduced by the transmission channel: synchronization
error 〈δa〉 as a function of a.
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Fig. 10. Bode diagrams of the transmission channel H(s) with a = 6, the
compensation block F(s) in Eq. (4) with a = 6 and b = 40 and the resulting
cascaded transfer function C(s).

of C(s) is shifted to higher frequency and, thus, outside the
range of the Chua’s circuit dynamics.

This approach reveals its effectiveness when a ≥ 2. The
results obtained with this strategy are summarized in Fig.
11 where the synchronization error 〈δa〉 is reported without
(continuous line) and with (dotted line) compensation.

V. CONCLUSION

In this paper, the role played by non–ideal transmission
channel on the onset of synchronization of chaotic systems has
been investigated. In particular, both frequency–independent
and frequency–dependent time–delays introduced by the chan-
nel have been considered.

In the case of frequency–independent time–delays, the com-
plete synchronization of the two circuit cannot be observed,
even if a weaker form of synchronization, i.e. lag synchro-
nization, occurs. A strategy based on Bessel filters has been
outlined in order to design a compensation block able to
recover the synchronous state even in presence of time–delay
of 1s.
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Fig. 11. Synchronization of two Chua’s circuit in presence of frequency–
dependent time–delay introduced by the transmission channel: synchronization
error 〈δa〉 as a function of a without (continuous line) and with (dotted line)
compensation block F (s).

As concerns frequency–dependent time–delay, the channel
has been modeled using an all–pass transfer function which in-
troduces a phase distortion depending on the signal frequency.
In this case, the onset of an anti–synchronous behavior has
been observed. When the channel introduces a time–delay for
which synchronization is lost, the suitable strategy introduced
allows to recover chaos synchronization.
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