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ABSTRACT 

By method of difference equations an equation of motion have been calculated for 
two coupled linear chains with different atoms. Special cases are discussed and shows 
full agreement with the above results.  
 ــــــــــــــــــــــــــــــــــــــــــــــــــــــ

  اهتزازات سلسلتين ذريتين مرتبطتين مع بعضهما
  

 الملخص

كما . لقد تم في هذا البحث مناقشة اهتزازات سلسلتين خطيتين مختلفتي الذرات مرتبطة مع بعضهما             

وتم مناقشة الحالات الخاصة    . احدةتم وضع معادلة الحركة لاهتزاز ذرات السلسلتين عندما تصبح سلسلة و          

   .كانت النتائج مطابقة للأبحاث التي أجريت سابقاً على السلاسل الخطية. لذلك أيضاً
  ــــــــــــــــــــــــــــــــــــــــــــــــــــــ

INTRODUCTION 
The study of lattice dynamics now forms an important part of any course in solid 

state physics (Ruvalds and Zavadovsky,1970; Agranovich,1970; Kimball et al.,1981). 
The vibration of atoms in crystal not only determine its thermal properties but also 
govern phenomena like diffuse scattering of x-ray, neutron scattering, spin lattice 
relaxation, etc. (Ghatak and Kothari,1972). In order to understand any of these 
phenomena it is necessary to develop the theory of vibration of atoms, that is, the theory 
of lattice dynamic. The atom vibration in crystal can be quantized, and this given rise to 
quasi-particles called phonons (Valenta and Jager,1977; Kittel, 1976; Jager et al.,1988; 
Jager and Mossa,1986; Gasagrande et al., 1977). Neutron scattering from a crystal is 
usually analized in terms of the number of phonons exchanged with the crystal.  

Zero phonon process corresponds to elastic scattering, since no energy change of 
the crystal is involved. In elastic scattering, that is,the scattering process in which one or 
more phonons are either created or absorbed in crystal,gives us information about lattice 
dynamics.  

This work represents an attempt to carry out farther calculation related to the theory 
of lattice dynamics, under the harmonic approximation, that is, in writing the potential 
energy of the vibrating atom. We retain atoms only up to the second power in the 
displacement for the atom. This implies that there is no phonon-phonon interaction and 
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hence these quasi-particles have an infinite life time. This time. This also means, that the 
energy of a phonon is exactly defined. The neglect of higher-order terms will prevent us 
from discussing anharmonic effects, that is, the phonon-phonon interaction which leads 
to finite life time for a phonon. The finite life time of a phonon implies a spread in its 
energy and when a neutron with a well-defined energy is scattered by the absorption or 
emission of a phonon, it will also show a spread in energy corresponding to the spread in 
energy of the phonon.  

 
EQUATION OF MOTION 

Let us consider a lattice consisting of two linear chains of equally spaced atoms 
bound together and lying at a straight line, fig. (1).  

 

 
 
 
 

Fig.1: Linear model of two atomic chains coupled through nearest-neighbor forces. 
 
We assume that the atoms are held together by elastic forces obeying Hook’s law. 

The first chain consist from (N+1) identical particles of mass m with coupling constant 
β1 . The second chain constant from p identical particles of mass M, with coupling 
constant β2. The coupling constant between the two chains is denoted by β. We may 
choose 0 number particle as the origin. The particles on the right are successively 
numberd 1, 2, 3, …, p. and those on the left of the origin are numbered –1, -2, -3, …, -N. 
We consider that these particles can vibrate longitudinally.  

The displacement of the nth particle from its equilibrium position will be denoted  
by un.  

Since we have assumed that the force between particles obeys Hook’s law, the 
energy of interaction between any two neighbor particles will be a function only of 
distance between them. So that the equations of motion of these particles at any instant of 
time build a system of (N+p+1) homogenous difference equations.  
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)u - (u  -  
dt
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For the time dependence of un we take the factor exp(-iωt), then we get the 

following time independent difference equations:  
From equation (1) we get:  
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From equation (2) we obtain:  

0u  u 2 -   m   u 1nn
1

2

1n =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
ω

+ −+   (8)  

By using the relation 
m
 4 12

max
β

=ω  , we can write the above difference equation as 

following characteristic equation:  
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And by dividing this equation by 1n−λ  , we get:  
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with the following solution:  
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Which is conjugate complex relation. And by using the general theory of (Valenta 
and Jager, 1977 ; Berg, 1979), we obtain the angle θ  in the following:  
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Then the general solution for the above difference equation for the first chain is 
given as (Valenta and Jager, 1977, 1981; Mossa, 1986) by the following equation:  

n-i
2

ni
1n e c  e c  u θθ +=   (13)  

where c1 and c2 are constants.  
From equations (3) and (4) we get the following equations:  

0  u   u   u ) -  -  (m 11-101
2 =β+β+ββω   (14)  

0  u   u   u ) -  -  (M 22012
2 =β+β+ββω  (15)  

from equation (5) we get: 
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0  u   u   u ) 2 -  (M 1-n21n2n2
2 =β+β+βω +   (16)  

we can write this equation as follows:  
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And by using the relation 
M
 4 22

max
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=ϖ  , then we can write the above difference 

equation as following characteristic equation:  
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by dividing by 1n−λ  , we obtain:  
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and its solution is:  
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Which is conjugate complex equation. By using the general theory of (Valenta and 
Jager, 1977 ; Berg, 1979), we obtain the angle φ  in the following: 
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Then the general solution for the above difference equation is given as (Valenta and 
Jager, 1977 , 1981) by the following form:  

n-i1
2

ni1
1n e c  e c  u φφ +=   (22)  

where 1
1c  and 1

2c  are constants. 
And for equation (6) we obtain:  

0  u   u ) -  (M 1-p2p2
2 =β+βω   (23)  

When we substitute the general solution of the first chain from equation (13) into 
the boundary particle equation of this chain, i.e. in (-N) number particle equation, and 
solving, we obtain a relation between the two constants c1 and c2 in the following 
manner:  

)1N2(-i
12 e c  c +θ=   (24)  

In the same way, when we substitute the general solution of the second chain from 
equation (22) into the boundary particle equation of the chain, i.e. in (p) number particle 
equation, and solving it, we obtain a relation between the two constants 1

1c  and 1
2c  in the 

following manner:  
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)1p2(-i1
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Then when we substitute the general solutions from equations (13) and (22) in the 
boundary particles equations, i.e. equations (14) and (15) and using the two free 
boundary equations (24) and (25) and solving together, we obtain the general equation of 
motion for the system as follows:  
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 … (26)  
Relation (26) is an equation of motion for two linear chains with different atoms 

and different force constants coupled together and forming a system of one linear chain, 
this equation is valid for any particular atom in the system.  

 
SPECIAL CASES 

1) For 0=β :  
This means our coupled chains divided into two finite chains, then we get from 
equation (26) two equations as in (Wallis, 1956) for finite atomic chain as follows:  

0  1)  (N Sin  
2

Sin =+θ
θ

  (27)  

and  

0  p Sin  
2

Sin =φ
φ

  (28)  

From this two equations one can obtain the optics and acoustics branches of the 
frequencies.  

2) When the coupling constants βββ  &  , 21  are equal and m=M , p=N+1 , this means 
φ=θ  , then we get (26) in the following forms:  
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 2 
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2
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2
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θ
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Which is the equation of motion of a finite chain with (p+N+1) particles.  
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