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Abstract 
The main purpose of this work is to propose the parameterization techniques for 

solving quadratic optimal control (OC) problem with aid of both Chebyshev and 
Hermite Polynomials as a basis function to find the approximate solution for OC 
problem. Some examples are given as applications of the proposed. 

Keywords: Optimal control, Parameterization technique, Chebyshev polynomials, 
Hermite polynomials. 

 اسالیب المعلمة لمسائل السیطرة المثلى المستمرة التربیعیة
 الخلاصة

الغرض الاساسي في ھذا العمل ھو اقتراح اسالیب المعلمات لحل مسألة السیطرة المثلى التربیعیة 
دات حدود شیبشف وھرمت كدوال اساسیة لایجاد الحل التقریبي لمسألة باستخدامكل من  متعد

  .بعض الامثلة اعطیت كتطبیق للطریقة المقترحة.السیطرة المثلى 

1-Introduction:[7]
Optimal control theory, an 

extension of the calculus of variations, 
is a mathematical optimization method 
for deriving control policies. The 
method is largely due to the work of 
Lev Pontryagin and his collaborators 
in the Soviet Union and Richard 
Bellman in the United States. 

Optimal control deals with the 
problem of finding a control law for a 
given system such that a certain 
optimality criterion is achieved. A 
control problem includes a cost 
functional that is a function of state 
and control variables. An optimal 
control is a set of differential equations 
describing the paths of the control 
variables that minimize the cost 
functional. The optimal control can be 

derived using Pontryagin's maximum 
principle (a necessary condition), or by 
solving the Hamilton-Jacobi-Bellman 
equation (a sufficient condition).[10] 

The linear quadratic control is 
a special case of the general nonlinear 
optimal control problem. The LQ 
problem is stated as follows. 

 Minimize the quadratic 
continuous-time cost functional 

( )∫
∞

+=
0t

TT dtRuuQxxJ       …. (1)

Subject to the linear first-order 
dynamic constraints 

( ) ( )tButAxx +=&                …. (2)
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and the initial condition 
( ) 00 xtx =                                …..(3) 

 A particular form of the LQ 
problem that arises in many control 
system problems is that of the linear 
quadratic regulator (LQR) where all of 
the matrices (i.e., andRQBA ,,,  ) are 
constant, the initial time is arbitrarily 
set to zero, and the terminal time is 
taken in the limit )(∞ (this last 
assumption is what is known as 
infinite horizon). 

In the finite-horizon case the 
matrices are restricted in 
that RandQ   are positive semi-definite 
and positive definite, respectively. In 
the infinite-horizon case, however, the 
matrices RandQ    are not only 
positive-semi definite and positive-
definite, respectively, but are also 
constant.  
2. Chebyshev polynomial 

Chebyshev polynomials are 
important in approximation theory 
because the roots of the Chebyshev 
polynomials of different kind are used 
as nodes in polynomial interpolation. 
The resulting interpolation polynomial 
minimizes the problem of Runge's 
phenomenon and provides an 
approximation that is close to the 
polynomial of best approximation to a 
continuous function under the 
maximum norm. This approximation 
leads directly to the method of 
Clenshaw â€“ Curtis quadrature.[5] 

The Chebyshev polynomials 
have many beautiful properties and 
countless applications, arising in a 
variety of continuous settings. They 
are a sequence of orthogonal 
polynomials appearing in 

approximation theory, numerical inte-
gration, and differential equations. 
In this paper we deal with the second , 
third and fourth Chebyshev 
polynomials.  
2.1The Second Chebyshev 
Polynomials  

A modified set of Chebyshev 
polynomials defined by a slightly 
different generating function. They 
arise in the development of four-
dimensional spherical harmonics in 
angular momentum theory. They are a 
special case of the Gegenbauer 
polynomial with . They are also 
intimately connected with 
trigonometric multiple-angle formulas. 
The Chebyshev polynomials of the 
second kind are denoted by ( )tU n ,  for 

[ ]1,1−∈t .[6]  
The defining generating function of 
the Chebyshev polynomials of the 
second kind is  

( ) ( ) n

n
xtU

xxt
txs ∑

∞

=

=
+−

=
0

2

21

1
,  

for 1<t and 1<x . 

The Rodrigues representation for nU is  

( ) ( ) ( )
( )

( )[ ]2/12

2/121
1

1!
2
12

11 +

+

−
−






 +

+−
=

n

n

n

n

n

n t
dt
d

tn

ntU π

The polynomials can also be defined in 
terms of the sums  

( ) ( )
 

( )

  ( )mmn
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=
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−=
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=

−
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∑

∑

 
where is the floor function and is 
the ceiling function, or in terms of the 
product  
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( ) ∏
=

















+
−=

n

k

n
n n

kttU
1 1

cos2 π  

Chebyshev polynomials of the second 
kind ( )tU n also obey the interesting 
determinant identity  

2t      1      0        0         0       0 
                                
 0     1        1       0       0       0 
0      0  2t           1       0       0 
0     0       12t               1       0 
0     0       0       12t              1 
0     0        0       0       1       2 

L

OOOOOOM

O

O

O

O

Kt

U =

 
The Chebyshev polynomials of the 
second kind are a special case of the 
Jacobi polynomials ( )βα ,

nP with 
,  

( ) ( )
( ) ( )
( ) ( )

( ) ( )( )tnnFn
P

tP
ntU

n

n
n

−+−+=

+=

12/1;2/3;2,1         
1

1

12

2/1,2/1

2/1,2/1

where is a 
hypergeometric function .  
2.2The third- and fourth -kind 
Chebyshev polynomials: 
The polynomials ( ) ( )t WnandtVn  are, 
in fact rescaling of two particular 
Jacobi2polynomials 

( )βα ,
nP with 2/1,2/1 =−= βα , and 

vice versa. Explicitly [5] 

                     ( ) ( )( )

( ) ( )( )tnPntnW
n

n

tnPntnV
n

n

2/1,2/122
2

  

  ,     2/1,2/122
2

−=

−=









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





  

These polynomials to may be 
efficiently generated by use of a 
recurrence relation. Since 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )oddn       
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3. Shifted Polynomials  ∗∗∗
nnn WVU ,, : 

since the range [0,1],is quite 
often more convenient to use than the 
range[-1,1],we sometimes map the 
independent variable t in [0,1] to the 
variable s in [-1,1] by the 
transformation 

( )sts +=−= 1
2
1         t12  

And this leads to a shifted polynomials 
∗∗∗

nnn WVU ,,  of the second, third and 
fourth kinds may be defined in 
precisely analogous ways: 

( ) ( ) ( ) ( ) ( ) ( )12    ,12    ,12 −=−=−= ∗∗∗ tWtWtVtVtUtU nnnnnn

4. Hermite polynomials ( )tH n   
The Hermite polynomials 

( )tH n are set of orthogonal 
polynomials over the domain 
with weighting function

2te− , 
illustrated above for n=1, 2, 3, and 4. 
Hermite polynomials are implemented 
in Mathematica as Hermite H[n, t]. [4] 
The nth  Hermite polynomials are 
defined as follows  

( ) ( ) ( )2

1 t
n

n
n

n e
dt
dtH −−=  

Also ( )tH n  can be expressed as 

( ) ( ) ( ) ( ) kn

n

k

k
n t

knk
ntH 2

2

0
2

!2!
!1 −



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= −
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and  s  denotes the largest integer ≤  
s. 
The values ( )0nH  may be called 
Hermite numbers.  
The Hermite polynomials satisfy the 
symmetry condition  

( ) ( ) ( )tHH n
n

n 11 −=−  
They also obey the recurrence 
relations 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )tHtnHttH
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The Product and Differentiation 
properties can be expressed as 
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5. Parameterization Techniques for 
Optimal Control Problems: 

The work in this paper is 
based on using parameterization 
technique to convert the optimal 
control problem into a mathematical 
programming problem. 

The parameterization technique 
can be applied in one of the following 
three forms 
-Control-State Parameterization: 
     The control- state parameterization 
approach is based on approximating 
both the state variables and the control 
variables by a sequence of known 
functions with unknown parameters. 
-State Parameterization:  

     The state parameterization is based 
on approximating the state variables 
by sequence of known functions with 
unknown parameters and the control 
variables are obtained from the state 
equations. 

The parameterization 
technique can be employed different 
basis functions. In this work the 
Hermite polynomials and Second, 
Three and Fourth Chebyshev 
polynomials will be used to 
parameterize the system state and 
control variables.[1] 

The parameterization 
technique for state and control or state 
variables are proposed to solve OCP. 
5.1: Using State and Control 
Parameterization technique: 
         The control-state 
parameterization is based on 
approximating both the state variable 
and control variables by a sequence of 
Hermite polynomials ( ( )tH n ) with 
unknown parameters as follows: 

( )tHatx i

n

i
i∑

=

≈
0

)(    n=1,2,3,… 

10 ≤≤ t  

( )tHbtu i

n

i
i∑

=

≈
0

)(        

n=1,2,3,… 10 ≤≤ t  
 where ii ba ,  are unknown parameters 
First, when n=1, yields 

( ) 1t0        )(
1

0
≤≤= ∑

=

tHatx
i

ii                         

                                              ………(4) 

( )tHbtu
i

ii∑
=

=
1

0
)(       …….(5)                                           

                                                  

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


   
Eng. & Tech. Journal, Vol.28, No.20, 2010                   Parameterization Techniques for Quadratic     

                                                                                       Continuous Optimal Control Problems 
                   
        

 6175 

Substitute ( ) ( )tHtH 10 ,  into eqn.(4)-
(5) t0 get 

∑
=

=
1

0
)(

i
iatx

( ) ( ) ( ) i

i

i t
ii

21
2
1

0
2

!21!
!11 −







= −
−∑        ….(6) 

                                              

∑
=

=
1

0
)(

i
ibtu

( ) ( ) ( ) i

i

i t
ii

21
2
1

0
2

!21!
!11 −







= −
−∑       

                                              ……..(7) 
The control points 0,1i        , =ii ba  
can be evaluated as follows: 
Put t=0    and   t=1 into (6)-(7) to get  

1010 ,,, bbaa  respectively, 
i.e 

00 xx(0),     )0( == ax                                
                                             ………(8) 

10 2)1( aax +=                                       
                                              ……..(9) 

  )0( 0bu =                                           
                                              ……..(10) 

 2b )1( 10 += bu                                    
                                               …….(11) 
And differentiation (6) with respect to 
t and put t=0 i.e 

( )
10 2a

dt
tdx

t ==                                     

                                              …….(12) 
Substitute eqn.(12)and(7) into eqn.(2) 

0012 baa +=                      ……(13)                                                                                                                                        
                                                  
Rewrite eqn.(11),(13),(9)and (10) in 
the matrix form as 

( )
( )
( )



















=



























=



















=

0   
  x(0)
  x(0)
0  

F       and    

1u
0u
1x

b 
b 
a 

C       ,

0     1-   0    0     1     0  
0    0     1    0     0     2-
0    0     0    0     1-   2  
1-   0     0     2    1     0  

1

0

1

D

                                                             
                                                   …(14) 
Or    DC=F  
D is singular matrix, we will use 
theorem (Existence of the Moor-
Penrose Inverse). To find the inverse 
matrix of D 
Theorem: Let BCD =  be a full rank 
factorization of a nonzero matrix D. 

then ( ) ( ) TTTT BBBCCCD
11 −−+ =  

Proof:[3] 
From which we get the following 
system  

FDC +=                                              
                                              ….(15) 
Finally, Gauss elimination procedure 
is used to solve the above system to 
find  

.,,,,, 543210 cccccc  
when n=2 or 3 or ….. the same step 
follow  
5.2: Using State Parameterization 
technique: 

The idea of the state 
parameterization, using the 
polynomials Chebychev 
( ( ) ( ) ( )tWtVtU nnn

∗∗∗ ,, ) as a basis 
function, is to approximate the state 
variables as follows: 

( )tUatx i

n

i
i

∗

=
∑≈

0
)(          ….(16)              
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where, ia   are the unknown 
parameters. The control variables )(tu  
are determined from the system state 
equation as function of the unknown 
parameters of the applied 
parameterization technique. Two case 
are considered, if the numbers of states 
and control variables are equal to n=m, 
that each state variable will be 
approximated by finite length 
polynomials series and control vector 
is obtained as function of the state 
variables. If the number of the state 
variables is greater than the number of 
control variables n>m, in this case, a 
set of the state variables is 
approximated which will enable us to 
find the remaining state variables and 
control variables as functions of this 
set.[1] 

First, when n=1 , we have  

( ) 1t0         )(
1

0
≤≤≈ ∗

=
∑ tUatx i
i

i             

                                       ….(17)                      
Substitute ( )tUtU ∗∗

10 ),(  into eqn.(17) 
to get 

( )
 

( ) i

i

i

i
i t

i
i

atx 21
2/1

0

1

0
)12(2

1
1)( −

==

−






 −
−= ∑∑      

                                            …….(18) 
The control points ia  i=0,1 can be 
evaluated as follows: 
Put t=0    and   t=1 into (18) to get  

10 ,aa  respectively, i.e 
010 xx(0),                           2a- )0( == ax         

                                               ….(19) 
10 2)1( aax +=                                                   

                                              …..(20) 
And differentiation (18) with respect 
to t and put t=0 i.e 

( )
10 4a

dt
tdx

t ==                   …..(21)                     

Substitute eqn.(21) into eqn.(2) 
( ) ( )004 1 uxa +=         ……(22)                          

Rewrite eqn.(19)-(20)and (22) in the 
matrix form as 

( )
( ) ( ) 















=



















=















=

0   x
0   

  x(0)
F       and    

1x
0u

a 
a 

C       ,
0     1-   4   0
1-   0    2    1
0     0    2-  1

1

0

D

                                                  ….(23) 
or         DC=F 
from which we get the following 
system 
  
  or DC=F                          …… (24) 
                                          
Finally, Gauss elimination procedure 
is used to solve the above system 
equation (24) to find .,, 210 ccc  
when n=2 or 3 or ….. the same step 
follow. 
 6. Examples of OC Problems: 

In this section the performance 
of the proposed methods discussed in 
the previous section will be compared 
using several text examples. 
 Example (6.1)[7] 

The first example contains one 
state variable and one control variable. 
The performance index to be 
minimized is  

dtuxJ ∫ +=
1

0

22 )2(
2
1

             …..(25)                            

                                                 
Subject  

( ) 10       x          
2

=+= uxx&            …..(26) 
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This problem is solved by expanding 
( ) ( )tuandtx     into three order 

Hermite series.   
n=3 the state and control variables can 
be written as 

( ) 1t0          )(
3

0

≤≤= ∑
=

tHatx
i

ii
  …..(27)                      

( )tHbtu
i

ii∑
=

=
3

0
)(              ….(28)                     

                                                 
Substitute ( ) ( ) ( ) ( )tHtHtHtH 3210 ,,,  
into eqn.(27)-(28) to get 

∑
=

=
3

0
)(

i
iatx ( ) ( ) ( ) i

i

i t
ii

23
2
3

0
2

!23!
!31 −







= −
−∑       

                                                  ….(29) 

∑
=

=
3

0

)(
i

ibtu ( ) ( ) ( ) i

i

i t
ii

23
2
3

0
2

!23!
!31 −







= −
−∑         

                                                   
…..(30) 

The control points 
0,1,2,3i        , =ii ba  can be 

evaluated as follows: 
Put t=0    and   t=1 into (29)-(30) to get  

32103210 ,,,,,,, bbbbaaaa  
respectively, 
i.e 

020 xx(0),    2a-)0( == ax ….(31)          

3210 422)1( aaaax −++=  ….(32) 

20 2b-)0( bu =                     ….(33)         

3210 4b-2b 2b )1( ++= bu  ….(34)       
And differentiation (29) with respect 
to t and put t=0 i.e 

( )
310 122 aa

dt
tdx

t −==          …..(35)                

                                                

Substitute eqn.(35)and(28) into eqn. 
(26) 

2031 2
2
1122 bbaa −+=−    …..(36)       

To evaluate 3b , we needed two 
equations 

( ) ( ) ( )0
2
00 uxx &

&
&& +=  

312 1228 bba −=                                   
                                              …..(37) 

( ) ( ) ( )0
2
00 uxx &&

&&
&&& +=  

23 848 ba =                            …..(38)         
                                                
Rewrite eqn.(31)-(32)-(33)-(34)-(36)-
(37)and(38)in the matrix form as  

( )

( )
( )





























=









































=





























=

0
0

2/1
0
0
0
1

F       

1
0

3
2
1
0
1x

a3
a2
a1
a0

C    

 0     0     0     8-   0     0    0     48     0      0    0
0     0     12    0    2-    0    0      0      8      0    0
  0     0     0     2     0     1-   0     12-   0      2    0

1-   0     4-   2     2     1     0      0      0      0    0
0     1-   0     2-   0     1     0      0      0      0    0
0     0     0     0     0     0     1-    4-    2     2     1
0     0     0     0     0     0     0      0      2-   0     1

u
u
b
b
b
bD

Or DC=F 
                                                ……(39) 
Finally, Gauss elimination procedure 
is used to solve the above system 
equation (39) to find  

,110,1,i       L=ic . 
The result using the state –control 
parameters are shown in tables (1). 

The optimal values of 
∗J for each case 

are listed in table (2) 
From table (2) we can conclude that, 
the results which are obtain from using 
state parameterization technique more 
accurate results than other.  
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Example (6.2) 
Consider the same finite time 

linear quadratic problem which is  
Minimize  

( )   4
58.1

1

22
1 dtuxJ ∫

−

+=                                     

subject to   
2(0)       x121 == xx&                  

( ) 10 x          22 == ux&                                 
The first step in solving this problem 
by the proposed method is to transform 
the time interval to [ ]1,0∈t .this will 
lead to the following problem 

( )   458.2
1

0

22
1 dtuxJ ∫ +=          ….(40)              

subject to   
2(1/2.58)         x58.2 121 == xx&        …..(41)            

                                               
( ) 11/2.58        x58.2 22 == ux&                

                                              …..(42) 
This example contain two state 

variables ( ) ( )t xand 21 tx and one 

control variable ( )tu , i.e, n=2 and 
m=1. 

Here ( ) 1 tx is approximate by 
n=2,3,4,5,6,7 order Chebychev and 
Hermite series nnnn HWVU ,,, ∗∗∗  of 

unknown parameter, then ( )t x 2  is 
found from (41) using the 
differentiation property of the 
Chebychev and Hermite 
polynomials nnnn HWVU ,,, ∗∗∗   that is 

used. The control variable ( )tu  is 
obtained from (42). By 

substituting ( ) 1 tx , ( )t x 2 and ( )tu  

into (40), an expression of  
∗J  can be 

found.  
The same steps of section (6-

2) we are follow to found  ( ) 1 tx , 
( )t x 2 and ( )tu . The result using the 

state parameters are shown in tables 
(3). 
From table (3) we notice that, the 
algorithms using Chebyshev and 
Hermite producer are accurate results.    
Example (6.3) 
Minimize  

( )   4.02
0

22
2

2
1 dtuxxJ ∫

∞

++=   …..(43)            

subject to   
3-(0) x          121 == xx&   …..(44)              

                                            
( ) 00    x          5.05.0 222 =+−= uxx&                

                                             ….(45) 
In this example we will take 

t=10 and we will use the Hermite 
polynomials because it’s more suitable 
than Chebyshev polynimoals. Because 
its limited from 0 to t .This example 
contain two state variables 

( ) ( )t xand 21 tx and one control 

variable ( )tu , i.e, n=2 and m=1. Here 
( ) 1 tx is approximate by 

N=2,3,4,5,6,7,8,9,10 order Hermite 
series nH  of unknown parameter, then 

( )t x 2  is found from (44) using the 
differentiation property of the Hermite 
polynomials nH   that is used. The 

control variable ( )tu  is obtained from 

(45). By substituting ( ) 1 tx , ( )t x 2 and 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


   
Eng. & Tech. Journal, Vol.28, No.20, 2010                   Parameterization Techniques for Quadratic     

                                                                                       Continuous Optimal Control Problems 
                   
        

 6179 

( )tu  into (43), an expression of  
∗J  

can be found. The same steps of 
section (6-2) we are follow to 

find ( ) 1 tx , ( )t x 2 and ( )tu . 
The values of the cost J for 
N=2,3,4,5,6,7,8,9,10 for the arbitrary 
final time t=10 are displayed in table 
(4). 
7. Conclusion: 

In the paper, approximated 
techniques were proposed to solve 
optimal control problems. These 
techniques are based on using the 
parameterization of the system state 
and state- control using Hermite 
polynomials and Chebyshev(second, 
three. fourth kind) polynomials. The 
State Parameterization technique is 
better than State-Control 
Parameterization technique because it 
requires less time and effort . 
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Table (1) 
 

State–Control Parameterization Using Hermite polynomial 

0a 0.2379 0b -0.1066 

1a 0.1967  1b 0.1193 

2a -0.3811 2b
 0.0942 

3a 0.0157 3b 0.1755 

∗J 0.82527057 

 
Table (2) 

 

 
∗J

 

Hermite polynomials 
State-Control                  State 

Parameterization  Parameterization 

Chebyshev polynomials 
State Parameterization 

∗∗∗
nnn WVU ,                     ,                                    

1 0.89731757 0.96875000 0.96875000 0.96875000 0.96875000 

2 0.88024408 0.86472603 0.86472603 0.86472603 0.86472603 

3 0.82527057 0.86421807 0.86421807 0.86421807 0.86421807 

 
Table (3) 

 

Chebyshev Polynomials Hermite Polynomials 

n ( )tU n
∗ ( )tVn

∗ ( )tWn
∗ ( )tHn 

∗J  
2 45.66553695 45.66553695 45.66553695 45.66553695 

3 45.66534248 45.66534248 45.66534248 45.66534248 

4 44.85976925 44.85976925 44.85976925 44.85976925 

5 44.85930544 44.85930544 44.85930544 44.85930544 

6 44.60621591 44.60621591 44.60621591 44.60621591 

7 44.59908693 44.59908693 44.59908693 44.59908693 
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Table (4) 
 

∗J Hermite 
polynomials 

2 85.32693764 

3 53.46918734 

4 38.56685909 

5 31.57665671 

6 29.06042461 

7 28.47505531 

8 28.40099598 

9  28.39702050 

10 28.39699903 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

