On θ-Centralizers of Prime and Semiprime Rings

Abdulrahman H. Majeed
Department of Mathematics
College of Science
Baghdad University, Iraq
e-mail: ahmajeed6@yahoo.com
Mushreq I. Meften
Department of Mathematics
College of Science
Baghdad University, Iraq
e-mail: mushreq.meften@yahoo.com

Abstract

The purpose of this paper is to prove the following result : Let R be a $2-$ torsion free ring and $T: R \rightarrow R$ an additive mapping such that $2 T\left(x^{2}\right)=T(x) \theta(x)+$ $\theta(x) T(x)$ holds for all $x \in R$. In this case T is left and right θ-centralizer, if one of the following statements hold (i) R semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where θ be surjective endomorphism of R

Keywords: prime ring, semiprime ring, derivation, Jordan derivation, left (right) centralizer, left (right) θ-centralizer, centralizer, θ-centralizer, Jordan centralizer, Jordan θ-centralizer .

1- Introduction : This research has been motivated by the work of Brešar [2], Zalar [6] and we [7] . Throughout, R will represent an associative ring with the center $\mathrm{Z}(\mathrm{R})$. As usual we write $[\mathrm{x}, \mathrm{y}]$ for $\mathrm{xy}-\mathrm{yx}$ and use basic commutator $[\mathrm{xy}, \mathrm{z}]=[\mathrm{x}, \mathrm{z}] \mathrm{y}+\mathrm{x}[\mathrm{y}$, $z]$, $x, y, z \in R$. Recall that R is prime if $a R b=(0)$ implies $a=0$ or $b=0$, and is semiprime if $\mathrm{aRa}=(0)$ implies $a=0$. An additive mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called Jordan derivation in case $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner if there exists $a \in R$ such that $D(x)=[a, x]$ holds for all $x \in R$. A classical result of Herstein [4] states that in case R is a prime ring of characteristic different from two, then every Jordan derivation is a derivation. A brief proof of Herstein's result can be found in [1]. Cusak [3] has generalized Herstein's result on 2-torsion free semiprime rings (see also [2] for an alternative proof). An additive mapping T : R \rightarrow R is called a left (right) centralizer in case $T(x y)=T(x) y(T(x y)=x T(y))$ holds for all pairs $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called a left (right) θ-centralizer in case $T(x y)=T(x) \theta(y)(T(x y)=\theta(x) T(y))$ holds for all pairs $x, y \in R$.

In case R has an identity element $T: R \rightarrow R$ is a left (right) centralizer iff T is of the form $T(x)=a x(T(x)=x a)$ for some fixed element $a \in R$. An additive mapping
$T: R \rightarrow R$ is called a left (right) Jordan centralizer in case $T\left(x^{2}\right)=T(x) x\left(T\left(x^{2}\right)=x T\right.$ $(x))$ is fulfilled for all $x \in R$. Following ideas from [2], Zalar has proved in [6] that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. Some results concerning centralizers in prime and semiprime rings can be found in [5] and [8].

An additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ is a left (right) θ-centralizer iff T is of the form $T(x)=a \theta(x))(T(x)=\theta(x) a)$ for some fixed element $a \in R$. An additive mapping $T: R \rightarrow R$ is called a left (right) Jordan θ-centralizer in case $T\left(x^{2}\right)=T(x) \theta(x)\left(T\left(x^{2}\right)=\right.$ $\theta(x) T(x))$ is fulfilled for all $x \in R$. In [7] that any left (right) Jordan θ-centralizer on a 2 -torsion free semiprime ring is a left (right) θ-centralizer.

If the mapping $T: R \rightarrow R$, where R is an arbitrary ring, is both left and right Jordan centralizer, then obviously T satisfies the relation $2 T\left(x^{2}\right)=T(x) x+x T(x), x \in$ R , in [9] J. Vukman prove the converse when R is 2- torsion free semiprime ring . In this paper we generalize this result to θ-centralizer .

The Results

Theorem 1

Let R be a 2-torsion free semiprime ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be such an additive mapping that $2 T\left(x^{2}\right)=T(x) \theta(x)+\theta(x) T(x)$ holds for all $x \in R$. then T is left and right Jordan θ-centralizer, where θ be a surjective endomorphism of R

Proof :

$$
\begin{equation*}
2 T\left(x^{2}\right)=T(x) \theta(x)+\theta(x) T(x), \quad x \in R \tag{1}
\end{equation*}
$$

We intend to prove that T is commuting on R. In other words, it is our aim to prove that

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0 \tag{2}
\end{equation*}
$$

holds for all $x \in R$. In order to achieve this goal we shall first prove a weaker result that T satisfies the relation

$$
\begin{equation*}
\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]=0, \mathrm{x} \in \mathrm{R} \tag{3}
\end{equation*}
$$

Since the above relation can be written in the form $[T(x), \theta(x)] \theta(x)+\theta(x)[T(x), \theta(x)]=$ 0 , it is obvious that T satisfies the relation (3) in case T is commuting on R.

Putting in the relation (1) $x+y$ for x one obtains

$$
\begin{equation*}
2 \mathrm{~T}(\mathrm{xy}+\mathrm{yx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{y})+\mathrm{T}(\mathrm{y}) \theta(\mathrm{x})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}), \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{4}
\end{equation*}
$$

Our next step is to prove the relation

$$
\begin{array}{r}
8 \mathrm{~T}(\mathrm{xyx})=\mathrm{T}(\mathrm{x})(\theta(\mathrm{xy})+3 \theta(\mathrm{yx}))+(\theta(\mathrm{yx})+3 \theta(\mathrm{xy})) \mathrm{T}(\mathrm{x})+2 \theta(\mathrm{x}) \mathrm{T}(\mathrm{y}) \theta(\mathrm{x})-\theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y})- \\
\mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right), \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{5}
\end{array}
$$

For this purpose we put in the relation (4) $2(x y+y x)$ for y. Then using (4) we obtain

$$
\begin{gathered}
4 T(x(x y+y x)+(x y+y x) x)=2 T(x) \theta(x y+y x)+2 \theta(x) T(x y+y x)+2 T(x y+y x) \theta(x) \\
+ \\
2 \theta(x y+y x) T(x)=2 T(x) \theta(x y+y x)+\theta(x) T(x) \theta(y)+\theta\left(x^{2}\right) T(y)+\theta(x) T(y) \theta(x) \\
+\theta(x y) T(x)+T(x) \theta(y x)+\theta(x) T(y) x+T(y) \theta\left(x^{2}\right)+\theta(y) T(x) \theta(x)+2 \theta(x y+y x) T(x):
\end{gathered}
$$

Thus we have

$$
\begin{align*}
& 4 \mathrm{~T}(\mathrm{x}(\mathrm{xy}+\mathrm{yx})+(\mathrm{xy}+\mathrm{yx}) \mathrm{x})=\mathrm{T}(\mathrm{x}) \theta(2 \mathrm{xy}+3 \mathrm{yx})+\theta(3 \mathrm{xy}+2 \mathrm{yx}) \mathrm{T}(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+ \\
& \theta(\mathrm{y}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{x})+2 \theta(\mathrm{x}) \mathrm{T}(\mathrm{y}) \theta(\mathrm{x})+\theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y})+\mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right), \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{6}
\end{align*}
$$

On the other hand, using (4) and (1) we obtain

$$
\begin{aligned}
& 4 \mathrm{~T}(\mathrm{x}(\mathrm{xy}+\mathrm{yx})+(\mathrm{xy}+\mathrm{yx}) \mathrm{x})=4 \mathrm{~T}\left(\mathrm{x}^{2} \mathrm{y}+\mathrm{yx} \mathrm{x}^{2}\right)+8 \mathrm{~T}(\mathrm{xyx})=2 \mathrm{~T}\left(\mathrm{x}^{2}\right) \theta(\mathrm{y})+2 \theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y})+ \\
& 2 \mathrm{~T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right)+2 \theta(\mathrm{y}) \mathrm{T}\left(\mathrm{x}^{2}\right)+8 \mathrm{~T}(\mathrm{xyx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{xy})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+2 \theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y}) \\
&+2 \mathrm{~T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right)+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{x})+\theta(\mathrm{yx}) \mathrm{T}(\mathrm{x})+8 \mathrm{~T}(\mathrm{xyx})
\end{aligned}
$$

We have therefore

$$
\begin{array}{r}
4 \mathrm{~T}(\mathrm{x}(\mathrm{xy}+\mathrm{yx})+(\mathrm{xy}+\mathrm{yx}) \mathrm{x})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{xy})+\theta(\mathrm{yx}) \mathrm{T}(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{x})+ \\
2 \theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y})+2 \mathrm{~T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right)+8 \mathrm{~T}(\mathrm{xyx}), \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{7}
\end{array}
$$

By comparing (6) with (7) we arrive at (5). Let us prove the relation

$$
\begin{align*}
& T(x) \theta\left(x y x-2 y^{2}-2 x^{2} y\right)+\theta\left(x y x-2 x^{2} y-2 y x^{2}\right) T(x)+\theta(x) T(x) \theta(x y+y x)+ \\
& \theta(x y+y x) T(x) \theta(x)+\theta\left(x^{2}\right) T(x) \theta(y)+\theta(y) T(x) \theta\left(x^{2}\right)=0 \quad, x, y \in R \tag{8}
\end{align*}
$$

Putting in (4) 8xyx for y and using (5) we obtain
$16 \mathrm{~T}\left(\mathrm{x}^{2} \mathrm{yx}+\mathrm{xyx}^{2}\right)=8 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{xyx})+8 \theta(\mathrm{x}) \mathrm{T}(\mathrm{xyx})+8 \mathrm{~T}(\mathrm{xyx}) \theta(\mathrm{x})+8 \theta(\mathrm{xyx}) \mathrm{T}(\mathrm{x})=8 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{xyx})$ $+\theta(x) T(x) \theta(x y+3 y x)+\theta\left(x y x+3 x^{2} y\right) T(x)+2 \theta\left(x^{2}\right) T(y) \theta(x)-\theta\left(x^{3}\right) T(y)-\theta(x) T(y) \theta\left(x^{2}\right)+$ $T(x) \theta\left(x y x+3 y x^{2}\right)+\theta(y x+3 x y) T(x) \theta(x)+2 \theta(x) T(y) \theta\left(x^{2}\right)-\theta\left(x^{2}\right) T(y) \theta(x)-T(y) \theta\left(x^{3}\right)$ $+8 \theta(x y x) T(x)$
We have therefore

$$
\begin{align*}
16 T\left(x^{2} y x+x y x^{2}\right) & =T(x) \theta\left(9 x y x+3 y x^{2}\right)+\theta\left(9 x y x+3 x^{2} y\right) T(x)+\theta(x) T(x) \theta(x y+3 y x)+ \\
& \theta(y x+3 x y) T(x) \theta(x)+\theta\left(x^{2}\right) T(y) \theta(x)+\theta(x) T(y) \theta\left(x^{2}\right)-T(y) \theta\left(x^{3}\right)- \\
& \theta\left(x^{3}\right) T(y) \quad x, y \in R \tag{9}
\end{align*}
$$

On the other hand, we obtain first using(5) and then after collecting some terms using(4)
$16 \mathrm{~T}\left(\mathrm{x}^{2} \mathrm{yx}+\mathrm{xyx}^{2}\right)=16 \mathrm{~T}(\mathrm{x}(\mathrm{xy}) \mathrm{x})+16 \mathrm{~T}(\mathrm{x}(\mathrm{yx}) \mathrm{x})=2 \mathrm{~T}(\mathrm{x}) \theta\left(\mathrm{x}^{2} \mathrm{y}+3 \mathrm{xyx}\right)+$ $2 \theta\left(x y x+3 x^{2} y\right) T(x)+4 \theta(x) T(x y) \theta(x)-2 \theta\left(x^{2}\right) T(x y)-2 T(x y) \theta\left(x^{2}\right)+2 T(x) \theta\left(x y x+3 y x^{2}\right)$ $+2 \theta\left(y x^{2}+3 x y x\right) T(x)+4 \theta(x) T(y x) \theta(x)-2 \theta\left(x^{2}\right) T(y x)-2 T(y x) \theta\left(x^{2}\right)=$ $T(x) \theta\left(2 x^{2} y+6 y x^{2}+8 x y x\right)+\theta\left(8 x y x+2 y^{2}+6 x^{2} y\right) T(x)+4 \theta(x) T(x y+y x) \theta(x)-$ $2 \theta\left(x^{2}\right) T(x y+y x)-2 T(x y+y x) \theta\left(x^{2}\right)=T(x) \theta\left(2 x^{2} y+6 y x^{2}+8 x y x\right)+\theta\left(8 x y x+2 y^{2}+\right.$ $\left.6 x^{2} y\right) T(x)+2 \theta(x) T(x) \theta(y x)+2 \theta\left(x^{2}\right) T(y) \theta(x)+2 \theta(x) T(y) \theta\left(x^{2}\right)+2 \theta(x y) T(x) \theta(x)-$ $\theta(\mathrm{x} 2) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})-\theta(\mathrm{x} 3) \mathrm{T}(\mathrm{y})-\theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{y}) \theta(\mathrm{x})-\theta\left(\mathrm{x}^{2} \mathrm{y}\right) \mathrm{T}(\mathrm{x})-\mathrm{T}(\mathrm{x}) \theta\left(\mathrm{yx}{ }^{2}\right)-\theta(\mathrm{x}) \mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right)-$ $\mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{3}\right)-\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}) \theta\left(\mathrm{x}^{2}\right)$
We have therefore

$$
\begin{align*}
& 16 T\left(x^{2} y x+x y x^{2}\right)=T(x) \theta\left(2 x^{2} y+5 y x^{2}+8 x y x\right)+\theta\left(2 y x^{2}+5 x^{2} y+8 x y x\right) T(x)+ \\
& 2 \theta(x) T(x) \theta(y x)+2 \theta(x y) T(x) \theta(x)+\theta\left(x^{2}\right) T(y) \theta(x)+\theta(x) T(y) \theta\left(x^{2}\right)-\theta\left(x^{2}\right) T(x) \theta(y)- \\
& \theta(y) T(x) \theta\left(x^{2}\right)-\theta\left(x^{3}\right) T(y)-T(y) \theta\left(x^{3}\right) \quad x, y \in R \tag{10}
\end{align*}
$$

By comparing (9) with (10) we obtain (8).
Replacing in (8) y by yx we obtain
$\mathrm{T}(\mathrm{x}) \theta\left(\mathrm{xyx}^{2}-2 \mathrm{yx}^{3}-2 \mathrm{x}^{2} \mathrm{yx}\right)+\theta\left(\mathrm{xyx}^{2}-2 \mathrm{x}^{2} \mathrm{yx}-2 \mathrm{yx}^{3}\right) \mathrm{T}(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta\left(\mathrm{xyx}+\mathrm{yx}^{2}\right)+$ $\theta\left(x y x+y x^{2}\right) T(x) \theta(x)+\theta\left(x^{2}\right) T(x) \theta(y x)+\theta(y x) T(x) \theta\left(x^{2}\right)=0 \quad x, y \in R$

Right multiplication of (11) by $\theta(x)$ gives
$T(x) \theta\left(x y x^{2}-2 y x^{3}-2 x^{2} y x\right)+\theta\left(x y x-2 x^{2} y-2 y x^{2}\right) T(x) \theta(x)+\theta(x) T(x) \theta\left(x y x+y x^{2}\right)+$ $\theta(x y+y x) T(x) \theta\left(x^{2}\right)+\theta\left(x^{2}\right) T(x) \theta(y x)+\theta(y) T(x) \theta\left(x^{3}\right)=0 \quad x, y \in R$

Subtracting (12) from (11) we obtain
$\theta(x y x)[\theta(x), T(x)]+2 \theta\left(x^{2} y\right)[T(x), \theta(x)]+2 \theta\left(y x^{2}\right)[T(x), \theta(x)]+\theta(x y)[\theta(x), T(x)]+$ $\theta(\mathrm{yx})[\theta(\mathrm{x}), \mathrm{T}(\mathrm{x})] \theta(\mathrm{x})+\theta(\mathrm{y})[\theta(\mathrm{x}), \mathrm{T}(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)=0$, $x, y \in R$

Which reduces after collecting the first and the fourth term together to
$\theta(x y)\left[\theta\left(x^{2}\right), T(x)\right]+2 \theta\left(x^{2} y\right)[T(x), \theta(x)]+2 \theta\left(y x^{2}\right)[T(x), \theta(x)]+\theta(y x)[\theta(x), T(x)]+$ $\theta(y)[\theta(x), T(x)] \theta\left(x^{2}\right)=0, \quad x, y \in R$

Substituting $T(x) \theta(y)$ for $\theta(y)$ in the above relation gives
$\theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})\left[\theta\left(\mathrm{x}^{2}\right), \mathrm{T}(\mathrm{x})\right]+2 \theta\left(\mathrm{x}^{2}\right) \mathrm{T}(\mathrm{x}) \theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+2 \mathrm{~T}(\mathrm{x}) \theta\left(\mathrm{yx}{ }^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+$
$T(x) \theta(y x)[\theta(x), T(x)] \theta(x)+T(x) \theta(y)[\theta(x), T(x)] \theta\left(x^{2}\right)=0 \quad x, y \in R$
Left multiplication of (13) by $T(x)$ leads to
$\mathrm{T}(\mathrm{x}) \theta(\mathrm{xy})\left[\theta\left(\mathrm{x}^{2}\right), \mathrm{T}(\mathrm{x})\right]+2 \mathrm{~T}(\mathrm{x}) \theta\left(\mathrm{x}^{2} \mathrm{y}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+2 \mathrm{~T}(\mathrm{x}) \theta\left(\mathrm{yx} \mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+$
$T(x) \theta(y x)[\theta(x), T(x)] \theta(x)+T(x) \theta(y)[\theta(x), T(x)] \theta\left(x^{2}\right)=0 \quad x, y \in R$
Subtracting (15) from (14) we arrive at

$$
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]-2\left[\mathrm{~T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

We set

$$
\mathrm{a}=[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})], \quad \mathrm{b}=\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right], \quad \mathrm{c}=-2\left[\mathrm{~T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]
$$

Then the above relation becomes

$$
\begin{equation*}
a \theta(y) b+c \theta(y) a=0, y \in R: \tag{16}
\end{equation*}
$$

Putting in (19) $\theta(\mathrm{y}) \mathrm{a} \theta(\mathrm{z})$ for $\theta(\mathrm{y})$ we obtain

$$
\begin{equation*}
\mathrm{a} \theta(\mathrm{y}) \mathrm{a} \theta(\mathrm{z}) \mathrm{b}+\mathrm{c} \theta(\mathrm{y}) \mathrm{a} \theta(\mathrm{z}) \mathrm{a}=0, \mathrm{z}, \mathrm{y} \in \mathrm{R} \tag{17}
\end{equation*}
$$

Left multiplication of (16) by ay gives

$$
\begin{equation*}
\mathrm{a} \theta(\mathrm{y}) \mathrm{a} \theta(\mathrm{z}) \mathrm{b}+\mathrm{a} \theta(\mathrm{y}) \mathrm{c} \theta(\mathrm{z}) \mathrm{a}=0, \mathrm{z}, \mathrm{y} \in \mathrm{R} \tag{18}
\end{equation*}
$$

Subtracting (18) from (17) we obtain

$$
\begin{equation*}
(a \theta(y) c-c \theta(y) a) \theta(z) a=0, z, y \in R \tag{19}
\end{equation*}
$$

Let in (19) $\theta(z)$ be $\theta(z) c \theta(y)$ we obtain

$$
\begin{equation*}
(a \theta(y) c-c \theta(y) a) \theta(z) c \theta(y) a=0, z, y \in R \tag{20}
\end{equation*}
$$

Right multiplication of (19) by $\theta(y) c$ gives

$$
\begin{equation*}
(a \theta(y) c-c \theta(y) a) \theta(z) a \theta(y)=0, z, y \in R \tag{21}
\end{equation*}
$$

Subtracting(20) from(21) we obtain (a $(\mathrm{y}) \mathrm{c}-\mathrm{c} \theta(\mathrm{y}) \mathrm{a}) \theta(\mathrm{z})(\mathrm{a} \theta(\mathrm{y}) \mathrm{c}-\mathrm{c} \theta(\mathrm{y}) \mathrm{a})=0, \mathrm{z}, \mathrm{y} \in \mathrm{R}$, whence it follows

$$
\begin{equation*}
a \theta(y) c=c \theta(y) a \quad, \quad y \in R \tag{22}
\end{equation*}
$$

Combining (16) with (22) we arrive at

$$
\mathrm{a} \theta(\mathrm{y})(\mathrm{b}+\mathrm{c})=0, \quad \mathrm{y} \in \mathrm{R}
$$

In other words

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]=0, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{23}
\end{equation*}
$$

From the above relation one obtains easily

$$
([T(x), \theta(x)] \theta(x)+\theta(x)[T(x), \theta(x)]) \theta(y)\left[T(x), \theta\left(x^{2}\right)\right]=0, x, y \in R
$$

We have therefore

$$
\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{y})\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]=0, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

which implies

$$
\begin{equation*}
\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right]=0, \quad \mathrm{x} \in \mathrm{R} \tag{24}
\end{equation*}
$$

Substitution $\mathrm{x}+\mathrm{y}$ for x in (24) gives

$$
\left[\mathrm{T}(\mathrm{x}), \theta\left(\mathrm{y}^{2}\right)\right]+\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{xy}+\mathrm{yx})]+[\mathrm{T}(\mathrm{y}), \theta(\mathrm{xy}+\mathrm{yx})]=0, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Putting in the above relation -x for x and comparing the relation so obtained with the above relation we obtain, since we have assumed that R is 2-torsion free

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{xy}+\mathrm{yx})]+\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]=0, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{25}
\end{equation*}
$$

Putting in the above relation 2(xy+yx) for y we obtain according to (4) and (24)

$$
\begin{array}{r}
0=2\left[\mathrm{~T}(\mathrm{x}), \theta\left(\mathrm{x}^{2} \mathrm{y}+\mathrm{yx}^{2}+2 \mathrm{xyx}\right)\right]+\left[\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{y})+\mathrm{T}(\mathrm{y}) \theta(\mathrm{x})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}), \theta\left(\mathrm{x}^{2}\right)\right] \\
=2 \theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]+2[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)+4[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{xyx})]+\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+ \\
\theta(\mathrm{x})\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{x})+\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \mathrm{T}(\mathrm{x})
\end{array}
$$

Thus we have

$$
\begin{align*}
& 2 \theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]+2[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)+4[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{xyx})]+\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+ \\
& \quad\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \mathrm{T}(\mathrm{x})+\theta(\mathrm{x})\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{x})=\mathrm{o}, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R} \tag{26}
\end{align*}
$$

For $\mathrm{y}=\mathrm{x}$ the above relation reduces to

$$
\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)+2\left[\mathrm{~T}(\mathrm{x}), \theta\left(\mathrm{xx}^{2}\right)\right]=0
$$

which gives

$$
\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)=0, \quad \mathrm{x} \in \mathrm{R}
$$

According to the relation $[T(x), \theta(x)] \theta(x)+\theta(x)[T(x), \theta(x)]=0$ (see (24)) one can replace in the above relation $\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]$ by $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)$, which gives

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)=0, \mathrm{x} \in \mathrm{R} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \mathrm{x} \in \mathrm{R} \tag{28}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})=0, \mathrm{x} \in \mathrm{R} \tag{29}
\end{equation*}
$$

Because of (25) one can replace in (26) $\left[\mathrm{T}(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]$ by -[T(x), $\left.\theta(\mathrm{xy}+\mathrm{yx})\right]$, which gives

$$
\begin{aligned}
0= & 2 \theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]+2[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)+4[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{xyx})]+\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+ \\
& {\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \mathrm{T}(\mathrm{x}) \quad-\quad \theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{xy}+\mathrm{yx})] \quad-\quad[\mathrm{T}(\mathrm{x}), \theta(\mathrm{xy}+\mathrm{yx})] \theta(\mathrm{x}) \quad=} \\
& 2 \theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \quad+\quad 2[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right) \quad+\quad 4[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx}) \quad+ \\
& 4 \theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})+4 \theta(\mathrm{xy})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right]+\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \mathrm{T}(\mathrm{x}) \\
& -\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})-\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]-\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})-\theta(\mathrm{xy})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \\
& -[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx})-\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})-[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)-\theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})
\end{aligned}
$$

We have therefore
$\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx})+\theta(3 \mathrm{xy})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+$ $2 \theta(x)[T(x), \theta(y)] \theta(x)+T(x)\left[\theta(y), \theta\left(x^{2}\right)\right]+\left[\theta(y), \theta\left(x^{2}\right)\right] T(x)+\theta(x)[T(x), \theta(x)] \theta(y)-$ $\theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})=0$,

$$
\begin{equation*}
x, y \in R \tag{30}
\end{equation*}
$$

The substitution yx for y gives
$0=\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{yx})]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{yx})] \theta\left(\mathrm{x}^{2}\right)+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{yx}^{2}\right)+3 \theta(\mathrm{xyx})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+$ $2 \theta(x)[T(x), \theta(y x)] \theta(x)+T(x)\left[\theta(y x), \theta\left(x^{2}\right)\right]+\left[\theta(y x), \theta\left(x^{2}\right)\right] T(x)+\theta(x)[T(x), \theta(x)] \theta(y x)-$ $\theta(\mathrm{yx})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})=\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})+\theta\left(\mathrm{x}^{2} \mathrm{y}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{3}\right)+$ $\theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{x}^{2}\right)+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{yx} \mathrm{x}^{2}\right)+3 \theta(\mathrm{xyx})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+2 \theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)$ $+2 \theta(x y)[T(x), \theta(x)] \theta(x)+T(x)\left[\theta(y), \theta\left(x^{2}\right)\right] \theta(x)+\left[\theta(y), \theta\left(x^{2}\right)\right] \theta(x) T(x)+\theta(x)$
$[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx})-\theta(\mathrm{yx})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})$
which reduces because of (27) and (29) to
$\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})+\theta\left(\mathrm{x}^{2} \mathrm{y}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{3}\right)+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{yx}^{2}\right)+$ $3 \theta(x y x)[T(x), \theta(x)]+2 \theta(x)[T(x), \theta(y)] \theta\left(x^{2}\right)+2 \theta(x y)[T(x), \theta(x)] \theta(x)+$ $\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{x})+\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{x}) \mathrm{T}(\mathrm{x})+\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx})=0, \quad \mathrm{x}, \mathrm{y} \in \mathrm{R} \quad$ (31)
Right multiplication of (30) by $\theta(x)$ gives
$\theta\left(\mathrm{x}^{2}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta(\mathrm{x})+[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{3}\right)+3[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta\left(\mathrm{yx}^{2}\right)+\theta(3 \mathrm{xy})[\mathrm{T}(\mathrm{x})$,
$\theta(\mathrm{x})] \theta(\mathrm{x})+2 \theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})] \theta\left(\mathrm{x}^{2}\right)+\mathrm{T}(\mathrm{x})\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \theta(\mathrm{x})+\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \mathrm{T}(\mathrm{x}) \theta(\mathrm{x})$
$+\theta(x)[T(x), \theta(x)] \theta(y x)=0, \quad x, y \in R$
Subtracting (32) from (31) we obtain

$$
\begin{array}{r}
\theta\left(\mathrm{x}^{2} \mathrm{y}\right)[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+3 \theta(\mathrm{xy})[\theta(\mathrm{x}),[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]]+2 \theta(\mathrm{xy})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})+\left[\theta(\mathrm{y}), \theta\left(\mathrm{x}^{2}\right)\right] \\
{[\theta(\mathrm{x}), \mathrm{T}(\mathrm{x})]=0}
\end{array}
$$

which reduces because of (28) to

$$
2 \theta\left(x^{2} y\right)[T(x), \theta(x)]+3 \theta(x y x)[T(x), \theta(x)]-\theta(x y)[T(x), \theta(x)] \theta(x)=0, x, y \in R
$$

Replacing in the above relation -[T(x), $\theta(x)] \theta(x)$ by $\theta(x)[T(x), \theta(x)]$ we obtain

$$
\theta\left(x^{2} y\right)[T(x), \theta(x)]+2 \theta(x y x)[T(x), x]=0, \quad x, y \in R
$$

Because of (24), (27), (28) and (29) the relation (13) reduces to $\theta\left(x^{2} y\right)[T(x), \theta(x)]=0$, $x, y \in R$, which gives together with the relation above $\theta(x y x)[T(x), \theta(x)]=0, x, y \in R$, whence it follows

$$
\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{yx})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

Thus we have

$$
\begin{equation*}
\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \mathrm{x} \in \mathrm{R} \tag{33}
\end{equation*}
$$

Of course we have also

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{x})=0, \mathrm{x} \in \mathrm{R} \tag{34}
\end{equation*}
$$

From (33) one obtains (see the proof of (25))

$$
\theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]+\theta(\mathrm{x})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{y})]+\theta(\mathrm{x})[\mathrm{T}(\mathrm{y}), \theta(\mathrm{x})]=0, \mathrm{x}, \mathrm{y} \in \mathrm{R}:
$$

Left multiplication of the above relation by $[T(x), \theta(x)]$ gives because of (34)

$$
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \mathrm{x}, \mathrm{y} \in \mathrm{R},
$$

whence it follows

$$
\begin{equation*}
[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0, \mathrm{x} \in \mathrm{R} \tag{35}
\end{equation*}
$$

Combining (35) with (1) we obtain

$$
T\left(x^{2}\right)=T(x) \theta(x), x \in R
$$

and also

$$
T\left(x^{2}\right)=\theta(x) T(x), x \in R
$$

which means that T is left and also right Jordan θ-centralizer.
The proof of the theorem is complete.

Corollary 1

Let R be a 2-torsion free ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be such an additive mapping that $2 T\left(x^{2}\right)=T(x) \theta(x)+\theta(x) T(x)$ holds for all $x \in R$. In this case T is left and right θ centralizer, if one of the following statements hold
(i) R semiprime ring has a commutator which is not a zero divisor .
(ii) $\quad \mathrm{R}$ is a non commutative prime ring .
(iii) R is a commutative semiprime ring .

Where θ be surjective endomorphism of R

Proof :

By Theorem 1 we get T is left and also right Jordan θ-centralizer.
By Theorem (1.3) in [7] we get T is both left and also right θ-centralizer.
The proof of the Corollary is complete.

Corollary 2

Let R be a 2-torsion free prime ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be such an additive mapping that $2 T\left(x^{2}\right)=T(x) \theta(x)+\theta(x) T(x)$ holds for all $x \in R$. In this case T is left and right θ-centralizer, where θ be surjective endomorphism of R.

Corollary 3

Let R be a 2-torsion free ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be such an additive mapping that $2 T\left(x^{2}\right)=T(x) x+x T(x)$ holds for all $x \in R$. In this case T is left and right centralizer, if one of the following statements hold
(i) R semiprime ring has a commutator which is not a zero divisor .
(ii) R is a non commutative prime ring .
(iii) R is a commutative semiprime ring .

Corollary 4

Let R be a 2-torsion free prime ring and let $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ be such an additive mapping that $2 T\left(x^{2}\right)=T(x) x+x T(x)$ holds for all $x \in R$. In this case T is left and right θ-centralizer

References

[1] Brešar M., Vukman J.: Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-323.
[2] Brešar M.: Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[3] Cusak J.: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[4] Herstein I.N.: Jordan derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 11041110.
[5] A.H. Majeed , M. I. Meften : On Jordan θ-Centralizers of Prime and Semiprime Rings (preprint).

On $\boldsymbol{\theta}$-Centralizers of Prime and Semiprime Rings
[6] A.H.Majeed, H.A.Shaker : Some Results on Centralizers, Dirasat, Pure Sciences , Volume 35,No.1.2008, 23-26
[7] Vukman J., An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae 40 (1999), 447-456.
[8] Vukman J.: Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae 38 (1997), 231-240.

9- J Vukman.: Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42 (2001), 237-245
[10] Zalar B.: On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (1991),609-614.

