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Abstract: In this paper, a tri-trophic food web model with mixed selection of functional 

responses is proposed and analyzed. It is assumed that, the food web system consisting of 

one prey and two predators, in which there is an explicit inter-specific competition 

between the two predators. Dynamical behavior of all possible equilibrium points has 

been investigated locally as well as globally. Sufficient conditions for the system to be 

uniformly persistent and / or extinction have been derived. 

 

1. Introduction  

 An important and ubiquitous problem in predator-prey theory and related topics in 

mathematical ecology concerns the concepts persistence and extinction of species. The 

persistence and extinction of interacting species in a food chain and food web models 

have been studied extensively in the literatures see [2, 3, 7, 8, 9, 12]. Most of these 

studies have been focused on the permanent and global stability of a model of living 

resources supporting two competing predators. It may be pointed out that all the above 

studies are based on the traditional prey dependent models. 

 Recently, Cantrell et al 2004 [1] proposed and analyzed a mathematical model of 

two consumer one resource with one of the consumer species exhibits intra-specific 

feeding interference but there is no inter-specific competition between the two consumer 

species. It is assumed that one consumer species exhibits Holling type-II functional 

response while the other consumer species exhibits Beddington-DeAngelis functional 

response. They shown that the two consumer species can coexist upon the single limiting 

resource in the sense of uniform persistence and the system has a globally stable positive 

equilibrium. Maiti et al 2006 [11], proposed and analyzed a tri-trophic food chain model 

composed of logistic prey, a classical Lotka-Volterra functional response for prey and 

predator, and a Holling type-II functional response for predator and top predator.  

Keeping the above in view in this paper, the model of Cantrell et al [1], is modified 

so that, it contains inter-specific competition between the two predators. The stability 

analysis of the proposed model is investigated analytically. The uniform persistence and 

the extinction conditions are obtained. 

 

2. A tri-trophic food web model  

Consider a tri-trophic food web model consisting of two predators competing for a single 

prey in which the prey species grows logistically in the absence of predator species. 

Furthermore, the functional and numerical responses of the first predator are taken to be 

of Holling type-II form while those associated with the other predator species are taken of 

Beddington-DeAngils form. Let )(Tu  represent the density of prey species at time T  and 



)(),( TwTv  be the density of predator species that compete with each other for the prey. 

Therefore, the dynamics of such tri-trophic food web may be governed by the following 

system of autonomous differential equations. 
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        Here all the parameters of the system (1), which denoted by 

)2,1(,,,,,,,, =iedcbakr iiii βα , are assumed to be positive constants. Now, to reduce 

the number of parameters, we are nondimensionalize system (1) with the following 

nondimensional variables and parameters. 
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Then, the nondimensionalized form of system (1) can be written as follows: 
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Observe that, the interaction functions 21, FF  and 3F  of the system (3) are continuous on 

3
+R , where { }0,0,0:),,(3 ≥≥≥=+ zyxzyxR  and have a continuous partial derivations, 

therefore these functions are Lipschitzian on 3
+R . Hence, solution of system (3) with 

nonnegative initial condition exists and is unique. Further, it is easy to prove the 

following theorem, which establishes the uniform boundedness of the system (3). 

 

Theorem 1. All the solutions of the system (3), which start in the interior of 3
+R  (i.e. 

3. +RInt ), are uniformly bounded. 

 

It is well known that, the ecological system is said to be dissipative if the solution of the 

system, which initiate in the 3
+R  is uniformly bounded as ∞→t  [5]. Therefore, system 

(3) is dissipative. 

 

 



3. A tri-trophic food web analysis with persistence  

The tri-trophic food web system (3) have at most four non negative boundary 

equilibrium points, say )0,0,0(0 =E , )0,0,1(1 =E , )0,,(2 yxE = , )~,0,~(3 zxE =  and one 

positive equilibrium point ),,( ****
zyxE =  belongs to 3. +RInt .   

•  The equilibrium points 0E  and 1E  are always exist.  

•  The equilibrium point )0,,(2 yxE =  where  

 )1)(1(; 1
416

4 xwxy
www

w
x +−=

−
=             (4) 

is a planer equilibrium point, which exists in the interior of positive quadrant of 

yx −  plane under the following condition. 
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•  The equilibrium point )~,0,~(3 zxE =  where 
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Is a planer equilibrium point, which exists in the interior of positive quadrant of 

zx −  plane under the following condition. 
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•  The positive equilibrium point ),,,( ****
zyxE = exists in the 3. +RInt  if and only if 
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Now the local dynamical behavior of system (3) near the above equilibrium points is 

investigated, and then the following results are obtained. 

The Jacobean matrix at the equilibrium points 0E , 1E , 2E , 3E , and *
E can be written, 

respectively, as the following 
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Here 1B  and 2B  are given by (9b).  

Obviously, the eigenvalues of )( 0EJ  are given by ,0,01 40201 <−=>= wλλ  and 

0703 <−= wλ . Hence, )0,0,0(0 =E  is unstable saddle point with locally stable manifold 

in the zy −  plane and with locally unstable manifold in the x -direction. 

The eigenvalues of )( 1EJ  are 
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implies that )0,0,1(1 =E  is locally asymptotically stable in the 3
+R  if and only if 
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equilibrium points exist). Further, the dynamical behavior near the planer equilibrium 

points 2E  and 3E  is given in the following two theorems respectively. 

 

Theorem 2. Suppose that the planer equilibrium point )0,,(2 yxE =  of system (3) exists, 

and let 
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Then 

1. 2E  is locally asymptotically stable in the 3
+R  if and only if 023 <λ . 

2. 2E  is unstable saddle point in the 3
+R , with locally stable manifolds in the yx −  

plane and with unstable manifold in the −z direction, if and only if .023 >λ  

Proof: According to the )( 2EJ , it is easy to verify that, the eigenvalues satisfy the 

following relations: 
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Where j2λ  3,2,1( =j ) represents the eigenvalue in the −− yx ,  and −z direction 

respectively. Now, substituting the value of x  in equation (11a) and then simplify the 

result yields 
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Clearly, under the given condition (10) we get 02221 <+ λλ . So according to (11b) the 

eigenvalues 21λ  and 22λ  have negative sign, and hence 2E  is locally asymptotically 

stable in the interior of positive quadrant of yx −  plane. 

Now, since the eigenvalue 23λ  describes the dynamics in the −z direction orthogonal on 

the yx −  plane. Hence, if 023 <λ  holds, then 2E  is locally asymptotically stable in 3
+R  

and the proof of (1) follows. Further, if 023 >λ  holds, then 2E  is unstable saddle point in 

the 3
+R  with locally stable manifolds in the yx −  plane (due to the negativity of 21λ  and 

22λ ) and with unstable manifold in the −z direction.               ■ 

 



Theorem 3. Suppose that the planer equilibrium point )~,0,~(3 zxE =  of the system (3) 

exists and let one of the following conditions holds.  
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Then  

(1)  3E  is locally asymptotically stable in the 3
+R  if and only if 032 <λ . 

(2) 3E  is unstable saddle point in the 3
+R , with locally stable manifolds in the zx −  

plane and with unstable manifold in the −y direction, if and only if .032 >λ  

Proof:- From )( 3EJ  the eigenvalues satisfy the following relations: 
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Now, clearly if the given condition (12a) holds then 03331 <+ λλ  and hence both the 

eigenvalues 31λ  and 33λ  are negative. 

While, if the condition (12b) holds, then by substituting the values of x~  and z~  in 

equation (13a) and simplifying the resulting term we obtain 
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3331 λλ +  is depends on the sign of quadratic function )~(xp . Since 04 2
2

1 ≤− δδ  [due to 

condition (12b)], then 0)~( >xp  for all values of x~  and hence 03331 <+ λλ . Therefore, 

both the eigenvalues 31λ  and 33λ  are negative. 

Finally, if the condition (12c) holds, then the quadratic function )~(xp  has two positive 

roots, say [ ]2/1
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Accordingly, )~(xp  can be written as ( )( )21
~~)~( rxrxxp −−= , and hence 0)~( ≥xp  under 

condition (12c). Therefore, 03331 <+ λλ  or both the eigenvalues 31λ  and 33λ  are 

negative. Consequently, if the condition (12a) or (12b) or (12c) holds, then  3E   is locally 

asymptotically stable in the interior of positive quadrant of the zx −  plane. 

Now since the eigenvalue 32λ  describes the dynamics in the −y direction orthogonal on 

the zx −  plane. Hence, for 032 <λ  we get 3E   is locally asymptotically stable in the 3
+R  

and the proof of (1) is done. However, for 032 >λ  we obtain 3E  is unstable saddle point 



in 3
+R   with locally stable manifold in the zx −  plane and with unstable manifold in the 

−y direction. Therefore, the proof of theorem is complete.                                    ■ 

 

Now, according to the above two theorems the following results can be easily proved. 

 

Corollary 4. (1) Assume that the planer equilibrium point )0,,(2 yxE =  of the system (3) 

is a locally asymptotically stable in the interior of positive quadrant of yx −  plane, then 

it is a globally asymptotically stable in the interior of positive quadrant of yx −  plane.  

(2) Assume that the planer equilibrium point )~,0,~(3 zxE =  of the system (3) is a locally 

asymptotically stable in the interior of positive quadrant of zx −  plane with 932 www < , 

then it is a globally asymptotically stable in the interior of positive quadrant of zx −  

plane.  

Proof: - Follow directly from the above theorems with the Bendixson-Dulac criterion and 

Poincare-Bendixson theorem.                            ■ 

 

In the following we show that the tri-trophic food web system (3) is uniform 

persistent. Biologically, persistence of a system means the survival of all populations of 

the system in future time. However, from mathematical point of view, persistence of a 

system means that strictly positive solutions do not have omega limit points on the 

boundary of the non-negative cone. 

 

Theorem 5. Suppose that the planer equilibrium points 2E  and 3E  are globally 

asymptotically stable in the interior of positive boundary planes yx −  and zx −  

respectively. In addition, if the following set of conditions hold. 

023 >λ  and 032 >λ                                     (14) 

Then system (3) is uniformly persistent. 
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Recall that, according to the given hypotheses, we have 2E  and 3E  are globally 

asymptotically stable in the interior of positive boundary planes yx −  and zx −  

respectively. Therefore, there are no periodic orbits in these boundary planes. 

So, to prove that σ  is a persistence function and hence system (3) is uniform persistence 

[10], it is enough to show that the following conditions should be satisfied [4, 6, 13]. 

0)( 372410 >−−= swswsEψ                          (15a)                                                                   

0
11

)( 3
2

9
72

1

6
41 >









+
+−+









+
+−= s

w

w
ws

w

w
wEψ                               (15b) 

0
1

)( 233
2

9
8732 >=









+
+−−= λψ s

xw

xw
ywwsE                                                 (15c) 

0~1

~
~)( 322

1

6
5423 >=









+
+−−= λψ s

xw

xw
zwwsE                                                 (15d)            

Note that by choosing 01 >s  sufficiently large value and keeping 2s  and 3s  fixed 

at small positive values then condition (17a) holds. Also, due to the existence of 2E  and 

3E , the inequality (15b) holds for any positive values of 2s  and 3s . Further, the 

inequalities (15c) and (15d) are satisfied under the given condition (14) for any positive 

values of 2s  and 3s . Hence σ  represents persistence function and system (3) is uniform 

persistent.                                                                                 ■ 

 

In the next corollary, sufficient conditions at which the predators species of system 

(3) facing extinction, and hence system (3) is not persistent (or equivalently the system 

faces extinction), are obtained. 
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(2) Assume that 2E  and 3E  are globally asymptotically stable in the interior of positive 

quadrant of yx −  and zx −  respectively with 023 <λ  and 032 <λ . Then system (3) 

is not persistence and one of the predators y  or z  will goes to extinction. 

Proof: - Follows directly from theorem (5).                         ■ 

 

Now, in order to investigate the local dynamical behavior of the positive 

equilibrium point ),,,( ****
zyxE =  the characteristic equation of the Jacobean matrix 
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EJ  is determined. 
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Therefore, the local asymptotic stability conditions of *
E  are established in the following 

theorem. 

 

Theorem 7. Assume that the positive equilibrium point *
E  exists and let the following 

set of conditions holds 
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is locally asymptotically stable. 

Proof: - According to the Routh-Hurwitz criterion, the necessary and sufficient 

conditions for *
E  to be locally asymptotically stable are 01 >A , 03 >A  and 0>∆ . Now, 

substituting the values of ija  and then simplify the results we get 
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Thus, according to forms of ∆,, 31 AA  and the sign of ija , the Routh-Hurwitz criterion is 

satisfied under the conditions (16a)–(16c).                          ■ 

Let Ω  be the region in the 3. +RInt , where: 

{ }∗∗∗∗ <<<<<=Ω zzyyzzyyxzyx , or , with 1:),,(  



Then the following theorem shows that the positive equilibrium point *
E  is a global 

asymptotically stable in the region Ω , and hence Ω  represents the basin of attraction for 
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E  in the 3. +RInt . 
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Where 21, cc  and 3c  are positive constants to be determined. Now, along any trajectory 

of system (3), we have  
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Straightforward computations give that 
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Clearly, under the condition (17), we have dtdV  is negative definite in the region Ω . 

Thus V  is a Lyapunov function with respect to all solutions in Ω , and hence *
E  is a 

globally asymptotically stable in Ω .                                                                                  ■ 
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