APPROXIMATION METHODS IN THE THEORY OF OPERATOR INCLUSIONS HISHAMR. Rahman Mohammed

E-mail: hishamrehman@yahoo.com

Abstract

In the present paper we use approximation methods for the study of operator inclusions of the form $a(x) \in \Phi(x)$, where a is a closed linear surjective operator from a Banach space onto another one, and Φ is a multimap being a composition of a multimap with "good" values and a continuous singlevalued map. As application we consider the solvability of an integro- differential system which may be treated as a control object with an integral feedback. Key Words and Phrases: multivalued map, fixed point, coincidence point, continuous selection, operator inclusion, closed linear operator, integro-differential system.

Introduction

The topological and geometrical properties of values of multivalued maps (multimaps) play an important role in the theory of fixed points and in the study of solvability of operator inclusions (see, e.g. [5], [12], [13]).At the present time we may recognize various approaches to these directions: metric (see, e.g. [18]),homological (see, e.g. [5],[7],[12]) and approximation(see,e.g. [1][7],[11],[12],[13],[15],[17]). Starting from the research of A.D. Myshkis [17],in a number of works(see, e.g. [1]-[4],[7],[8],[15]and others) the approximation methods were applied to various classes of multimaps with nonconvex values.
In the present paper we use the approximation methods for the study of operator inclusions of the form $a(x) \in \Phi(x)$, where a is a closed linear surjective operator from a Banach space onto another one, and Φ is a multimap being a composition of a multimap with "good" values and a continuous single valued map. The property of a value to be "good" means that this set belongs to some family of subsets described by a suitable collection of axioms. We prove the existence theorem for such inclusions and present conditions under which the solutions set is unbounded. It should be mentioned that for convex-valued multimaps Φ, the inclusions of that form were studied in the paper of the first author[10].

As application we consider the existence result for an integro - deferential system which may be treated as a control object with an integral feedback.

1. Approximate families of sets and Michael systems

For a metric space Y, we denote by $P(Y)$ the collection of all nonempty subsets of Y, by $C(Y)$ the collection of all nonempty closed subsets of Y, and by $K(Y)$ the collection of all nonempty compact subsets of Y. If Y is a subset of a normed space, by $C_{v}(Y)$ we denote the collection of all
nonempty closed convex subsets of Y, and by $K_{v}(Y)$ the collection of all nonempty compact convex subsets of Y.

In this section we will cite some notions and results of the paper[11].
Let (Y, \cdot) be a metric space; for any $\varepsilon>0$, by $U_{\varepsilon}(B)$ we will denote the ε-neighborhood of a set $B \in P(Y)$.
1.1.Definition. A family $A(Y) \subset C(Y)$ is said to be approximate if there
exists a map $\lambda: P(Y) \rightarrow A(Y)$ such that:
(A1) $\lambda(B)=B$ for each $B \in A(Y)$;
(A2) if $B, C \in P(Y)$ and $B \subset C$, then $\lambda(B) \subset \lambda(C)$;
(A3) for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that for each $B \in P(Y)$ the following inclusion holds: $\lambda\left(U_{\delta}(B)\right) \subset U_{\varepsilon}(\lambda(B))$.
(A4) for each set $B \in P(Y)$, each point $y \in \lambda(B)$ and evry $\varepsilon>0$, there exist a compact subset $\mathrm{B}^{\prime} \subset \mathrm{B}$ and a point $\mathrm{y}^{\prime} \in \lambda\left(\mathrm{B}^{\prime}\right)$ such that $\rho\left(\mathrm{y}, \mathrm{y}^{\prime}\right)<\varepsilon$.

Consider some examples of approximate families.
Define the map $\lambda: \mathrm{P}(\mathrm{Y}) \rightarrow \mathrm{C}(\mathrm{Y})$ by $\lambda(\mathrm{B})=\overline{\mathrm{B}}$. It is easy to see that conditions (A1)-(A4) are satisfied and hence the collection $C(Y)$ is approximate.

For a closed convex subset Y of a normed space, the collection $\mathrm{C}_{v}(Y)$ is approximate. In fact, the map $\lambda: P(Y) \rightarrow C_{v}(Y)$ may be defined as $\lambda(\mathrm{B})=\overline{\mathrm{co}}(\mathrm{B})$.

Suppose that Z is a closed convex subset of a Banach space; (Y, ρ) is a metric space and there exists a homeomorphism $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Y}$ satisfying the following condition: there exist positive numbers c_{1} and c_{2} such that

$$
c_{1}\|x-y\| \leq \cdot(g(x), g(y)) \leq c_{2}\|x-y\| .
$$

for each $\mathrm{x}, \mathrm{y} \in \mathrm{Z}$. Consider the collection of sets

$$
\operatorname{Ag}(\mathrm{Y})=\left\{\mathrm{g}(\mathrm{~B}) \mid \mathrm{B} \in \mathrm{C}_{v}(\mathrm{Z})\right\} .
$$

It is easy to verify that the system $\mathrm{Ag}(\mathrm{Y})$ is approximate.
Let X and Y be metric spaces. Let us recall(see, e.g. [5],[6],[13]) that a multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{Y})$ is said to be: upper semi continuous [lower semi continuous] if $F_{+}^{-1}(V)=\{x \in X: F(x) \subset V$ $\left[\right.$ respectively $\left.F_{-}^{-1}(V)=\{x \in X: F(x) \cap V=\varnothing\}\right]$ is open in X for each open $V \subset Y$. The set $\Gamma(F)$ $\subset \mathrm{X} \times \mathrm{Y}, \Gamma(\mathrm{F})=\{(\mathrm{x}, \mathrm{y}): \mathrm{y} \in \mathrm{F}(\mathrm{x})\}$ is called the graph of F .A continuous map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be:
(i) a continuous selection of a multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{Y})$ provided $\mathrm{x} \in \mathrm{F}(\mathrm{x})$ for each $\mathrm{x} \in \mathrm{X}$; (ii) a single-valued ε-approximation of $\mathrm{F}, \varepsilon>0$, if $\Gamma(\mathrm{f}) \subset \mathrm{U} \mathrm{\varepsilon}(\Gamma(\mathrm{~F})$).
1.2. Definition. A lower semi continuous multimap $\mathrm{F} \varepsilon: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{Y}), \varepsilon>0$, is said to be a lower semi continuous ε-approximation of a multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{Y})$,if:
(i) $\mathrm{F}(\mathrm{x}) \subset \mathrm{F} \mathrm{\varepsilon}(\mathrm{x})$ for each $\mathrm{x} \in \mathrm{X}$;
(ii) $\Gamma(\mathrm{F} \mathrm{\varepsilon}) \subset \mathrm{U} \varepsilon(\Gamma(\mathrm{F}))$.
1.3. Theorem. Let $A(Y)$ be an approximate family in a metric space Y, and F : $X \rightarrow A(Y)$ an upper semi continuous multimap. Then for every $\varepsilon>0$ there exists a lower semi continuous ε approximation $\mathrm{F} \varepsilon: \mathrm{X} \rightarrow \mathrm{A}(\mathrm{Y})$ such that $\mathrm{F} \varepsilon(\mathrm{X}) \subset \lambda(\mathrm{F}(\mathrm{X}))$.
1.4. Definition. A family of nonempty subsets $M(Y)$ of a metric space Y is said to be the Michael system if the following condition holds true: (M) for each metric space X , lower semi continuous multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{M}(\mathrm{Y})$, closed subset $\mathrm{A} \subset \mathrm{X}$ and continuous selection $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{Y}$ of the restriction FIA, there exists a continuous selection $\tilde{f}: X \rightarrow Y$ of a multimap F such that $\tilde{f} I A=f$. A Michael system $\mathrm{M}(\mathrm{Y})$ which is also the approximate family will be called a strong Michael system and it will be denoted by $\mathrm{AM}(\mathrm{Y})$.
From the classical Michael theorem (see[16]) it follows that the collection of all nonempty convex closed subsets of a Banach space is a strong Michael system. Other examples of strong Michael systems are presented by the collections $\operatorname{Ag}(\mathrm{Y})$ (see[11]).
The notion of a strong Michael system is closely related to the existence of single-valued ε approximations for multimaps. In fact, the next statement follows from Theorem 1.3.
1.5. Theorem. Let $F: X \rightarrow A M(Y)$ be an upper semi continuous multimap, then for every $\varepsilon>0$ there exists a single-valued ε-approximation $\mathrm{f} \varepsilon$ of F such that $\mathrm{f} \varepsilon(\mathrm{X}) \subset \lambda(\mathrm{F}(\mathrm{X})$).
1.6. Definition. A strong Michael system $\mathrm{AM}(\mathrm{Y})$ is called regular if for every compact $\mathrm{K} \subset \mathrm{Y}$, the set $\lambda(\mathrm{K}) \in \mathrm{AM}(\mathrm{Y})$ is also compact. If Y is a closed convex subset of a normed space, collections $\mathrm{C}_{v}(\mathrm{Y})$ and $\operatorname{Ag}(\mathrm{Y})$ may be considered as examples of a strong Michael system. From Theorem 1.5 we obtain the following statement.
1.7. Corollary. Let the system $A M(Y)$ be regular and an upper Semi continuous multimap F : X \rightarrow $\mathrm{AM}(\mathrm{Y})$ is compact(i.e. $\mathrm{F}(\mathrm{X})$ is relatively compact). Then for every $\varepsilon>0$ there exists a singlevalued compact ε-approximation $f \varepsilon$ of F .

A multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{K}(\mathrm{Y})$ will be called completely continuous if it is upper semi continuous and the set $\mathrm{F}(\Omega)$ is relatively compact for each bounded subset $\Omega \subset \mathrm{X}$.

2. On affixed point theorem

We need the following statements that may be easily verified. The first one is the refinement of the theorem on uniform continuity.
2.1. Lemma. Let ($\mathrm{X},{ }^{\cdot}{ }_{X}$), (Y, ${ }_{Y}$) be metric spaces; $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ a continuous map and $\mathrm{K} \subset \mathrm{X}$ a compact set. Then for every $\varepsilon>0$ there exists $\delta>0$ such that $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in U_{\delta}(\mathrm{K})$ and $\rho_{X}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}\right)<\delta$ imply $\rho_{Y}\left(\mathrm{f}\left(\mathrm{x}^{\prime}\right), \mathrm{f}\left(\mathrm{x}^{\prime \prime}\right)\right)<\varepsilon$. The second one describes the connection between the fixed points of single-valued approximations and a fixed point of a multimap.
2.2. Lemma. Let M be a closed convex bounded subset of a Banach space $E, F: M \rightarrow K(E)$ a completely continuous multimap. If there exists $\varepsilon_{0}>0$ such that each single-valued ε approximation f_{ε} of a multimap F with $0<\varepsilon \leq \varepsilon_{0}$ has a fixed point, then F also has a fixed point.

Let X be a metric space, E a Banach space, $\Phi: \mathrm{X} \rightarrow \mathrm{K}(\mathrm{E})$ an upper Semi continuous multimap.
2.3. Definition. A multimap Φ is said to be superpositionally approximable (SA-multimap) if there exist a metric space Y , a regular Michael system $\mathrm{AM}(\mathrm{Y})$, an upper semi continuous multimap F : X $\rightarrow \mathrm{AM}(\mathrm{Y})$, and acontinuous map $\mathrm{p}: \mathrm{Y} \rightarrow \mathrm{E}$ such that Φ may be presented as the composition $\Phi=\mathrm{pF}$ We will say that a SA-multimap $\Phi=\mathrm{pF}$ is normal if the multimap F is completely continuous.
2.4. Theorem. Let M be a closed convex bounded subset of a Banach space $E, \Phi: M \rightarrow K(E)$ is a normal SA-multimap. If $\Phi(\mathrm{M}) \subset \mathrm{M}$, then Φ has a fixed point

Proof. Let $\tau: \mathrm{E} \rightarrow \mathrm{M}$ be a continuous retraction and η an arbitrary positive number. Since the set M is bounded, there exists a number $\mathrm{R}>0$ such that $\mathrm{U} \eta(\mathrm{M}) \subset B_{R}$ where $B_{R} \subset \mathrm{E}$ is a closed ball of radius R . Let $\Phi=\mathrm{pF}$ be the representation of the SA-multimap Φ. Consider a continuous map $p_{1}=\tau \mathrm{p}: \mathrm{Y} \rightarrow \mathrm{M}$.

By virtue of the boundedness of M , the set $\mathrm{N}=\mathrm{F}(\mathrm{M}) \subset \mathrm{Y}$ is compact, hence by Lemma 2.1, for every $\delta \in(0, \eta)$ there exists $\varepsilon>0$ such that

$$
\rho\left(p_{1}\left(x^{\prime}\right), p_{1}\left(x^{\prime \prime}\right)\right)<\delta
$$

whenever $\rho\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}\right)<\varepsilon$ and $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in \mathrm{U} \varepsilon(\mathrm{N})$. Without loss of generality we will assume that $\varepsilon<\delta$.
By virtue of Corollary 1.9 the multimap F has a completely continuous ε-approximation $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{Y}$. Let us demonstrate that that the composition $f_{1}=p_{1} . \mathrm{f}$ is a completely continuous δ-approximation of the multimap $\Phi_{1}=p_{1}$.F. In fact, let $\mathrm{x} \in \mathrm{M}$ be an arbitrary point, then there exist points $\mathrm{x}^{\prime} \in \mathrm{M}$
and $\mathrm{y} \in \mathrm{F}(\mathrm{x})$ such that $\|\mathrm{x}-\mathrm{x}\|<\varepsilon$ and $\rho(\mathrm{f}(\mathrm{x}), \mathrm{y})<\varepsilon$. Hence $\mathrm{f}(\mathrm{x}) \in \mathrm{U} \varepsilon(\mathrm{N})$.Then $\| p_{1}(\mathrm{f}(\mathrm{x}))-p_{1}$ $(\mathrm{y}) \|<\delta$. Since $p_{1}(\mathrm{y}) \in p_{1}\left(\mathrm{~F}\left(\mathrm{x}^{\prime}\right)\right)=\Phi_{1}\left(\mathrm{x}^{\prime}\right)$, the map f_{1} is a continuous δ-approximation. The compactness of a map f_{1} follows from the compactness of f .

Let us demonstrate now that $f_{1}\left(B_{R}\right) \subset B_{R}$. In fact, for each point $\mathrm{x} \in B_{R}$ we have:

$$
f_{1}(\mathrm{x})=\tau(\mathrm{p}(\mathrm{f}(\mathrm{x}))) \in \mathrm{M} \subset B_{R}
$$

So, by Schauder theorem, the map f_{1} has a fixed point. Applying Lemma 2.2, we conclude that the multimap Φ_{1} has a fixed point. Let $x_{*} \in \Phi_{1}\left(x_{*}\right)=\tau\left(\Phi\left(x_{*}\right)\right)$. Since $x_{*} \in \mathrm{M}$, we obtain that $\tau\left(\Phi\left(x_{*}\right)\right)=\Phi\left(x_{*}\right) . \square$

3. On a class of operator inclusions

Let E_{1}, E_{2} be Banach spaces, a : $\mathrm{D}(\mathrm{a}) \subset E_{1} \rightarrow E_{2}$ a closed linear surjective operator. By $a^{-1}: E_{2} \rightarrow C_{v}\left(E_{1}\right)$ we denote the multivalued linear operatorbeing the inverse to a (see, e.g. [9]).Denote $\mathrm{L}=\operatorname{Ker}(\mathrm{a})$ and $\mathrm{E}=E_{1} / \operatorname{Ker}(\mathrm{a})$. It is known that the norm in E can be defined in the following way: if $[x]=x+\operatorname{Ker}(a) \in E$, then

$$
\|[x]\|=\inf _{u \in \operatorname{Ker}(a)}\|x+u\|
$$

Let $p: E_{1} \rightarrow E$ be a natural projection. Consider the linear operator $a_{1}: \mathrm{D}\left(a_{1}\right) \subset \mathrm{E} \rightarrow E_{2}$, where $\mathrm{D}\left(a_{1}\right)=\mathrm{p}(\mathrm{D}(\mathrm{a}))$ and $a_{1}([\mathrm{x}])=\mathrm{a}(\mathrm{x})$. It is easyto see that a_{1} is closed surjective operator with the trivial kernel. It means that the operator a1 has a bounded inverse. Then we have:

$$
\left\|a_{1}^{-1}\right\|=\sup _{y \in E_{2}} \frac{\left\|a_{1}^{-1}(y)\right\|}{\|y\|}=\sup _{y \in E_{2}}\left(\frac{\inf \left\{\|x\| x \in E_{1} a(x)=y\right\}}{\|y\|}\right)
$$

By definition, the value $\left\|a_{1}^{-1}\right\|$ will be called the norm $\left\|\mathrm{a}^{-1}\right\|$ of the multioperator a^{-1}.
Consider the following example. Let $\mathrm{C}=\mathrm{C}\left([\mathrm{a}, \mathrm{b}] ; \mathrm{R}^{\mathrm{n}}\right)$ be the space of con-tinuous functions and D denote the subspace of continuously differentiable functions. Let us evaluate $\left\|\mathrm{d}^{-1}\right\| f$ for the operator of differentiation $\mathrm{d}: \mathrm{D} \subset \mathrm{C} \rightarrow \mathrm{C}$.
3.1. Proposition. $\left\|d^{-1}\right\|=\frac{b-a}{2}$

Proof. For $\mathrm{y} \in \mathrm{C}$ consider

$$
d^{-1}(y)=\left\{x \in C \mid x(t)=\alpha+\int_{a}^{t} y(s) d s, \alpha \in E^{n}\right\}
$$

Then

$$
\begin{aligned}
& \inf _{\alpha \in E^{n}}\left\{\|x\|_{C} \mid x \in d^{-1}(y)=\inf _{\alpha \in E^{n}} \alpha+\left\|\alpha+\int_{a}^{t} y(s) d s\right\|_{C} \leq\right. \\
& \leq\left\|\int_{a}^{t} y(s) d s-\int_{a}^{\frac{a+b}{2}} y(s) d s\right\|_{C}=\left\|\int_{\frac{a+b}{2}}^{t} y(s) d s\right\|_{C} \leq \\
& \leq \max _{a \leq \leq b}\left|\int_{\frac{a+b}{2}}^{t}\|y(s)\| d s\right|=\frac{b-a}{2}\|y\|_{C}
\end{aligned}
$$

Hence

$$
\left\|d^{-1}\right\| \leq \frac{b-a}{2}
$$

Consider a function $y_{0} \in C, y_{0}(t) \equiv(1,0, \ldots, 0)$. We have

$$
d^{-1}\left(y_{0}\right)=\left\{x \in C \mid x(t)=\left(\alpha_{1}+t-a, \alpha_{2}, \ldots, \alpha_{n}\right), \alpha_{i} \in R\right\} .
$$

Therefore

$$
\begin{aligned}
\inf _{\alpha \in E^{n}}\|x\|_{C} & =\inf _{\alpha \in E^{n}} \max _{a \leq \leq \leq b} \sqrt{\left(\alpha_{1}+t-a\right)^{2}=\sum_{i=2}^{n} \alpha_{i}^{2}}=\inf _{\alpha_{1} \in R^{1}} \max _{a \leq \leq \leq b}\left|\alpha_{1}+t-a\right|= \\
& =\inf _{\alpha_{1} \in R^{1}} \max \left\{\left|b-a+\alpha_{1}\right|,\left|\alpha_{1}\right|\right\}=\frac{b-a}{2}
\end{aligned}
$$

From the other side , $\left\|y_{0}\right\|_{C}=1$. So

$$
\frac{b-a}{2}\left\|y_{0}\right\|_{C}=\inf _{\alpha \in E^{n}}\left\{\|x\|_{C} x \in d^{-1}\left(y_{0}\right)\right\}
$$

and therefore $\left\|d^{-1}\right\|=\frac{b-a}{2}$
3.2. Lemma For every k , $\left\|\mathrm{a}^{-1}\right\|<\mathrm{k}$, there exists a continuous map $\mathrm{q}: E_{2} \rightarrow E_{1}$, such that:

1) $\mathrm{a}(\mathrm{q}(\mathrm{y}))=\mathrm{y}$ for each $\mathrm{y} \in E_{2}$;
2) $\|q(y)\| \leq k\|y\|$.

For a multimap F: $E_{1} \rightarrow P\left(E_{2}\right)$ we will consider the solvability of the following operator inclusion

$$
\begin{equation*}
\mathrm{a}(\mathrm{x}) \in \mathrm{F}(\mathrm{x}) \tag{1}
\end{equation*}
$$

Solutions of inclusion(1) are called coincidence points of the pair (a, F). The coincidence points set
of the pair (a, F) will be denoted by $\operatorname{Coin}(\mathrm{a}, \mathrm{F})$.
For a map q satisfying conditions of Lemma 3.2 define a multimap

$$
F_{1}: E_{2} \times \operatorname{Ker}(a) \rightarrow A M\left(E_{2}\right), F_{1}(y, u)=F(q(y)+u)
$$

Consider the following inclusion:

$$
\begin{equation*}
\mathrm{y} \in F_{1}(\mathrm{y}, \mathrm{u}) \tag{2}
\end{equation*}
$$

3.3. Lemma There exists a one-to-one correspondence between Coin (a, F) and the solutions set of inclusion(2).

Proof. In fact, let $x_{0} \in \operatorname{Coin}(\mathrm{a}, \mathrm{F})$, i.e. $y_{0}=\mathrm{a}\left(x_{0}\right) \in \mathrm{F}\left(x_{0}\right)$. Then $u_{0}=x_{0}-\mathrm{q}\left(y_{0}\right) \in \operatorname{Ker}(\mathrm{a})$. Hence $y_{0} \in \mathrm{~F}\left(x_{0}\right)=F_{1}\left(y_{0}, u_{0}\right)$,i.e. the couple $\left(y_{0}, u_{0}\right)$ is the solution of inclusion (2).

From the other side, if the pair $\left(y_{0}, u_{0}\right)$ is a solution of (2), let us denote $x_{0}=\mathrm{q}\left(y_{0}\right)+u_{0}$. Then y_{0} $\in \mathrm{F}\left(x_{0}\right)$, and $\mathrm{a}\left(x_{0}\right)=\mathrm{a}\left(\mathrm{q}\left(y_{0}\right)\right)+\mathrm{a}\left(u_{0}\right)=y_{0}$.

We will need one more auxiliary statement.
Let E be a Banach space, the norm in the Banach space $E_{0}=\mathrm{E} \times \mathrm{R}^{1}$ will be defined in the following way:

$$
\|(x, t)\|=\sqrt{\|x\|^{2}+t^{2}}
$$

Let $\mathrm{S}_{\mathrm{r}}{ }^{0} \subset E_{0}$ be the sphere of the radius rcentered at zero; $\mathrm{F}: \mathrm{S}_{\mathrm{r}}{ }^{0} \rightarrow \mathrm{~K}(\mathrm{E})$ a completely continuous SA-multimap. Consider the inclusion

$$
\begin{equation*}
\mathrm{x} \in \mathrm{~F}(\mathrm{x}, \mathrm{t}) \tag{3}
\end{equation*}
$$

3.4. Lemma. If

$$
\|F(x, t)\|:=\max _{u \in F(x, t)}\|u\| \leq r
$$

for each point $(\mathrm{x}, \mathrm{t}) \in \mathrm{S}_{\mathrm{r}}{ }^{0}$, then inclusion (3) has a solution in $\mathrm{S}_{\mathrm{r}}{ }^{0}$.
Proof. Let B be a closed ball of the radius r in the space E. Consider the multimap G : $B \rightarrow K(E)$ defined by

$$
\mathrm{G}(\mathrm{x})=\mathrm{F}\left(\mathrm{x}, \sqrt{\mathrm{r}^{2}-\|x\|^{2}}\right) .
$$

It is clear that G is a completely continuous SA-multimap. Notice also that $G(B) \subset B$. Hence, by virtue of Theorem 2.4 the multimap G has a fixed point. It remains to mention that if x_{0} is a fixed point of G, then for $t_{0}=\sqrt{\mathrm{r}^{2}-\left\|x_{0}\right\|^{2}}$, we see that $\left(x_{0}, t_{0}\right) \in \mathrm{S}_{\mathrm{r}}{ }^{0}$ is the solution of inclusion (3) \square Let E_{1}, E_{2} be Banach spaces, a: $\mathrm{D}(\mathrm{a}) \subset E_{1} \rightarrow E_{2}$ a closed surjective linear operator. Let Y be a
metric space and a multimap $\mathrm{F}: \mathrm{X} \subset E_{1} \rightarrow \mathrm{C}(\mathrm{Y})$ is upper semicontinuous.
3.5. Definition. A multimap F is completely continuous modulo a (or a-completely continuous), if for each bounded sets $\mathrm{A} \subset E_{2}$ and $\mathrm{B} \subset \mathrm{X}$ the set $\overline{F\left(B \cap a^{-1}(A)\right)}$ is compact in Y .

It is known that that the set D (a)may be regarded as a Banach space E endowed with the graph norm:

$$
\|x\|_{D(a)}=\|x\|_{E_{1}}+\|a(x)\|_{E_{2}}
$$

It is clear that the inclusion map $\mathrm{j}: \mathrm{E} \rightarrow E_{1}$ is continuous. For $\mathrm{X} \subset \mathrm{D}(\mathrm{a})$ denote $\tilde{X}=j^{-1}(X)$ and consider the multimap $\quad \tilde{F}: \tilde{X} \rightarrow K\left(E_{2}\right), \tilde{F}(x)=F(j(x))$

We have the following criterion.
3.6. Proposition. The multimap F is a-completely continuous iff the multimap \tilde{F} is completely continuous.

Proof. (i)Let F be a-completely continuous. If $\mathrm{C} \subset \tilde{X}$ is abounded setin E , then the set $\mathrm{B}=\mathrm{j}(\mathrm{C})$ is bounded in E_{1}, and the set $\mathrm{A}=\mathrm{a}(\mathrm{j}(\mathrm{C}))=\mathrm{a}(\mathrm{B})$ is bounded in E_{2}. Thentheset $\tilde{F}(\mathrm{C})=\mathrm{F}(\mathrm{j}(\mathrm{C}))=$ $\mathrm{F}\left(\mathrm{B} \cap \mathrm{a}^{-1}(\mathrm{~A})\right)$ is relatively compact.
(ii) Let the multimap \tilde{F} is completely continuous. Consider bounded subsets $\mathrm{A} \subset E_{2}$ and $\mathrm{B} \subset \mathrm{X}$. Let $\mathrm{C}=\mathrm{j}^{-1}\left(\mathrm{~B} \cap \mathrm{a}^{-1}(\mathrm{~A})\right) \subset \mathrm{E}$. It is clear that C is a bounded subset of \tilde{X}. Then $\mathrm{F}\left(\mathrm{B} \cap \mathrm{a}^{-1}(\mathrm{~A})\right)=\tilde{F}(\mathrm{C})$ is relatively compact.
Let $\Phi: E_{1} \rightarrow \mathrm{C}\left(E_{2}\right)$ be a SA-multimap, i.e. there exist a metric space Y, a regular Michael system $\mathrm{AM}(\mathrm{Y})$ in the space Y , an upper semicontinuous multimap $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{AM}(\mathrm{Y})$, and a continuous map $\mathrm{p}: \mathrm{Y} \rightarrow \mathrm{E}$ such that $\Phi=\mathrm{pF}$.
3.7. Definition. SA-multimap $\Phi=\mathrm{pF}$ is said to be a-completely continuous if the multimap F is acompletely continuous.
3.8. Theorem. Let $\Phi: E_{1} \rightarrow \mathrm{C}\left(E_{2}\right)$ be a SA-multimap satisfying the following conditions:

1) Φ is a-completely continuous;
2) there exist nonnegative numbers D_{1} and D_{2} such that

$$
\|\Phi(x)\|=\max _{y \in \Phi(x)}\|y\| \leq D_{1}\|x\|+D_{2}
$$

for each $\mathrm{x} \in E_{1}$.If

$$
D_{1}<\frac{1}{\left\|a^{-1}\right\|}
$$

then $\operatorname{Coin}(a, \Phi) \neq \varnothing$
Proof. If $\operatorname{dim}(\operatorname{Ker}(\mathrm{a}))=0$ then a^{-1} is a continuous linear operator. Then, using the conditions of the theorem, we can construct a ball $B_{R} \subset E_{2}$ centered at the origin such that for each point $\mathrm{y} \in B_{R}$ we have $\hat{\Phi}(y)=\Phi\left(a^{-1}(y)\right) \subset B_{R}$.

Since the multimap $\hat{\Phi}$ is completely continuous, by Theorem 2.4 it has a fixed point y_{*}. It is clear that the point $x_{*}=\mathrm{a}^{-1}\left(y_{*}\right)$ is the solution of inclusion (1).

Now consider the case $\operatorname{dim}(\operatorname{Ker}(\mathrm{a}))>0$. Let k be an arbitrary number satisfying

$$
\left\|a^{-1}\right\|<k<\frac{1}{D_{1}}
$$

and q: $E_{2} \rightarrow E_{1}$ a map given by Lemma 3.2

Let us choose in the subspace $\operatorname{Ker}(\mathrm{a})$ a non-zero vector such that

$$
\|e\|<\frac{1-D_{1} k}{D_{1}}
$$

Consider the space $E_{0}=E_{2} \times \mathrm{R}^{1}$ with the norm $\|(y, t)\|=\sqrt{\|y\|^{2}+t^{2}}$. Let $\Phi=\mathrm{p} \circ \mathrm{F}$ where $\mathrm{F}: E_{1}$ $\rightarrow \mathrm{AM}(\mathrm{Y})$. Consider the multimap $F_{1}: E_{0} \rightarrow \mathrm{AM}(\mathrm{Y})$ defined as

$$
F_{1}(\mathrm{y}, \mathrm{t})=\mathrm{F}(\mathrm{q}(\mathrm{y})+\mathrm{te}) .
$$

Let us show that this multimap is completely continuous. Let $\mathrm{A} \subset E_{0}$ be an arbitrary bounded set, then there exists a number $R>0$ such that for every point $(y, t) \in$ Awehave $\|(y, t)\| \leq R$. Let the map $\hat{q}: A \rightarrow E_{1}$ be defined by the relation $\hat{q}(y, t): q(y)+t e$. Denote $\mathrm{B}=y_{*}(\mathrm{~A})$, then for each point $\mathrm{x} \in \mathrm{B}$ the following estimate holds

$$
\|x\|=\|q(y)+t e\| \leq\left(k+\frac{1-D_{1} k}{D_{1}}\right) R,
$$

i.e. B is also a bounded set. Notice that $B \subset a^{-1}(A)$. Then, by virtue of a-complete continuity of the multimap F , the set $F_{1}(\mathrm{~A})=\mathrm{F}\left(\mathrm{B} \cap \mathrm{a}^{-1}(\mathrm{~A})\right)$ is relatively compact. So the multimap F_{1} is completely continuous.

Denote $\hat{\Phi}=p \circ F_{1}$. Let $S_{r}^{0} \subset E_{0}$ be the sphere of the radius rcentered at the origin. Let us
demonstrate that, for sufficiently large, the estimate

$$
\|\hat{\Phi}\|=\max _{u \in \in(y, t)}\|u\| \leq r
$$

holds for each $(y, t) \in S_{r}^{0}$. In fact, if $u \in \hat{\Phi}(y, t)$ then

$$
\|u\| \leq D_{1}\|q(y)+t e\|+D_{2}<D_{1} k\|y\|+D_{1} \mid t\| \| e \|+D_{2} .
$$

If

$$
r>\frac{D_{2}}{1-D_{1} k 1-D_{1}\|e\|}
$$

then

$$
\|\hat{\Phi}(y, t)\|<D_{1} k r+D_{1} r\|e\|+D_{2} \leq r .
$$

Now we may apply Lemma3.3 and conclude that the inclusion $y \in \hat{\Phi}(y, t)$ has a solution $\left(y_{0}, t_{0}\right) \in \mathrm{S}_{\mathrm{r}}{ }^{0}$. Then $x_{0}=q\left(y_{0}\right)+t_{0} e \in \operatorname{Coin}(\mathrm{a}, \Phi)$.
3.9. Theorem. In conditions of Theorem 3.8 let, additionally,

$$
\operatorname{dim}(\operatorname{Ker}(\mathrm{a}))>0 .
$$

Then the set $\operatorname{Coin}(a, \Phi)$ is unbounded.
Proof. Supposing the contrary, we will have a number $\alpha>0$, such that $\|x\| \leq \alpha$ for each point $x \in \operatorname{Coin}(a, \Phi)$. Then the set $\Phi(\operatorname{Coin}(a, \Phi))$ is also bounded, i.e. there exists such number $\beta>0$, that $\|y\| \leq \beta$ for each point $y \in \Phi(\operatorname{Coin}(a, \Phi))$. Consider a sequence of numbers $r n \rightarrow \infty$ such that

$$
r_{n}>\frac{D_{2}}{1-D_{1} k 1-D_{1}\|e\|}
$$

where the number k and the vector e are defined in the course of the proof of Theorem3.8 Then there exists a sequence of points $\left(y_{n}, t_{n}\right) \in S_{r_{n}}^{0} \subset E_{0}$ such that the points $x_{n}=q\left(y_{n}\right)+t_{n} e$. belong to the set $\operatorname{Coin}(a, \Phi)$.
Then $\left\|x_{n}\right\| \leq \alpha$ for each n . Fromthe other side,since $a\left(x_{n}\right)=y_{n} \in \Phi\left(x_{n}\right)$, we have $y_{n} \in \Phi(\operatorname{Coin}(a, \Phi))$ $y_{n} \in \Phi(\operatorname{Coin}(a, \Phi))$.Hence $\left\|y_{n}\right\| \leq \beta$ for each n .Then

$$
\left|t_{n}\right| \leq \frac{\left\|x_{n}\right\|+\left\|q\left(y_{n}\right)\right\|}{\|e\|} \leq \frac{\alpha+k \beta}{\|e\|}
$$

So, the sequence $\left\{t_{n}\right\}$ is alsobounded. Then apoint $\left(y_{n}, t_{n}\right)$ does not belong to the sphere $S_{r_{n}}^{0}$ for a sufficiently large n, giving the contradiction.

4. On a classofintegro-differential inclusions

4.1. Multioperator of superposition and integral multioperator. We shall start with some preliminary remarks (details can be found, e.g. in [6],[13]).

Let $I \subset \square$ be a compact interval endowed with Lebesgue measure; E a separable Banach space.
4.1. Definition.A multifunction $\mathrm{F}: \mathrm{I} \rightarrow \mathrm{K}(\mathrm{E})$ is said to be measurable if for each open set $\mathrm{V} \subset \mathrm{E}$ the set $F_{+}^{-1}(\mathrm{~V})$ is measurable.

It is known that every measurable multifunction $\mathrm{F}: \mathrm{I} \rightarrow \mathrm{K}(\mathrm{E})$ has a measurable selection $\varphi: \mathrm{I} \rightarrow \mathrm{E}$, $\varphi(\mathrm{t}) \in \mathrm{F}(\mathrm{t})$ for a.e. $\mathrm{t} \in \mathrm{I}$

Let E, E_{0} be separable Banach spaces.
4.2. Proposition. Suppose that a multimap $\mathrm{F}: \mathrm{I} \times E_{0} \rightarrow \mathrm{~K}(\mathrm{E})$ satisfies conditions:

F 1) the multifunction $\mathrm{F}(., \mathrm{x}): \mathrm{I} \rightarrow \mathrm{K}(\mathrm{E})$ has a measurable selection for each $\mathrm{x} \in E_{0}$;
F2) the multimap $\mathrm{F}(\mathrm{t},):. E_{0} \rightarrow \mathrm{~K}(\mathrm{E})$ is upper semicontinuous for a.e. $\mathrm{t} \in \mathrm{I}$.
Then the multimap F is superpositionally selectable, i.e. for each measur-ablefunction $\mathrm{q}: \mathrm{I} \rightarrow E_{0}$, the multifunction $\Phi: \mathrm{I} \rightarrow \mathrm{K}(\mathrm{E}), \Phi(\mathrm{t})=\mathrm{F}(\mathrm{t}, \mathrm{q}(\mathrm{t}))$ has a measurable selection.

Let a multimap $\mathrm{F}: \mathrm{I} \times E_{0} \rightarrow \mathrm{~K}(\mathrm{E})$ additionally to(F 1) and(F2) satisfies also the following condition: F3) there exists a measurable function $\alpha: I \rightarrow R^{1}$ such that

$$
\|F(t, x)\|=\max _{y \in F(t, x)}\|y\| \leq \alpha(t)(1+\|x\|)
$$

for all $\mathrm{x} \in E_{0}$ and a.e. $\mathrm{t} \in \mathrm{I}$.
Then the multimap

$$
\mathrm{P}_{F}: C\left(I, E_{0}\right) \rightarrow P\left(L^{1}(I, E)\right),
$$

assigning to every continuous function $\mathrm{q} \in \mathrm{C}\left(\mathrm{I} ; E_{0}\right)$ the set of all summable selections of the multifunction $\Phi: \mathrm{I} \rightarrow \mathrm{K}(\mathrm{E})$,

$$
\Phi(\mathrm{t})=\mathrm{F}(\mathrm{t}, \mathrm{q}(\mathrm{t}))
$$

is said to be a superposition multioperator generated by F .
Let us mention the following property of the superposition multioperator.
4.3. Proposition. Let a multimap F: $\mathrm{I} \times E_{0} \rightarrow K_{v}$ (E)satisfy conditions (F1)-(F3) and a: $\mathrm{L}^{1}(\mathrm{I} ; \mathrm{E}) \rightarrow E_{1}$ a continuous linear operator to a normed space E_{1}. Then the composition a ${ }^{\circ} \mathrm{P}_{F}: \mathrm{C}\left(\mathrm{I} ; E_{0}\right) \rightarrow C_{v}\left(E_{1}\right)$ is a closed multimap.

Now let $[\mathrm{a}, \mathrm{b}] \subset \square^{1}, \mathrm{~L}\left(\square^{n}, \square^{n}\right)$ be the space of continuous linear operators in \square^{n} and $\mathrm{k}:[\mathrm{a}, \mathrm{b}] \times[\mathrm{a}, \mathrm{b}]$
$\rightarrow \mathrm{L}\left(\square^{n}, \square^{n}\right)$ a continuous map. Then the linear integral operator $j_{k}: \mathrm{L}^{1}\left([\mathrm{a}, \mathrm{b}] ; \square^{n}\right) \rightarrow \mathrm{C}([\mathrm{a}, \mathrm{b}] ;$ $]^{n}$)defined as

$$
j_{k}(\varphi)(t)=\int_{a}^{b} k(t, s) \varphi(s) d s
$$

is completely continuous(see, e.g. [19]). Itis alsoknown(see, e.g. [14])that

$$
\left\|j_{k}\right\|=\max _{a \leq t, s \leq b}\|k(t, s)\|
$$

Suppose that a multimap $F:[a, b] \times \mathbf{R}^{n} \rightarrow k_{v}\left(\mathbf{R}^{n}\right)$ satisfies conditions(F1) -(F3).
4.4. Definition. The composition

$$
j_{k} \circ \mathrm{P}_{F}: C\left([a, b] ; \mathbf{R}^{n}\right) \rightarrow C_{v}\left(C\left([a, b] ; \mathbf{R}^{n}\right)\right)
$$

is said to be the Hammerstein integral multioperator, generated by F.It will be denoted by $\int_{a}^{b}\left(k \circ \mathrm{P}_{F}\right)$.

Proposition 4.3 yields the following statement
4.5. Theorem. Let a multimap

$$
F:[a, b] \times \mathbf{R}^{n} \rightarrow k_{v}\left(\mathbf{R}^{n}\right)
$$

satisfy conditions(F1)-(F3). Then the Hammerstein integral multioperator

$$
\int_{a}^{b}\left(k \circ \mathrm{P}_{F}\right): C\left([a, b] ; \mathbf{R}^{n}\right) \rightarrow C_{v}\left(C\left([a, b] ; \mathbf{R}^{n}\right)\right)
$$

is completely continuous.

4.2. Existence theorem for a class of integro-differential inclusions.

For $\mathrm{T}>0$, let $f:[0, T] \times \square^{n} \times \square^{m} \rightarrow \square^{n}$ be a continuous map satisfying the following
$\operatorname{con} \int_{a}^{b}\left(k \circ \mathrm{P}_{F}\right): C\left([a, b] ; \mathbf{R}^{n}\right) \rightarrow C_{v}\left(C\left([a, b] ; \mathbf{R}^{n}\right)\right)$ dition:(f)there exist positive numbers C_{1}, C_{2} and C_{3} such that

$$
\|f(t, u, v)\| \leq C_{1}\|u\|+C_{2}\|v\|+C_{3}
$$

for all $(t, u, v) \in[0, T] \times \mathbf{R}^{n} \times \mathbf{R}^{m}$.
Let $k:[0, T] \times[0, T] \rightarrow L\left(\mathbf{R}^{m} \times \mathbf{R}^{m}\right)$ be a continuous map. Denote

$$
K_{0}=\max _{s, t \in[0, T]}|k(t, s)|
$$

Let a multimap $F:[a, b] \times \mathbf{R}^{n} \rightarrow k_{v}\left(\mathbf{R}^{m}\right)$ satisfy conditions(F1) -(F3).

We will consider the following problem:

$$
\begin{align*}
& x^{\prime}(t)=f(t, x(t), y(t)) \tag{4}\\
& y \in \int_{0}^{h}\left(k \circ \mathrm{P}_{F}\right)(x) \tag{5}
\end{align*}
$$

Where $\mathrm{h} \in[0, T]$.
4.6.Definition. A pair of function $\mathrm{x} \in \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right), \mathrm{y} \in \mathrm{C}\left([0, \mathrm{~h}], \square^{m}\right)$ satisfying relations (4) and (5) for all $t \in[0, h]$ is said to be a solution of problem(4),(5).

Notice that (4), (5) may be interpreted as the control problem where x is the trajectory of the system, and y is the control satisfying the feedback condition(5).
Let us givethe operator treatment of problem(4),(5). Consider the super-position operator

$$
\hat{f}: \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right) \times \mathrm{C}\left([0, \mathrm{~h}], \square^{m}\right) \rightarrow \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right),
$$

generated by fand the multimap

$$
\hat{F}: \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right) \rightarrow C_{v}\left(\mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right) \times \mathrm{C}\left([0, \mathrm{~h}], \square^{m}\right)\right),
$$

given by

$$
\hat{F}(x)=\left(x, \int_{0}^{h}\left(k \circ \mathrm{P}_{F}\right)(x)\right)
$$

Let $\mathrm{d}: \mathrm{D}(\mathrm{d}) \subset \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right) \rightarrow \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right)$ be the differentiation operator whose domain $\mathrm{D}(\mathrm{d})$ is the subspace of continuously differentiable functions on [0,h].

It is easy to verify the following statement.
4.7. Lemma. Problem (4), (5) is equivalent to the following operator inclusion:

$$
\begin{equation*}
\mathrm{d}(\mathrm{x}) \in \hat{f}(\hat{\mathrm{~F}}(\mathrm{x})) \tag{6}
\end{equation*}
$$

i.e. if a pair (x, y) is the solution of problem(4),(5), then x is the solution of inclusion(6) and, conversely, if x is the solution of(6),then there exists

$$
y \in \int_{0}^{h}\left(k \circ \mathrm{P}_{F}\right)(x)
$$

such that the pair (x, y) is the solution ofproblem(4),(5). Consider the multimap $\Phi: \mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right) \rightarrow \mathrm{C}\left(\mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right)\right) \mathrm{defined}$ as

$$
\Phi(\mathrm{x})=\hat{f}(\hat{\mathrm{~F}}(\mathrm{x})) .
$$

4.8. Lemma. Φ is a d-completely continuous SA-multimap.

Proof. Since \hat{f} is continuous and \hat{F} has closed convex values, Φ is a SA-multimap.
Now noticethatthegraph normforthedifferentiation operator dcoincides with thenormof thespace
$\mathrm{C}^{1}\left([0, \mathrm{~h}], \square^{n}\right)$, and theembedding of thisspaceinto the space $\mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right)$ is completely continuous. Applying Theorem 4.5 and Proposition 3.6 we conclude that the multimap F is d-completely continuous.

4.9. Theorem. If

$$
\begin{equation*}
h\left(C_{1}+C_{2} K_{0} \int_{0}^{h} \alpha(s) d s<2\right. \tag{7}
\end{equation*}
$$

then:
(a) the set of solutions $\{x, y\}$ of problem(4),(5) defined on the interval [0,h] is nonempty;
(b) the set of trajectories $\{\mathrm{x}\}$ is unbounded in the space $\mathrm{C}\left([0, \mathrm{~h}], \square^{n}\right)$.

Proof. For an arbitrary $\mathrm{x} \in \mathrm{C}^{1}\left([0, \mathrm{~h}], \square^{n}\right)$, let us estimate $\|\mathrm{y}\|$ for $\mathrm{y} \in \Phi(\mathrm{x})$.
We have

$$
y(t)=f\left(t, x(t), \int_{0}^{h} k(t, s) z(s) d s\right)
$$

where $\mathrm{z}(\mathrm{s}) \in \mathrm{F}(\mathrm{s}, \mathrm{x}(\mathrm{s}))$ for a.e. $\mathrm{s} \in[0, \mathrm{~h}]$. Then

$$
\begin{aligned}
& \|y(t)\| \leq C_{1}\|x(t)\|+C_{2}\left\|\int_{0}^{h} k(t, s) z(s) d s\right\|+C_{3} \\
& \leq C_{1}\|x\|+C_{2} k_{0} \int_{0}^{h} \alpha(s)(\|x(s)\|+1) d s+C_{3} \\
& \leq\left(C_{1}+C_{2} k_{0} \int_{0}^{h} \alpha(s) d s\right)\|x\|+C_{4}
\end{aligned}
$$

Where $C_{4}=C_{2} k_{0} \int_{0}^{h} \alpha(s) d s+C_{3}$
Hence

$$
\max _{y \in \Phi(x)}\|y\| \leq\left(C_{1}+C_{2} k_{0} \int_{0}^{h} \alpha(s) d s\right)\|x\|+C_{4}
$$

From Proposition 3.1 we know that $\left\|d^{-1}\right\|=\frac{h}{2}$, and therefore, from condition (7)we have

$$
C_{1}+C_{2} k_{0} \int_{0}^{h} \alpha(s) d s<\frac{1}{\left\|d^{-1}\right\|}
$$

Applying Theorem 3.8 we obtain the nonemptyness of the solutions set for inclusion(6)
andfromLemma4.7 we deduce conclusion(a).
Since $\operatorname{dimKer}(d)=n>0$ we may apply Theorem3.9 and obtain conclusion (b).

References

[1] G.Anichini,G.Conti,P.Zecca,Approximation of nonconvex set valued mappings, Boll. Un.Mat.Ital.,C(6) 4(1985), no. 1, 145-154.
[2] G. Anichini, G. Conti, P. Zecca,A further result on the approximation of nonconvex set valued mappings, Boll.Un.Mat.Ital.,C(6) 4(1985), no. 1, 155-171.
[3] G. Anichini, G. Conti, P. Zecca,Approximation and selection for nonconvex multifunc-tions in infinite-dimensional spaces, Boll.Un.Mat.Ital.,B(7) 4(1990), no. 2, 410-422.
[4] R. Bader, G. Gabor, W. Kryszewski,On the extension of approximations for set-valued maps and the repulsive fixed points, Boll.Un.Mat.Ital.,B(7), 10(1996), no. 2, 399-416.
[5] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, and V.V. Obukhovskii, Topological methods in the fixed point theory of multivalued maps, Uspehi Mat. Nauk, 35(1980), no.1, 59-

126(inRussian);Englishtranslation:Russian Math. Surveys, 35(1980), 65143.
[6] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, and V.V. Obukhovskii,Introduction to the Theory of Multivalued Maps and Differential Inclusions, KomKniga, Moscow, 2005 (inRussian). [7] Yu.G. Borisovich, Yu.E. Gliklikh, On the Lefschetz number for a class of multivalued maps, SeventhMath.SummerSchool(Katsiveli 1969),Izd.Akad.NaukUkrain.SSR, Kiev 1970, 283294(inRussian).
[8] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values, StudiaMath., 90(1988), no. 1, 69-86.
[9] R.W. Cross, Multivalued Linear Operators, Monogr. Textbooks in Pure and Appl. Math., 213, Marcel Dekker, New York, 1998.
[10] B.D. Gelman,On operator inclusions with surjective operators (inRussian)(inpress)
[11] B.D. Gelman, H.R. Al-Hashemi, On approximations of multivalued maps, Vestnik Voronezh.Gos.Univ.,Ser.Fiz.,Matem., 2(2003), 136-143(inRussian).
[12] L. G'orniewicz, Topological Fixed Point Theory of Multivalued Mappings, KluwerAcad. Publ. Dordrecht-Boston-London, 1999.
[13] M.Kamenskii,V.Obukhovskii,P.Zecca,Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spces, De Gruyter Ser. in Nonlinear Analysis and Appl. 7, Walter de Gruyter, Berlin-New York, 2001.
[14] L.V. Kantorovich, G.P. Akilov,FunctionalAnalysis.2nd ed.Nauka,Moscow, 1977(in Russian).
[15] S.V. Kornev, V.V. Obukhovskii, On some versions of topological degree theory for nonconvex-valued multimaps, Trudy Mat.Fak. Voronezh Univ. (N.S.), Voronezh, 8(2004), 56-

74(inRussian).
[16] E. Michael,Continuous selections, I, Ann.Math., 63(1956),no.2, 361-381.
[17] A.D. Myshkis, Generalizations of the theorem on a stationary point of a dynamical system inside a closed trajectory, Mat.Sb., 34(76)(1954),no.3, 525-540(inRussian).
[18] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[19] P.P. Zabreiko, A.I. Koshelev, M.A. Krasnoselskii et al., Integral Equations, Nauka, Moscow, 1968(inRussian).

