Generalized mean function

Dr.Ali Hussain Battor and Hadeel Ali Shubber
Department of Mathematics, college of Education for Girls, Kufa University, Iraq.

Department of Mathematics, college of Education, Thi-Qar University, Iraq.

ABSTRACT:

In 1969 S.K.Skaff introduced the generalized mean function
In this work we present the theory of an integral mean for generalized GN*-function.We will show under what conditions the mean function is a GN*-function and satisfies a Δ-condition. Moreover, we examine how the minimizing points in the definition of the mean function affect a basic property of the ordinary integral mean.
1.Introduction and Basic Concept:

From the functional analysis as a function space, Orlicz spaces appeared in the first of the $30^{\text {th }}$ by W.R. Orlicz in Orlicz paper [1]. Many theorems and properties about generalized mean function for GNfunction is introduced in [5].
we have consolidated the investigation of a new definition generalized mean function for GN^{*}-functions and discussed their properties.

Definition 1.1: [5]

Let $M(t, x)$ be a real valued non-negative function defined on $T \times E^{n}$ such that:
(i) $M(t, x)=0$ if and only if $x=0$ where for all $t \in T, x \in E^{n}$
(ii) $M(t, x)$ is a continuous convex function of x for each t and a measurable function of t for each x,
(iii) For each $t \in T, \lim _{\|x\|=\infty} \frac{M(t, x)}{\|x\|}=\infty$, and
(iv)There is a constant $d \geq 0$ such that

$$
\begin{equation*}
\left.\inf _{t} \inf _{c \geq d} k(t, c)\right\rangle 0 \tag{1.1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& K(t, c)=\frac{\underline{M}(t, c)}{\overline{\bar{M}}(t, c)} \\
& \quad, \bar{M}(t, c)=\sup _{|x|=c} M(t, x), \\
& \underline{M}(t, c)=\inf _{|x|=c} M(t, x)
\end{aligned}
$$

and if $d>0$, then $\bar{M}(t, d)$ is an integrable function of t.We call a function satisfying the properties (i)-(iv) a generalized N -function or a GN-function.

Definition 1.2:

Let $M(t, x, y)$ be a real valued non-negative function defined on $T \times E^{n} \times E^{n}$ such that:
(i) $M(t, x, y)=0$ if and only if x, y are the zero vectors $x, y \in E^{n}$, $\forall t \in T$
(ii) $M(t, x, y)$ is a continuous convex function of x, y for each t and a measurable function of t for each x, y,

(iv)There are constants $d \geq 0$ and $d_{1} \geq 0$ such that

$$
\begin{equation*}
\inf _{\substack{t \\ c \\ c>d \\ c \geq d_{1}}} k\left(t, c, c^{\prime}\right)>0 \tag{1.2.1}
\end{equation*}
$$

Where
$k\left(t, c, c^{\prime}\right)=\frac{\underline{M}\left(t, c, c^{\prime}\right)}{\overline{\bar{M}}\left(t, c, c^{\prime}\right)}$,
$\bar{M}\left(t, c, c^{\prime}\right)=\sup _{\substack{x \neq c \\ y=c^{\prime}}} M(t, x, y), \underline{M}\left(t, c, c^{\prime}\right)=\inf _{\substack{x=c \\ y=c \\ y=c^{\prime}}} M(t, x, y)$
and if $d\rangle 0$ and $d_{1}>0$, then $\bar{M}\left(t, d, d_{1}\right)$ is an integrable function of t. We
call the function satisfying the properties (i)-(iv) a generalized N^{*} function or a GN^{*}-function.

Definition 1.3: [5]

For each t in T and $h>0$ let

$$
M_{h}(t, x)=\int_{E^{n}} M(t, x+z) J_{h}(z) d z
$$

where $J_{h}(z)$ is nonnegative, c^{∞} function with compact support in a ball of a radius h such that $\int_{E^{n}} J_{h}(z) d t=1$. Moreover, let x_{0} is any point (depending on h, t) which satisfies the inequality

$$
M_{h}\left(t, x_{0}\right) \leq M_{h}(t, x)
$$

for all x in E^{n}. Then the function $\hat{M}_{h}(t, x)$ defined for each t in T and $h>0$ by

$$
\hat{M}_{h}(t, x)=M_{h}\left(t, x+x_{0}\right)-M_{h}\left(t, x_{0}\right)
$$

is called a mean function for $M(t, x)$ relative to the minimizing point x_{0}.

Definition 1.4:

For each t in T and $h>0$ let

$$
M_{h}(t, x, y)=\int_{E^{n}} \int_{E^{n}} M(t, x+z, y+w) J_{h}(z) J_{h}(w) d z d w
$$

where $J_{h}(z)$ and $J_{h}(w)$ are nonnegative, c^{∞} function with compact support in a ball of a radius h such that $\int_{E^{n}} \int_{E^{n}} J_{h}(z) J_{h}(w) d t d t=1$. Moreover, let x_{0} and y_{0} are any point (depending on h, t) which satisfies the inequality

$$
M_{h}\left(t, x_{0}, y_{0}\right) \leq M_{h}(t, x, y)
$$

for all x and y in E^{n}. Then the function $\hat{M}_{h}(t, x, y)$ defined for each t in T and $h>0$ by

$$
\hat{M}_{h}(t, x, y)=M_{h}\left(t, x+x_{0}, y+y_{0}\right)-M_{h}\left(t, x_{0}, y_{0}\right)
$$

is called a mean function for $M(t, x, y)$ relative to the minimizing point x_{0} and y_{0}.

The next theorem shows under what condition $\hat{M}_{h}(t, x, y)$ is a GN^{*} function.

Definition 1.5:[2]

We say that a GN-function $M(t, x)$ satisfies a Δ-condition if there exist a constant $K \geq 2$ and a non-negative measurable function $\delta(t)$ such that the function $\bar{M}(t, 2 \delta(t))$ is integrable over the domain T and such that for almost all t in T we have

$$
\begin{equation*}
M(t, 2 x) \leq K M(t, x) \tag{1.5.1}
\end{equation*}
$$

for all x satisfying $|x| \geq \delta(t)$.
We say that a GN-function satisfies a Δ_{0}-condition if it satisfies a Δ-condition with $\delta(t)=o$ for almost all t in T.

In definition 1.5 we could have used any constant $\tau>1$ in place of the scalar 2 in (1.5.1).

Definition 1.6:

We say that a GN*-function $M(t, x, y)$ satisfies a Δ-condition if there exists a constant $K \geq 2$ and non-negative measurable functions $\delta_{1}(t)$ and $\delta_{2}(t)$ such that the function $M\left(t, 2 \delta_{1}(t), 2 \delta_{2}(t)\right)$ is integrable over the domain T and such that for almost all t in T we have

$$
\begin{equation*}
M(t, 2 x, 2 y) \leq K M(t, x, y) \tag{1.6.1}
\end{equation*}
$$

for all x and y satisfying $|x| \geq \delta_{1}(t)$ and $|y| \geq \delta_{2}(t)$.
We say a GN*-function satisfies a Δ_{0}-condition if it satisfies a Δ - condition with $\delta_{1}(t)=0$ and $\delta_{2}(t)=0$ for almost all t in T.

In definition (1.6) we could have used any constant $\tau>1$ in place of the scalar 2 in (1.6.1).

Theorem 1.7:[3]

A necessary and sufficient condition that (1.5.1) holds is that if $|x| \leq|z|$, then there exists constants $K \geq 1, d \geq 0$ such that $M(t, x) \leq K M(t, z)$ for each t in $T,|x| \geq d$.

Theorem 1.8:

A necessary and sufficient condition that (1.6.1) holds is that if $|x| \leq|z|$ and $|y| \leq|w|$, then there exists constants $K \geq 1, d \geq 0$ and $d^{\prime} \geq 0$ such that $M(t, x, y) \leq K M(t, z, w)$ for each t in $T,|x| \geq d$ and $|y| \geq d^{\prime}$.

Theorem 1.9:[2]

A GN*-function $M(t, x)$ satisfies a Δ-condition if and only if given any $\tau>1$ there exists a constant $K_{\tau} \geq 2$ and a non-negative measurable functions $\delta_{1}(t)$ such that $\bar{M}\left(t, 2 \delta_{1}(t)\right)$ is integrable over T and such that for almost all t in T we have

$$
\begin{equation*}
M(t, \tau x) \leq K_{\tau} M(t, x), \tag{1.9.1}
\end{equation*}
$$

whenever $|x| \geq \delta_{1}(t)$.

Theorem 1.10:

A GN*-function $M(t, x, y)$ satisfies a Δ-condition if and only if given any $\tau>1$ there exists a constant $K_{\tau} \geq 2$ and a non-negative measurable functions $\delta_{1}(t)$ and $\delta_{2}(t)$ such that $\bar{M}\left(t, 2 \delta_{1}(t), 2 \delta_{2}(t)\right)$ is integrable over T and such that for almost all t in T we have

$$
\begin{equation*}
M(t, \mathfrak{x}, \mathfrak{\tau} y) \leq K_{\tau} M(t, x, y), \tag{1.10.1}
\end{equation*}
$$

whenever $|x| \geq \delta_{1}(t)$ and $|y| \geq \delta_{2}(t)$.

Theorem 1.11:[5]

If $M(t, x)$ is a GN^{*}-function for which $\bar{M}(t, c)$ is integrable in t for each
c, then $\hat{M}_{h}(t, x)$ is a GN*-function.

Proof:

We will show this result by justifying conditions (i)-(iv) of the definition 1.1. By hypothesis and the choice of x_{0}, we have for each h, $\hat{M}_{h}(t, x) \geq 0$ and $\hat{M}_{h}(t, 0)=0$. On the other hand, if $x \neq 0$, then $M(t, x)>0$, and hence there are constants h_{0} such that

$$
a=\inf _{\mid w \leq h_{0}} M(t, x+w)>0
$$

However, since $M(t, x)=0$ if and only if $x=0$, the minimizing points x_{0} tends to zero as h tends to zero. Therefore, we can choose $g_{0} \leq h_{0}$ such that if $h \leq g_{0}$, then $M\left(t, x_{0}+r\right)<a$ for all r for which $\left|x_{0}+r\right|<h$, For this g_{0} we obtain the inequality

$$
\begin{aligned}
& M\left(t, x+x_{0}+r\right) \geq \inf _{|w| \leq g_{0}} M(t, x+w) \geq \\
& \quad a>M\left(t, x_{0}+r\right)
\end{aligned}
$$

whenever $\left|x_{0}+r\right| \leq g_{0}$. This means for some $h \leq g_{0}$ we have

$$
\begin{gathered}
M\left(t, x+x_{0}+r\right)>M\left(t, x_{0}+r\right) \\
\int_{E^{n}} M\left(t, x+x_{0}+r\right) J_{h}(r) d r> \\
\int_{E^{n}} M\left(t, x_{0}+r\right) J_{h}(r) d r \\
M_{h}\left(t, x+x_{0}\right)>M_{h}\left(t, x_{0}\right)
\end{gathered}
$$

or $\hat{M}_{h}(t, x)>0$ if $x \neq 0$ which proves property (i).
Properties (ii) and (iii) for $\hat{M}_{h}(t, x)$ follow easily from the same properties for $M(t, x)$. Let us now show (iv). By assumption, there are constants $d \geq 0$ such that

$$
\begin{equation*}
\tau(t) \bar{M}(t, c) \leq \underline{M}(t, c) \tag{1.11.1}
\end{equation*}
$$

for all $c \geq d$.Furthermore, it is not difficult to show that for all c we have

$$
\begin{equation*}
\bar{M}(t, c) \geq \sup _{|x| \leq c} M(t, x) \tag{1.11.2}
\end{equation*}
$$

and for some fixed w,

$$
\begin{equation*}
\inf _{|x| \geq c} M(t, x+w) \leq \inf _{|x|=c} M(t, x+w) \tag{1.11.3}
\end{equation*}
$$

By using (1.11.2), we obtain (for each t in T)that

$$
\begin{align*}
\tau(t) \sup _{|w|=c} M(t, w) & \leq \tau(t) \sup _{\left|r^{\prime}\right| c c| | x_{0}+x_{1} \mid} M\left(t, r^{\prime}\right) \tag{1.11.4}\\
& \leq \tau(t) \sup _{\left|{ }_{\mid r}\right|=c+\left|x_{0}+x_{x}\right|} M\left(t, r^{\prime}\right)
\end{align*}
$$

where $w=x+x_{0}+r$. On the other hand, by (1.11.1) and (1.11.3), we achieve

$$
\begin{align*}
\tau(t) \sup _{|w|=c+\left|x_{0}+x_{1}\right|} M(t, w) \leq & \inf _{|w|=c+\left|x_{0}+x_{1}\right|} M(t, w) \tag{1.11.5}\\
& <\inf _{|x| \geq c} M\left(t, x+x_{0}+r\right) \\
& <\inf _{|x|=c} M\left(t, x+x_{0}+r\right)
\end{align*}
$$

If we combine (1.11.4) and (1.11.5), then for all $c \geq d$ we arrive at

$$
\tau(t) \sup _{|x|=c} M\left(t, x+x_{0}+r\right) \leq \inf _{|x|=c} M\left(t, x+x_{0}+r\right) .
$$

From this inequality, we obtain

$$
\begin{align*}
& \inf _{|x|=c} \hat{M}_{h}(t, x) \geq \int_{E^{n}} \inf _{n|x| c c}\left\{M\left(t, x+x_{0}+r\right)-M\left(t, x_{0}+r\right\} J_{h}(r) d r\right. \\
& \quad \geq \int_{E^{n}}\left\{\tau(t) \sup _{\substack{x \\
|x|=c \\
y \mid=c}} M\left(t, x+x_{0}+r\right)-M\left(t, x_{0}+r\right)\right\} J_{h}(r) d r, \tag{1.11.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{|x|=c} \hat{M}_{h}(t, x) \leq \int_{E^{n}|x|=c} \sup _{n} M\left(t, x+x_{0}+r\right) J_{h}(r) d r . \tag{1.11.7}
\end{equation*}
$$

Moreover, since $\lim _{c=\infty} \sup _{x \mid=c} M\left(t, x+x_{0}+r\right)=\infty$
for fixed x_{0}, r such that $|r| \leq h$, given

$$
K_{1}(t)=2 \sup _{|r| \leq h} M\left(t, x_{0}+r\right) / \inf _{t} \tau(t)
$$

there are $d_{1}>0$ such that if $c \geq d_{1}$,then

$$
\sup _{|x|=c} M\left(t, x+x_{0}+r\right) \geq K_{1} .
$$

Therefore, by using (1.11.6) and (1.11.7), we achieve the inequalities

$$
\begin{align*}
& \frac{\inf _{|x|=c} \hat{M}_{h}(t, x)}{\sup _{|x|=c} \hat{M}_{h}(t, x)} \geq \tau(t)- \\
& \quad \sup _{|r| \leq h} M\left(t, x_{0}+r\right) \\
& \quad \frac{\inf _{|r| \leq h} \sup _{|x|=c} M\left(t, x+x_{0}+r\right)}{t} \geq \tau(t)-\frac{1}{2} i \inf _{t} \tau(t) \tag{1.11.8}
\end{align*}
$$

for all $c \geq d_{0}=\max \left(d, d_{1},\left|x_{0}\right|\right)$. Taking the infimum of both sides of
(1.11.8) over t, shows the first part of the property (iv). To show the latter part, assume $d_{0}>0$. Then $\sup _{|x|=d_{0}} \hat{M}_{h}(t, x)$ is integrable over t in T since it is bounded by the integrable function $\bar{M}\left(t, d_{2}\right)$ where $d_{2}=d_{0}+\left|x_{0}\right|+h$
.This proves property (iv) and the theorem. In the next theorem we show under what condition $\hat{M}_{h}(t, x)$ satisfies a $\Delta-$ condition.

Theorem 1.12:[5]

If $M(t, x)$ is a GN^{*}-function satisfying a Δ-condition and for which $\bar{M}(t, c)$ is integrable in t for each c, then $\hat{M}_{h}(t, x)$
satisfies a Δ-condition.

Proof:

It suffices to show that $M_{h}(t, x)$ satisfies a Δ-condition.
For, $\hat{M}_{h}(t, x)$ is the sum of a constant and a translation of $M_{h}(t, x)$ and neither of these operations affects the growth condition. Let us observe first that if $|x| \geq 2,|z| \leq h \leq 1$ then $|2 x+z| \leq 3|x+z|$.

Hence, by Theorem (1.7), there are constants $K \geq 1$ and $d_{1} \geq 0$ such that

$$
M_{h}(t, 2 x) \leq k \int_{E^{n}} M(t, 3(x+z)) J_{h}(z) d z
$$

for all x such that $|x| \geq d_{2}$ and $d_{2}=\max \left(d_{1}, 2\right)$. On the other hand , by theorem (1.9), there is a constant $K_{3} \geq 2, \delta_{1}(t) \geq 0$ such that for almost all t in T

$$
\int_{E^{n}} M(t, 3(x+z)) J_{h}(z) d z \leq K_{3} M_{h}(t, x)
$$

for all x, z such that $|x+z| \geq \delta_{1}(t)$ where $|z| \leq h$. By combining the above two inequalities, we achieve

$$
M_{h}(t, 2 x) \leq K K_{3} M_{h}(t, x)
$$

for all $|x|>\max \left(d_{2}, \delta_{1}(t)+h\right)=\delta_{1}^{\prime}(t)$.
Since $\bar{M}\left(t, 2 \delta_{1}(t)\right)$ is integrable over T,this yields the integrability of $\bar{M}_{h}\left(t, 2 \delta_{1}^{\prime}(t)\right)$ which proves the theorem.

For each t in T and x in E^{n} it is known that

$$
\lim _{h=0} M_{h}(t, x)=M(t, x) .
$$

However, the same property does not hold in general for $\hat{M}_{h}(t, x)$. This is the point of the next theorem.

Theorem 1.13:[5]

For each $h>0$ let x_{0}^{h} be the minimizing point of $M_{h}(t, x)$
defining $\hat{M}_{h}(t, x)$. Then for each t in T and each x in E^{n},there exists $K(t, x)$ such that

$$
\lim _{h=0} \hat{M}_{h}(t, x)=M(t, x)+K(t, x) \lim _{h=0}\left|x_{0}^{h}\right|
$$

Proof:

By the definition of $\hat{M}_{h}(t, x)$ we can write

$$
\left|\hat{M}_{h}(t, x)-M(t, x)\right| \leq
$$

$$
\begin{equation*}
\int_{E^{n}}\left|M\left(t, x+x_{0}^{h}+z\right)-M\left(t, x_{0}^{h}+z\right)-M(t, x)\right| J_{h}(z) d z \tag{1.13.1}
\end{equation*}
$$

However, we know that

$$
\begin{align*}
& \left|M\left(t, x+x_{0}^{h}+z\right)-M\left(t, x_{0}^{h}+z\right)-M(t, x)\right| \tag{1.13.2}\\
& \leq\left|M\left(t, x+x_{0}^{h}+z\right)-M(t, x)\right| \\
& \quad+\left|M\left(t, x_{0}^{h}+z\right)-M(t, z, w)\right|+|M(t, z)|
\end{align*}
$$

Moreover, since $M(t, x)$ is a convex function, it satisfies a Lipshitz condition on compact subsets of E^{n} (see[4Th.5.1]).Therefore ,there exists $K_{1}(t, x)$ and $K_{2}(t, x)$ such that

$$
\begin{equation*}
\left|M\left(t, x+x_{0}^{h}+z\right)-M(t, x)\right| \leq K_{1}(t, x)\left|x_{0}^{h}+z\right| \tag{1.13.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|M\left(t, x_{0}^{h}+z\right)-M(t, z)\right| \leq K_{2}(t, x)\left|x_{0}^{h}\right| . \tag{1.13.4}
\end{equation*}
$$

If we combine (1.13.3) and (1.13.4) with (1.13.2) and if we substitute the resulting expression into (1.13.1), we achieve the inequality

$$
\begin{aligned}
& \left|\hat{M}_{h}(t, x)-M(t, x)\right| \leq\left|x_{0}^{h}\right|\left(K_{1}(t, x, y)+K_{2}(t, x, y)\right)+ \\
& \int_{E^{n}} K_{1}(t, x)|z| J_{h}(z) d z+\int_{E^{n}}|M(t, z)| J_{h}(z) d z .
\end{aligned}
$$

Since the last two integrals on the right side tend to zero as h tends to zero, we prove the theorem by setting

$$
K(t, x)=K_{1}(t, x)+K_{2}(t, x)
$$

Corollary 1.14: [5]

Suppose $M(t, x)$ is a GN*-function such that $M(t, x)=M(t,-x)$.
Then for each t in T and x in E^{n}, we have

$$
\lim _{h=0} M_{h}(t, x)=\hat{M}(t, x)
$$

Proof:

This result is clear since $\lim _{h=0}\left|x_{0}^{h}\right|=0$
if $M\left((t, x)=M(t,-x)\right.$.In fact, if $M(t, x)$ is even in x then the $x_{0}^{h}=0$ for all h.

For each t in T let A_{h} denote the set of minimizing points of $M_{h}(t, x)$ and let B represent the null space of $M(t, x)$ relative to points in E^{n}, i.e.,

$$
B=\left\{x \text { in } E^{n}: M(t, x)=0\right\} .
$$

If $M(t, x)$ is a GN*-function, then $B=\{0\}$. For the sake of argument, let us suppose that $M(t, x)$ has all the properties of a GN*-function except that $M(t, x)=0$ need not imply $x=0$. We will show the relationships that exist between A_{h} and B. This is the content of the next few theorems.

Theorem 1.15:[5]

The sets B and A_{h} are closed convex sets.

Proof:

This result follows from the convexity and continuity of $M(t, x)$ in x for each t in T.

Theorem 1.16:[5]

Let $B_{e}=\{x: M(t, x)<e\}$ for each t in T. Then given any $e>0$, there is a constant $h_{0}>0$. such that $A_{h} \subset B_{e}$ for each $h \leq h_{0}$.

Proof:

Since $B \subseteq B_{e}$, we can choose h_{0} sufficiently small so that if x is
in B then $x+z$ is in B_{e} for all z such that $|z| \leq h_{0}$ and $|w| \leq h_{0}$. Let z_{1} be arbitrary but fixed points in $A_{h}, h \leq h_{0}$. Then

$$
M_{h}\left(t, z_{1}\right) \leq M_{h}(t, x)
$$

for all x. Therefore, if x in B, we have $M_{h}\left(t, z_{1}\right)<e$ by our choice of h_{0}. Letting h tend to zero yields $M\left(t, z_{1}\right)<e$, i.e., z_{1}, in B_{e}.

We have commented above that $A_{h}=\{0\}$ if

$$
M(t, x)=M(t,-x)
$$

It is also true if $M(t, x)$ is strictly convex in x for each t in T.

Theorem 1.17:[5]

Suppose $M(t, x)$ is a GN*-function which is strictly convex in x for each t. Then $h, A_{h}=\{0\}$ for each h.

Proof:

Suppose that there exists $z_{0} \neq x_{0}$ such that x_{0}, z_{0} are in A_{h}. Let $z_{1}=\frac{\left(x_{0}+z_{0}\right)}{2}$, . Then, since $M(t, x)$ is strictly convex, $M_{h}(t, x)$ is strictly convex in x, therefore, we have

$$
\begin{equation*}
M_{h}\left(t, z_{1}\right)<\frac{1}{2} M_{h}\left(t, x_{0}\right)+\frac{1}{2} M_{h}\left(t, z_{0}\right) . \tag{1.17.1}
\end{equation*}
$$

However, x_{0}, z_{0} are in A_{h} reduces (1.17.1) to the inequality $M_{h}\left(t, z_{1}\right)<M_{h}(t, x)$ for all x. This means z_{1} is in A_{h} and x_{0}, z_{0} are not in A_{h} which is a contradiction. Hence, $x_{0}=z_{0}$. Since $M(t, x)$ is a $\mathrm{GN} *$ function, $B=\{0\}$. In this case $x_{0}=z_{0}=0$.

r.Generalized mean function

Theorem 2.1:

If $M(t, x, y)$ is a GN^{*}-function for which $\bar{M}\left(t, c, c^{\prime}\right)$ is integrable in t for each c and c^{\prime}, then $\hat{M}_{h}(t, x, y)$ is a GN*-function.

Proof:

We will show this result by justifying conditions (i)-(iv) of the definition ${ }^{r}$.1.1. By hypothesis and the choice of x_{0} and y_{0}, we have for each $h, \hat{M}_{h}(t, x, y) \geq 0$ and $\hat{M}_{h}(t, 0,0)=0$. On the other hand, if $x \neq 0$ and $y \neq 0$, then $M(t, x, y)>0$, and hence there are constants h_{0} and h_{0}^{\prime} such that

$$
a=\inf _{\substack{|w| \leq h_{0} \\\left|w^{\prime}\right| h_{0}}} M\left(t, x+w, y+w^{\prime}\right)>0
$$

However, since $M(t, x, y)=0$ if and only if $x=0$ and $y=0$, the minimizing points x_{0} tends to zero and y_{0} tends to zero as h tends to zero. Therefore, we can choose $g_{0} \leq h_{0}$ and $g_{0}^{\prime} \leq h_{0}^{\prime}$ such that if $h \leq g_{0}$ and $h \leq g_{0}^{\prime}$, then $M\left(t, x_{0}+r, y_{0}+s\right)<a$ for all r, s for which $\left|x_{0}+r\right|<h$, $\left|y_{0}+s\right|<h$ For this g_{0} and $g_{0}^{\prime} \quad$ we obtain the inequality

$$
\begin{aligned}
M\left(t, x+x_{0}+r, y+y_{0}+s\right) & \geq \inf _{\substack{w \leq g_{0} \\
|w| \leq g_{0}}} M\left(t, x+w, y+w^{\prime}\right) \geq \\
& a>M\left(t, x_{0}+r, y_{0}+s\right)
\end{aligned}
$$

whenever $\left|x_{0}+r\right| \leq g_{0}$ and $\mid y_{0}+s \leq g_{0}^{\prime}$. This means for some $h \leq g_{0}$ and $h \leq g_{0}^{\prime}$ we have

$$
\begin{gathered}
M\left(t, x+x_{0}+r, y+y_{0}+s\right)>M\left(t, x_{0}+r, y_{0}+s\right) \\
\int_{E^{n}} \int_{E^{n}} M\left(t, x+x_{0}+r, y+y_{0}+s\right) J_{h}(r) J_{h}(s) d r d s> \\
\int_{E^{n}} \int_{E^{n}} M\left(t, x_{0}+r, y_{0}+s\right) J_{h}(r) J_{h}(s) d r d s \\
\quad M_{h}\left(t, x+x_{0}, y+y_{0}\right)>M_{h}\left(t, x_{0}, y_{0}\right)
\end{gathered}
$$

or $\hat{M}_{h}(t, x, y)>0$ if $x \neq 0$ and $y \neq 0$ which proves property (i).

Properties (ii) and (iii) for $\hat{M}_{h}(t, x, y)$ follow easily from the same properties for $M(t, x, y)$. Let us now show (iv). By assumption, there are constants $d \geq 0$ and $d^{\prime} \geq 0$ such that

$$
\begin{equation*}
\tau(t) \bar{M}\left(t, c, c^{\prime}\right) \leq \underline{M}\left(t, c, c^{\prime}\right) \tag{2.1.1}
\end{equation*}
$$

for all $c \geq d$ and $c^{\prime} \geq d^{\prime}$.Furthermore, it is not difficult to show that for all c and c^{\prime} we have

$$
\begin{equation*}
\bar{M}\left(t, c, c^{\prime}\right) \geq \sup _{\substack{x \leq c c \\ y \leq c^{\prime}}} M(t, x, y) \tag{2.1.2}
\end{equation*}
$$

and for some fixed w and w^{\prime},

$$
\begin{equation*}
\inf _{\substack{x \geq c \\ y \geq \geq c^{\prime}}} M\left(t, x+w, y+w^{\prime}\right) \leq \inf _{\substack{x|=c \\ y|=c^{\prime}}} M\left(t, x+w, y+w^{\prime}\right) \tag{2.1.3}
\end{equation*}
$$

By using (3.3.4), we obtain (for each t in T)that

$$
\begin{align*}
& \tau(t) \sup _{\substack{w\left|=c \\
w^{\prime}\right|=c^{\prime}}} M(t, w, w) \leq \tau(t) \sup _{\substack{\left|r^{\prime}\right|<c+\left|x_{0}+x_{1}\right| \\
\| s^{\prime}| |<c^{\prime}+\left|y_{0}+y_{1}\right|}} M\left(t, r^{\prime}, s^{\prime}\right) \tag{2.1.4}\\
& \leq \tau(t) \sup _{\substack{r^{\prime}\left|=c+\left|x_{0}+x_{1}\right| \\
s^{\prime}\right|=c^{\prime}+\left|y_{0}+y_{1}\right|}} M\left(t, r^{\prime}, s^{\prime}\right)
\end{align*}
$$

where $w=x+x_{0}+r$ and $w^{\prime}=y+y_{0}+s$. On the other hand, by (2.1.1) and (2.1.3), we achieve

$$
\begin{align*}
\tau(t) \sup _{\substack{w\left|=c+\left|x_{0}+x_{1}\right|\\
\right| w^{\prime}\left|=c^{\prime}\right| y_{0}+y_{1} \mid}} M\left(t, w, w^{\prime}\right) \leq & \inf _{\substack{w|=c| x_{1}+x_{1}| \\
| w^{\prime}\left|=c^{\prime}+\left|y_{0}+y_{1}\right|\right.}} M\left(t, w, w^{\prime}\right) \tag{2.1.5}\\
& <\inf _{\left\lvert\, \begin{array}{l}
x \geq c \\
y \geq \geq c^{\prime}
\end{array}\right.} M\left(t, x+x_{0}+r, y+y_{0}+s\right) \\
& \quad<\inf _{\substack{|x|=c \\
y \mid=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right)
\end{align*}
$$

If we combine (2.1.4) and (2.1.5), then for all $c \geq d$ and $c^{\prime} \geq d^{\prime}$ we arrive at
$\tau(t) \sup _{\substack{x=c \\|=c \\ y|=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right) \leq \inf _{\substack{x\left|=c \\ y=c^{\prime} \\ y\right|=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right)$.
From this inequality, we obtain

$$
\begin{align*}
\inf _{\substack{x=c \\
y=c^{\prime}}} \hat{M}_{h}(t, x, y) & \geq \int_{E^{n}} \int_{E^{n}} \inf _{\substack{x=c \\
y \mid=c^{\prime}}}\left\{M\left(t, x+x_{0}+r, y+y_{0}+s\right)\right. \\
& \left.-M\left(t, x_{0}+r, y_{0}+s\right)\right\} J_{h}(r) J_{h}(s) d r d s \\
& \geq \int_{E^{n}} \int_{E^{n}}\left\{\tau(t) \sup _{\substack{x \mid=c \\
y=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right)\right. \tag{2.1.6}\\
& -M\left(t, x_{0}+r, y_{0}+s\right) J_{h}(r) J_{h}(s) d r d s,
\end{align*}
$$

and

$$
\begin{align*}
& \sup _{\substack{x=c \\
\left\lvert\, \begin{array}{c}
\prime \\
y \mid=c^{\prime}
\end{array}\right.}} \hat{M}_{h}(t, x, y) \\
& \leq \int_{E^{n}} \int_{E^{n}} \sup _{|x|}^{|x|=c} \begin{array}{l}
y \mid=c^{\prime}
\end{array}
\end{align*}
$$

Moreover, since $\lim _{\substack{c=\infty \\ c^{\prime}=\infty}} \sup _{\substack{x|=c\\| y \mid=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right)=\infty$
for fixed x_{0}, y_{0}, r, s such that $|r| \leq h$ and $|s| \leq h$, given

$$
K_{1}(t)=2 \sup _{\substack{|r| \leq h \\ s \leq h}} M\left(t, x_{0}+r, y_{0}+s\right) / \inf _{t} \tau(t)
$$

there are $d_{1}>0$ and $d_{1}^{\prime}>0$ such that if $c \geq d_{1}$ and $c^{\prime}>d_{1}^{\prime}$,then

$$
\sup M\left(t, x+x_{0}+r, y+y_{0}+s\right) \geq K_{1}
$$

$$
\left\lvert\, \begin{aligned}
& x \mid=c \\
& y \mid=c \\
& y \mid=c^{\prime}
\end{aligned}\right.
$$

Therefore, by using (2.1.6) and (2.1.7), we achieve the inequalities

```
\(\frac{\inf _{\substack{x=c \\ y=c \\ y=c^{\prime}}} \hat{M}_{h}(t, x, y)}{\sup \hat{M}_{h}(t, x, y)} \geq \tau(t)-\)
\(\left|\begin{array}{l}x \mid=c \\ y \mid=c \\ y\end{array}\right|\)
```

$$
\frac{\sup _{\substack{\mid r \leq h \\ s \leq h}} M\left(t, x_{0}+r, y_{0}+s\right)}{\inf _{\substack{r \leq h \\ s \mid \leq h}} \sup _{\substack{x|=c \\ y|=c^{\prime}}} M\left(t, x+x_{0}+r, y+y_{0}+s\right)} \geq \tau(t)-\frac{1}{2} \inf \tau(t)
$$

for all $c \geq d_{0}=\max \left(d, d_{1},\left|x_{0}\right|\right)$ and $c^{\prime} \geq d_{0}^{\prime}=\max \left(d^{\prime}, d_{1}^{\prime},\left|y_{0}\right|\right)$. Taking the infimum of both sides of (2.1.8) over t, shows the first part of the property (iv). To show the latter part, assume $d_{0}>0$ and $d_{0}^{\prime}>0$. Then $\sup \hat{M}_{h}(t, x, y)$ is integrable over t in T since it is bounded by the $|x|=d_{0}$
$y \mid=d_{0}$
integrable function $\bar{M}\left(t, d_{2}, d_{2}^{\prime}\right)$ where $d_{2}=d_{0}+\left|x_{0}\right|+h$ and $d_{2}^{\prime}=d_{0}^{\prime}+\left|y_{0}\right|+h$.This proves property (iv) and the theorem. In the next theorem we show under what condition $\hat{M}_{h}(t, x, y)$ satisfies a $\Delta-$ condition.

Theorem 2.2:

If $M(t, x, y)$ is a GN^{*}-function satisfying a Δ-condition and for which $\bar{M}\left(t, c, c^{\prime}\right)$ is integrable in t for each c and c^{\prime}, then $\hat{M}_{h}(t, x, y)$ satisfies a Δ-condition.

Proof:

It suffices to show that $M_{h}(t, x, y)$ satisfies a Δ-condition.
For, $\hat{M}_{h}(t, x, y)$ is the sum of a constant and a translation of $M_{h}(t, x, y)$ and neither of these operations affects the growth condition. Let us observe first that if $|x| \geq 2,|y| \geq 2,|z| \leq h \leq 1$ and $|w| \leq h \leq 1$ then $|2 x+z| \leq 3|x+z|$ and $|2 y+w| \leq 3|y+w|$. Hence, by Theorem (1.8), there are constants $K \geq 1$ and $d_{1} \geq 0$ such that

$$
M_{h}(t, 2 x, 2 y) \leq k \int_{E^{n}} \int_{E^{n}} M(t, 3(x+z), 3(y+w)) J_{h}(z) J_{h}(w) d z d w
$$

for all x and y such that $|x| \geq d_{2},|y| \geq d_{2}$ and $d_{2}=\max \left(d_{1}, 2\right)$. On the other hand ,by theorem (1.10), there is a constant $K_{3} \geq 2, \quad \delta_{1}(t) \geq 0$ and $\delta_{2}(t) \geq 0$ such that for almost all t in T

$$
\int_{E^{n}} \int_{E^{n}} M(t, 3(x+z), 3(y+w)) J_{h}(z) J_{h}(w) d z d w \leq K_{3} M_{h}(t, x, y)
$$

for all x, y, z, w such that $|x+z| \geq \delta_{1}(t)$ and $|y+w| \geq \delta_{2}(t)$ where $|z| \leq h$ and $|w| \leq h$.By combining the above two inequalities, we achieve

$$
M_{h}(t, 2 x, 2 y) \leq K K_{3} M_{h}(t, x, y)
$$

for all $|x|>\max \left(d_{2}, \delta_{1}(t)+h\right)=\delta_{1}^{\prime}(t)$ and $|y|>\max \left(d_{2}, \delta_{2}(t)+h\right)=\delta_{2}^{\prime}(t)$.
Since $\bar{M}\left(t, 2 \delta_{1}(t), 2 \delta_{2}(t)\right)$ is integrable over T, this yields the integrability of $\bar{M}_{h}\left(t, 2 \delta_{1}^{\prime}(t), 2 \delta_{2}^{\prime}(t)\right)$ which proves the theorem.

For each t in T and x, y in E^{n} it is known that

$$
\lim _{h=0} M_{h}(t, x, y)=M(t, x, y)
$$

However, the same property does not hold in general for $\hat{M}_{h}(t, x, y)$. This is the point of the next theorem.

Theorem 2.3:

For each $h>0$ let x_{0}^{h} and y_{0}^{h} be the minimizing point of $M_{h}(t, x, y)$
defining $\hat{M}_{h}(t, x, y)$.Then for each t in T and each x, y in E^{n},there exists $K(t, x, y)$ such that

$$
\lim _{h=0} \hat{M}_{h}(t, x, y)=M(t, x, y)+K(t, x, y) \lim _{h=0}\left|x_{0}^{h}\right| \lim _{h=0}\left|y_{0}^{h}\right|
$$

Proof:

By the definition of $\hat{M}_{h}(t, x, y)$ we can write

$$
\begin{equation*}
\left|\hat{M}_{h}(t, x, y)-M(t, x, y)\right| \leq \tag{2.2.1}
\end{equation*}
$$

$$
\int_{E^{n}} \int_{E^{n}}\left|M\left(t, x+x_{0}^{h}+z, y+y_{0}^{h}+w\right)-M\left(t, x_{0}^{h}+z, y_{0}+w\right)-M(t, x, y)\right|
$$

$J_{h}(z) J_{h}(w) d z d w$
However, we know that

$$
\begin{align*}
& \left|M\left(t, x+x_{0}^{h}+z, y+y_{0}^{h}+w\right)-M\left(t, x_{0}^{h}+z, y_{0}^{h}+w\right)-M(t, x, y)\right| \tag{2.2.2}\\
& \leq\left|M\left(t, x+x_{0}^{h}+z, y+y_{0}^{h}+w\right)-M(t, x, y)\right| \\
& \quad+\left|M\left(t, x_{0}^{h}+z, y_{0}^{h}+w\right)-M(t, z, w)\right|+|M(t, z, w)| .
\end{align*}
$$

Moreover, since $M(t, x, y)$ is a convex function, it satisfies a Lipshitz condition on compact subsets of E^{n} (see[4,Th.5.1]).Therefore ,there exists $K_{1}(t, x, y)$ and $K_{2}(t, x, y)$ such that

$$
\begin{equation*}
\left|M\left(t, x+x_{0}^{h}+z, y+y_{0}^{h}+w\right)-M(t, x, y)\right| \leq K_{1}(t, x, y)\left|x_{0}^{h}+z \| y_{0}^{h}+w\right| . \tag{2.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|M\left(t, x_{0}^{h}+z, y_{0}^{h}+w\right)-M(t, z, w)\right| \leq K_{2}(t, x, y)\left|x_{0}^{h}\right|\left|y_{0}^{h}\right| . \tag{2.2.4}
\end{equation*}
$$

If we combine (2.2.3) and (2.2.4) with (2.2.3) and if we substitute the resulting expression into (2.2.1), we achieve the inequality

$$
\begin{aligned}
& \left|\hat{M}_{h}(t, x, y)-M(t, x, y)\right| \leq\left|x_{0}^{h}\right| y_{0}^{h} \mid\left(K_{1}(t, x, y)+K_{2}(t, x, y)\right)+ \\
& \int_{E^{n}} \int_{E^{n}}\left|x_{0}^{h}\right| K_{1}(t, x, y)|w| J_{h}(z) J_{h}(w) d z d w+\int_{E^{n}} \int_{E^{n}}\left|y_{0}^{h}\right| K_{1}(t, x, y)|z| J_{h}(z) J_{h}(w) d z d w+
\end{aligned}
$$

$$
\int_{E^{n} E^{n}} \int_{E^{n}} K(t, x, y) \mid z \| w J_{h}(z) J_{h}(w) d z d w+\int_{E^{n}} \int_{E^{n}} M(t, z, w) J_{h}(z) J_{h}(w) d z d w
$$

Since the last four integrals on the right side tend to zero as h tends to zero, we prove the theorem by setting

$$
K(t, x, y)=K_{1}(t, x, y)+K_{2}(t, x, y)
$$

Corollary 2.3:

Suppose $M(t, x, y)$ is a GN^{*}-function such that $M(t, x, y)=M(t,-x,-y)$.

Then for each t in T and x, y in E^{n}, we have

$$
\lim _{h=0} M_{h}(t, x, y)=\hat{M}(t, x, y)
$$

Proof:

This result is clear since $\lim _{h=0}\left|x_{0}^{h}\right|=0$ and $\lim _{h=0}\left|y_{0}^{h}\right|=0$
if $M((t, x, y)=M(t,-x,-y)$.In fact, if $M(t, x, y)$ is even in x and y then the $x_{0}^{h}=0$ and $y_{0}^{h}=0$ for all h.

For each t in T let A_{h} denote the set of minimizing points of $M_{h}(t, x, y)$ and let B represent the null space of $M(t, x, y)$ relative to points in $E^{n} \times E^{n}$, i.e.,

$$
B=\left\{(x, y) \quad \text { in } \quad E^{n} \times E^{n}: M(t, x, y)=0\right\} .
$$

If $M(t, x, y)$ is a GN^{*}-function, then $B=\{(0,0)\}$. For the sake of argument, let us suppose that $M(t, x, y)$ has all the properties of a GN^{*}-function except that $M(t, x, y)=0$ need not imply $x=0$ and $y=0$. We will show the relationships that exist between A_{h} and B. This is the content of the next few theorems.

Theorem 2.4:

The sets B and A_{h} are closed convex sets.

Proof:

This result follows from the convexity and continuity of $M(t, x, y)$ in x and y for each t in T.

Theorem 2.5:

Let $B_{e}=\{(x, y): M(t, x, y)<e\}$ for each t in T. Then given any $e>0$, there is a constant $h_{0}>0$. such that $A_{h} \subset B_{e}$ for each $h \leq h_{0}$.

Proof:

Since $B \subseteq B_{e}$, we can choose h_{0} sufficiently small so that if (x, y) is in B then $(x+z, y+w)$ is in B_{e} for all (z, w) such that $|z| \leq h_{0}$ and $|w| \leq h_{0}$. Let z_{1} and w_{1} be arbitrary but fixed points in $A_{h}, h \leq h_{0}$. Then

$$
M_{h}\left(t, z_{1}, w_{1}\right) \leq M_{h}(t, x, y)
$$

for all x and y. Therefore, if (x, y) in B, we have $M_{h}\left(t, z_{1}, w_{1}\right)<e$ by our choice of h_{0}. Letting h tend to zero yields $M\left(t, z_{1}, w_{1}\right)<e$, i.e., $\left(z_{1}, w_{1}\right)$ in B_{e}.

We have commented above that $A_{h}=\{(0,0)\}$ if

$$
M(t, x, y)=M(t,-x,-y)
$$

It is also true if $M(t, x, y)$ is strictly convex in x for each t in T.

Theorem 2.5:

Suppose $M(t, x, y)$ is a GN^{*}-function which is strictly convex in x and y for each t. Then $h, A_{h}=\{(0,0)\}$ for each h.

Proof:

Suppose that there exists $z_{0} \neq x_{0}$ and $w_{0} \neq y_{0}$ such that $x_{0}, y_{0}, z_{0} a n d w_{0}$ are in A_{h}. Let $z_{1}=\frac{\left(x_{0}+z_{0}\right)}{2}, w_{1}=\frac{\left(y_{0}+w_{0}\right)}{2}$. Then, since $M(t, x, y)$ is strictly convex, $M_{h}(t, x, y)$ is strictly convex in x and y, therefore, we have

$$
\begin{equation*}
M_{h}\left(t, z_{1}, w_{1}\right)<\frac{1}{2} M_{h}\left(t, x_{0}, y_{0}\right)+\frac{1}{2} M_{h}\left(t, z_{0}, w_{0}\right) . \tag{2.5.1}
\end{equation*}
$$

However, $\left(x_{0}, y_{0}\right),\left(z_{0}, w_{0}\right)$ are in A_{h} reduces (2.5.1) to the inequality $M_{h}\left(t, z_{1}, w_{1}\right)<M_{h}(t, x, y)$ for all x and y. This means z_{1} and w_{1} are in A_{h} and $\left(x_{0}, y_{0}\right),\left(z_{0}, w_{0}\right)$ are not in A_{h} which is a contradiction. Hence, $x_{0}=z_{0}, y_{0}=w_{0}$. Since $\quad M(t, x, y)$ is a GN^{*} function, $B=\{(0,0)\}$. In this case $x_{0}=y_{0}=0, z_{0}=w_{0}=0$.

References:

1. W.Orlicz (1932):"Vber eine gewisse klasse von Raumen vom Typus".BBull.Int.Acad Polon.Sci.207-220.
2. V.R.Portnov (1967):"Acontribution to the theory of Orlicz spaces generated by variable N -functions "Soviet Math.Dokl.8, 857-860.
3. V.R.Portnov (1966):"Some properties of Orlicz spaces generated by $M(t, w)$ functions". Soviet Math.Dokl.7,1377-1380.
4. M.S.Skaff (1968):"Vector valued Orlicz spaces".Thesis, University of California, Los Angeles.
5. M.S.Skaff(1969):"Vector valued Orlicz spaces generalized N-functions ".Pacific Journal of Mathematics vol.28.No. 1
