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ABSTRACT: 

      In 1969 S.K.Skaff introduced the generalized mean function 

      In this work we present the theory of an integral mean for generalized 

GN*-function .We will show under what conditions the mean function is 

a GN*-function and satisfies a −∆ condition. Moreover, we examine how 

the minimizing points in the definition of the mean function affect a basic 

property of the ordinary integral mean.  

1.Introduction and Basic Concept: 

    From the functional analysis as a function space, Orlicz spaces 

appeared in the first of the  th30  by W.R. Orlicz in Orlicz paper [1]. 

Many theorems and properties about generalized mean function for GN-

function is introduced in [5]. 

we have consolidated the investigation of a new definition generalized 

mean function for GN*-functions and discussed their properties. 

   Definition 1.1: [5] 

    Let ),( xtM be a real valued non-negative function defined on nET ×  

such that:  

(i) 0),( =xtM if and only if 0=x  where for all Tt ∈  , nEx∈  

(ii) ),( xtM is a continuous convex function of x for each t and a 

measurable function of t for each x , 

(iii) For each Tt ∈  , ∞=
∞=

x

xtM

x

),(
lim  , and    

         (iv)There is a constant 0≥d  such that  
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≥

ctk
dct

                                                (1.1.1) 

       where            ,
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ctM

ctM
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                                 , ),(sup),( xtMctM
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                            ),(inf),( xtMctM
cx =

=  

and if 0>d , then ),( dtM is an integrable function of t.We call a  

function satisfying the properties (i)-(iv) a generalized N-function or a 

GN-function. 

   Definition 1.2: 

     Let ),,( yxtM be a real valued non-negative function defined on 

nn EET ××  such that: 

(i) 0),,( =yxtM if and only if x,y are the zero vectors nEyx ∈, , 

Tt∈∀   

(ii) ),,( yxtM is a continuous convex function of yx, for each t and 

a measurable function of t for each yx, ,   

(iii) For each Tt ∈  , ∞=

∞=

∞= yx

yxtM

y

x

),,(
lim , and  

         (iv)There are constants 0≥d  and 01 ≥d  such that  

                             0),,(infinf

1
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≥′
≥
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dct
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 and if 0〉d  and 01 >d , then ),,( 1ddtM is an integrable function of t.  We 



call the function satisfying the properties (i)-(iv) a generalized N*-

function or a GN*-function. 

 

Definition 1.3: [5] 

     For each t in T and h>0 let  

∫ +=
nE

hh dzzJzxtMxtM )(),(),(  

 where )(zJ h  is nonnegative, ∞c function with compact 

 support in a ball of a radius h such that ∫ =
nE

h dtzJ 1)( .                           

Moreover, let 0x  is any point (depending on h, t) which satisfies the 

inequality       

),(),( 0 xtMxtM hh ≤  

for all x  in nE  . Then the function ),(ˆ xtM h  defined for each t in T and 

0>h   by  

                       )00 ,(),(),(ˆ xtMxxtMxtM hhh −+=   

is called a mean function for ),( xtM relative to the minimizing point 0x . 

Definition 1.4: 

     For each t in T and h>0 let  

∫ ∫ ++=
nE nE

hhh dzdwwJzJwyzxtMyxtM )()(),,(),,(  

 where )(zJ h  and )(wJ h  are nonnegative, ∞c function with compact 

 support in a ball of a radius h such that ∫ ∫ =
nE nE

hh dtdtwJzJ 1)()( .                           

Moreover, let 0x and 0y  are any point (depending on h, t) which satisfies 

the inequality       

),,(),,( 00 yxtMyxtM hh ≤  

for all x  and  y  in nE  . Then the function ),,(ˆ yxtM h  defined for each t 

in T and 0>h   by  

 



                       )0000 ,,(),,(),,(ˆ yxtMyyxxtMyxtM hhh −++=   

is called a mean function for ),,( yxtM relative to the minimizing point 

0x and 0y . 

  The next theorem shows under what condition ),,(ˆ yxtM h  is a GN*-

function.        

Definition 1.5:[2] 

    We say that a GN-function ),( xtM satisfies a −∆ condition if there 

exist a constant 2≥K  and a non-negative measurable function )(tδ such 

that the function ))(2,( ttM δ  is integrable over the domain T and such that 

for almost all t in T we have   

                            ),()2,( xtKMxtM ≤                                              (1.5.1) 

for all x satisfying .)(tx δ≥            

We say that a GN-function satisfies a −∆0 condition if it satisfies a 

−∆ condition with ot =)(δ  for almost all t in T. 

 In definition 1.5 we could have used any constant   

 1>τ  in place of the scalar 2 in (1.5.1).  

Definition 1.6: 

    We say that a GN*-function M(t,x,y)satisfies a −∆ condition if there 

exists a constant 2≥K and non-negative measurable functions )(
1

tδ and 

)(2 tδ such that the function ))(2),(2,( 21 tttM δδ  is integrable over the 

domain T and such that for almost all t in T we have   

                              ),,()2,2,( yxtKMyxtM ≤                                 (1.6.1) 

for all x and y satisfying )(
1

tx δ≥ and )(2 ty δ≥  . 

    We say a GN*-function satisfies a −∆0 condition if it satisfies a    

−∆ condition with 0)(1 =tδ and 0)(2 =tδ  for almost all t in T. 



   In definition (1.6) we could have used any constant 1>τ  in place of the 

scalar 2 in (1.6.1). 

Theorem 1.7:[3] 

     A necessary and sufficient condition that (1.5.1) holds is that if 

 zx ≤ , then there exists constants 1≥K , 0≥d  such that 

),(),( ztKMxtM ≤  for each t in T, dx ≥ . 

Theorem 1.8: 

     A necessary and sufficient condition that (1.6.1) holds is that if 

 zx ≤  and wy ≤ , then there exists constants 1≥K , 0≥d  and  0≥′d  

such that ),,(),,( wztKMyxtM ≤  for each t in T, dx ≥  and .dy ′≥  

Theorem 1.9:[2] 

     A GN*-function ),( xtM satisfies a −∆ condition if and only if  

given any 1>τ there exists a constant 2≥τK  and a non-negative 

measurable functions )(1 tδ  such that ))(2,( 1 ttM δ  is integrable over T and 

such that for almost all t in T we have 

                                     ),(),( xtMKxtM ττ ≤ ,                                 (1.9.1)   

 whenever )(1 tx δ≥ .      

Theorem 1.10: 

     A GN*-function ),,( yxtM satisfies a −∆ condition if and only if  

given any 1>τ there exists a constant 2≥τK  and a non-negative 

measurable functions )(1 tδ and )(2 tδ such that ))(2),(2,( 21 tttM δδ  is 

integrable over T and such that for almost all t in T we have 

                                     ),,(),,( yxtMKyxtM τττ ≤ ,                         (1.10.1)   

 whenever )(1 tx δ≥ and )(2 ty δ≥ .      

Theorem 1.11:[5] 

 If ),( xtM is a GN*-function for which ),( ctM  is integrable in t for each 



 c, then  ),(ˆ xtM h  is a GN*-function. 

Proof: 

We will show this result by justifying conditions (i)-(iv) of the 

definition 1.1. By hypothesis and the choice of 0x , we have for each h, 

0),(ˆ ≥xtM h  and 0)0,(ˆ =tM h . On the other hand, if 0≠x , then 

0),( >xtM , and hence there are constants 0h  such that  

0),(inf
0

>+=
≤

wxtMa
hw

 

However, since 0),( =xtM  if and only if 0=x , the minimizing points 0x  

tends to zero as h tends to zero. Therefore, we can choose 00 hg ≤   such 

that if 0gh ≤ ,then arxtM <+ ),( 0 for all r for which hrx <+0 ,   For this 

0g  we obtain the inequality 

≥+≥++
≤

),(inf),(
0

0 wxtMrxxtM
gw

                                         

),( 0 rxtMa +>  

whenever 00 || grx ≤+ .This means for some 0gh ≤   we have  

),(),( 00 rxtMrxxtM +>++       

∫ +

∫ >++

nE
h

nE
h

drrJrxtM

drrJrxxtM

)(),(

)(),(

0

0

 

)00 ,(),( xtMxxtM hh >+  

or 0),(ˆ >xtM h  if  0=/x  which proves property (i). 

 Properties (ii) and (iii) for ),(ˆ xtM h follow easily from the same 

properties for ),( xtM . Let us now show (iv). By assumption, there are 

constants 0≥d  such that  

                                         ),(),()( ctMctMt ≤τ                                (1.11.1)         

for all dc ≥ .Furthermore, it is not difficult to show that for all c we have 



                                   ),(sup),( xtMctM
cx ≤

≥                            (1.11.2)                   

 and for some fixed w, 

                               ),(inf),(inf wxtMwxtM
cxcx

+≤+
=≥

                  (1.11.3)          

By using (1.11.2), we obtain (for each t in T)that  

            ),(sup)(),(sup)(
10

rtMtwtMt
xxcrcw

′≤
++<′=

ττ                            (1.11.4) 

                                      ),(sup)(
10

rtMt
xxcr

′≤
++=′

τ     

where w=x+x0+r.On the other hand, by (1.11.1) and  

(1.11.3), we achieve  

         ),(inf),(sup)(
1010

wtMwtMt
xxcwxxcw ++=++=

≤τ                           (1.11.5)            

                                           ).,(inf 0 rxxtM
cx

++<
≥

 

                                              ).,(inf 0 rxxtM
cx

++<
=

                  

If we combine (1.11.4) and (1.11.5), then for all dc ≥  we arrive at 

         
.),(inf),(sup)(

00
rxxtMrxxtMt

cxcx

++≤++
==

τ
  

    From this inequality, we obtain 

        drrJrxtMrxxtMxtM h
nE

cx
h

cx
)(},(),({inf),(ˆinf 00 +−∫ ++≥

==
 

            ,)()},(),(sup)({ 00 drrJrxtMrxxtMt h
nE

cy
cx

+−∫ ++≥

′=
=

τ             (1.11.6) 

and 

.)(),(sup),(ˆsup
0

drrJrxxtMxtM h

E
cx

h
cx n

++≤ ∫
==

                                (1.11.7)       



Moreover, since  ∞=++
=∞=

),(suplim 0 rxxtM
cxc

                                         

for fixed rx ,0  such that hr ≤  ,given 

)(inf/),(sup2)( 01 trxtMtK
thr

τ+=
≤

 

there are 01 >d    such that if  1dc ≥   ,then     

.),(sup 10 KrxxtM
cx

≥++
=

 

Therefore, by using (1.11.6) and (1.11.7), we achieve the inequalities   

 

−≥

=

=

)(
),(ˆsup

),(ˆinf

t
xtM

xtM

h
cx

h
cx

τ  

     
)(

2

1
)(

),(supinf

),(sup

0

0

tnfit
rxxtM

rxtM

t
cxhr

hr

ττ −≥
++

+

=≤

≤                                (1.11.8) 

for all ),,max(
010 xdddc =≥ . Taking the infimum of both sides of 

(1.11.8) over t, shows the first part of the property (iv). To show the latter 

part, assume 00 >d . Then ),(ˆsup
0

xtM h
dx =

 is integrable over t in T since it is 

bounded by the integrable function ),( 2dtM where hxdd ++= 002   

.This proves property (iv) and the theorem.■    

In the next theorem we show under what condition 

),(ˆ xtM h satisfies a −∆  condition.   

Theorem 1.12:[5] 

    If ),( xtM  is a GN*-function satisfying a −∆ condition and for which  

),( ctM  is integrable in t for each c , then  ),(ˆ xtM h  



satisfies a  −∆ condition.  

     Proof: 

    It suffices to show that ),( xtM h  satisfies a  −∆ condition. 

For, ),(ˆ xtM h  is the sum of a constant and a translation of ),( xtM h and 

neither of these operations affects the growth condition. Let us observe 

first that if 2≥x , 1≤≤ hz  then zxzx +≤+ 32 .  

Hence, by Theorem (1.7), there are constants 1≥K  and  01 ≥d  such that  

            ∫ +≤
nE

hh dzzJzxtMkxtM )())(3,()2,(  

 for all x such that 2dx ≥  and )2,max( 12 dd = .On the other hand ,by 

theorem (1.9), there is a constant 23 ≥K , 0)(1 ≥tδ  such that for almost all 

t in T 

),()())(3,( 3 xtMKdzzJzxtM h
nE

h ≤∫ +  

for all zx, such that )(1 tzx δ≥+  where hz ≤  .By combining the above 

two inequalities, we achieve 

),()2,( 3 xtMKKxtM hh ≤  

for all )())(,max( 112 thtdx δδ ′=+> .                               

ٍٍٍٍٍٍٍSince ))(2,( 1 ttM δ  is integrable over T ,this yields the integrability of  

))(2,( 1 ttM h δ ′  which proves the theorem.■ 

  For each t in T and x in 
n

E  it is known that  

).,(),(lim
0

xtMxtM h

h

=
=

 

 However, the same property does not hold in general for ),(ˆ xtM h  . 

This is the point of the next theorem. 

Theorem 1.13:[5] 

 For each 0>h let hx0  be the minimizing point of ),( xtM h  



defining ),(ˆ xtM h .Then for each t  in T and each x in  nE ,there exists 

),( xtK  such that 

h

h
h

h

xxtKxtMxtM 0
0

0

lim),(),(),(ˆlim
=

=

+=  

Proof: 

By the definition of  ),(ˆ xtM h  we can write  

   ≤− ),(),(ˆ xtMxtM h                                                                   

(1.13.1)          dzzJxtMzxtMzxxtM h
nE

hh )(),(),(),( 00∫ −+−++                      

However, we know that                                                                                    

),(),(),( 00 xtMzxtMzxxtM hh −+−++                                        (1.13.2) 

),(),( 0 xtMzxxtM h −++≤   

  .),(),,(),( 0 ztMwztMzxtM h +−++                                                                

Moreover , since ),( xtM  is a convex function, it satisfies a Lipshitz 

condition on compact subsets of nE (see[4Th.5.1]).Therefore ,there 

exists ),(1 xtK  and ),(2 xtK  such that 

zxxtKxtMzxxtM hh +≤−++ 010 ),(),(),(                                   (1.13.3)      

and 

             hh xxtKztMzxtM 020 ),(),(),( ≤−+ .                                  (1.13.4) 

If we combine (1.13.3) and (1.13.4) with (1.13.2) and if we substitute the 

resulting expression into (1.13.1), we achieve the inequality 

∫ ∫+

++≤−

nE nE
hh

h
h

dzzJztMdzzJxtK

yxtKyxtKxxtMxtM

z .)(),()(),(

)),,(),,((),(),(ˆ

1

210

  

    Since the last two integrals on the right side tend to zero as h tends to 

zero, we prove the theorem by setting  

),(),(),( 21 xtKxtKxtK += . 



   Corollary 1.14: [5] 

    Suppose ),( xtM is a GN*-function such that ),(),( xtMxtM −= . 

Then for each t in T and x in nE ,we have 

),(ˆ),(lim
0

xtMxtM h
h

=
=

 

  Proof: 

This result is clear since 0lim 0

0

=
=

h

h

x   

if ),(),(( xtMxtM −= .In fact, if ),( xtM is even in x then the 00 =hx  for all 

h.■ 

 For each t in T let hA denote the set of minimizing points of 

 ),( xtM h  and let B represent the null space of ),( xtM relative to points in 

nE  , i.e., 

                   }0),(:{ == xtMEinxB n . 

If ),( xtM is a GN*-function, then B={0}. For the sake of argument, let us 

suppose that ),( xtM   has all the properties of a GN*-function except that 

0),( =xtM  need not imply 0=x . We will show the relationships that 

exist between Ah and B. This is the content of the next few theorems.  

Theorem 1.15:[5]  

   The sets B and hA  are closed convex sets. 

   Proof:  

   This result follows from the convexity and continuity of ),( xtM in x for 

each t in T.■ 

 Theorem 1.16:[5] 

      Let }),(:{ extMxBe <= for each t in T. Then given any e>0, 

 there is a constant .00 >h  such that eh BA ⊂  for each 0hh ≤ .      

Proof: 

Since eBB ⊆ , we can choose 0h  sufficiently small so that if x is 



 in B then zx +  is in eB for all z such that 0|| hz ≤  and 0|| hw ≤ . Let 

1z  be arbitrary but fixed points in 0, hhAh ≤  . Then        

),(),( 1 xtMztM hh ≤  

for all x . Therefore, if x in B, we have eztM h <),( 1  by our choice of 0h . 

Letting h tend to zero yields eztM <),( 1 , i.e., ,1z  in eB .     
 

We have commented above that }0{=hA  if          

                                     .),(),( xtMxtM −=  

It is also true if  M(t,x) is strictly convex in x for each t in T. 

   Theorem 1.17:[5] 

 Suppose M(t,x) is a GN*-function which is strictly convex in x  

for each t. Then }0{, =hAh for each h.  

     Proof: 

     Suppose that there exists 00 xz =/  such that 00 , zx  

 are in hA . Let 
2

)( 00
1

zx
z

+
=  ,. Then, since ),( xtM  is  

strictly convex, ),( xtM h  is strictly convex in x, therefore, 

 we have 

                        .),(
2

1
),(

2

1
),( 001 ztMxtMztM hhh +<                     (1.17.1)       

However, 00 , zx  are in hA  reduces (1.17.1) to the inequality 

),(),( 1 xtMztM hh < for all x. This means 1z  is in hA  and 00 , zx are not in 

hA  which is a contradiction. Hence, 00 zx = .Since ),( xtM is a 

GN*function, { }0=B  . In this case  000 == zx  . 
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Theorem 2.1: 

     If ),,( yxtM is a GN*-function for which ),,( cctM ′  is integrable in t 

for each c and c', then  ),,(ˆ yxtM h  is a GN*-function. 



Proof: 

We will show this result by justifying conditions (i)-(iv) of the 

definition ٣.1.1. By hypothesis and the choice of 0x   and 0y  , we have for 

each h, 0),,(ˆ ≥yxtM h  and 0)0,0,(ˆ =tM h . On the other hand, if 0≠x and 

0≠y , then 0),,( >yxtM , and hence there are constants 0h  and 0h′  such 

that  

0),,(inf

0

0

>′++

′

=

≤′

≤
wywxtMa

hw

hw
 

However, since 0),,( =yxtM  if and only if 0=x  and 0=y , the 

minimizing points 0x  tends to zero and 0y  tends to zero as h tends to zero. 

Therefore, we can choose 00 hg ≤  and 00 hg ′≤′  such that if 0gh ≤ and 

0gh ′≤ ,then asyrxtM <++ ),,( 00 for all r,s for which hrx <+0 , 

hsy <+0   For this 0g   and 0g ′     we obtain the inequality 

≥′++≥++++

′≤′

≤
),,(inf),,(

0

0
00 wywxtMsyyrxxtM

gw

gw
                                

          
),,( 00 syrxtMa ++>

 

whenever 00 || grx ≤+  and 
0

0 || gsy ′≤+ .This means for some 0gh ≤             

and  0gh ′≤  we have  

),,(),,( 0000 syrxtMsyyrxxtM ++>++++       

∫ ∫ ++

∫ ∫ >++++

nE nE
hh

nE nE
hh

drdssJrJsyrxtM

drdssJrJsyyrxxtM

)()(),,(

)()(),,(

00

00

 

)0000 ,,(),,( yxtMyyxxtM hh >++  

or 0),,(ˆ >yxtM h  if  0=/x  and 0≠y which proves property (i). 



 Properties (ii) and (iii) for ),,(ˆ yxtM h follow easily from the same 

properties for ),,( yxtM . Let us now show (iv). By assumption, there are 

constants 0≥d  and 0≥′d  such that  

                                         ),,(),,()( cctMcctMt ′≤′τ                        (2.1.1)         

for all dc ≥  and dc ′≥′ .Furthermore, it is not difficult to show that for all 

c and c′  we have 

                                   ),,(sup),,( yxtMcctM

cy

cx

′≤

≤

≥′                        (2.1.2)                   

 and for some fixed w and w', 

           ),,(inf),,(inf wywxtMwywxtM
cy
cx

cy
cx

′++≤′++
′=

=
′≥

≥
                    (2.1.3)          

By using (3.3.4), we obtain (for each t in T)that  

            ),,(sup)(),,(sup)(

1
0

10

srtMtwwtMt

yycs

xxcr
cw

cw

′′≤

++′<′

++<′
′=′

=

ττ                         (2.1.4) 

                                    ),,(sup)(

10
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srtMt

yycs

xxcr

′′≤

++′=′
++=′

τ     

where w=x+x0+r and w′=y+y0+s.On the other hand, by (2.1.1) and  

(2.1.3), we achieve  

         ),,(inf),,(sup)(

10

10

10
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wwtMwwtMt

yycw

xxcw

yycw
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τ                    (2.1.5)            

                                           ).,,(inf 00 syyrxxtM

cy
cx
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                                                   ).,,(inf 00 syyrxxtM

cy

cx
++++<

′=

=
                  

If we combine (2.1.4) and (2.1.5), then for all dc ≥ and dc ′≥′  we arrive 

at 



.),,(inf),,(sup)(
0000

syyrxxtMsyyrxxtMt

cy

cx

cy

cx

++++≤++++

′=

=

′=

=

τ

   From this inequality, we obtain 

∫ ∫ ++++≥
′=

=
′=

= nE nE
cy
cx

h

cy
cx

syyrxxtMyxtM ),,({inf),,(ˆinf 00  

                    drdssJrJsyrxtM hh )()()},,( 00 ++−  

                    

,)()(),,(

),,(sup)({

00

00

drdssJrJsyrxtM

syyrxxtMt

hh

nE nE
cy
cx

++−

∫ ∫ ++++≥
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=

τ

                     (2.1.6) 

and 

∫ ∫ ++++≤

′=

=

′=

=

n n
E

hh

E
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h

cy

cx

drdssJrJsyyrxxtM

yxtM

.)()(),,(sup

),,(ˆsup

00
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Moreover, since  ∞=++++

′=
=

=∞′
=∞

),,(suplim 00 syyrxxtM

cy
cx

c
c

                                         

for fixed sryx ,,, 00  such that hr ≤  and hs ≤   ,given 

)(inf/),,(sup2)( 001 tsyrxtMtK
t

hs
hr

τ++=

≤
≤

 

there are 01 >d  and 01 >′d    such that if  1dc ≥  and  1dc ′>′   ,then     

.),,(sup 100 KsyyrxxtM

cy

cx

≥++++

′=

=
 

Therefore, by using (2.1.6) and (2.1.7), we achieve the inequalities   

 

−≥

′=
=

′=
=

)(
),,(ˆsup

),,(ˆinf

t
yxtM

yxtM

h

cy
cx

h

cy
cx
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)(
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1
)(

),,(supinf

),,(sup

00

00

tnfit
syyrxxtM

syrxtM

t

cy
cx

hs
hr
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hr

ττ −≥
++++

++

′=
=

≤
≤

≤

≤

               (2.1.8) 

for all ),,max(
010 xdddc =≥  and )010 ,,max( ydddc ′′=′≥′ . Taking the 

infimum of both sides of (2.1.8) over t, shows the first part of the 

property (iv). To show the latter part, assume 00 >d  and 00 >′d . Then 

),,(ˆsup

0

0

yxtM h

dy
dx

′=
=

 is integrable over t in T since it is bounded by the 

integrable function ),,( 22 ddtM ′ where hxdd ++= 002  and 

hydd ++′=′
002 .This proves property (iv) and the theorem.■    

 In the next theorem we show under what condition 

),,(ˆ yxtM h satisfies a −∆  condition.   

Theorem 2.2: 

    If ),,( yxtM  is a GN*-function satisfying a −∆ condition and for 

which  ),,( cctM ′  is integrable in t for each c and c′  , then  ),,(ˆ yxtM h  

satisfies a  −∆ condition.  

     Proof: 

    It suffices to show that ),,( yxtM h  satisfies a  −∆ condition. 

For, ),,(ˆ yxtM h  is the sum of a constant and a translation of 

),,( yxtM h and neither of these operations affects the growth condition. 

Let us observe first that if 2≥x , 2≥y , 1≤≤ hz  and 1|| ≤≤ hw  then 

zxzx +≤+ 32 and .32 wywy +≤+ Hence, by Theorem (1.8), there are 

constants 1≥K  and  01 ≥d  such that  

            ∫ ∫ ++≤
nE nE

hhh dzdwwJzJwyzxtMkyxtM )()())(3),(3,()2,2,(  



 for all x and y such that 2dx ≥  , 2dy ≥  and )2,max( 12 dd = .On the other 

hand ,by theorem (1.10), there is a constant 23 ≥K , 0)(1 ≥tδ and 

0)(2 ≥tδ such that for almost all t in T 

),,()()())(3),(3,( 3 yxtMKdzdwwJzJwyzxtM h
nE nE

hh ≤∫ ∫ ++  

for all wzyx ,,, such that )(1 tzx δ≥+ and )(2 twy δ≥+ where hz ≤  and 

hw ≤  .By combining the above two inequalities, we achieve 

),,()2,2,( 3 yxtMKKyxtM hh ≤  

for all )())(,max( 112 thtdx δδ ′=+>  and )())(,max( 222 thtdy δδ ′=+> .                              

ٍٍٍٍٍٍٍSince ))(2),(2,( 21 tttM δδ  is integrable over T ,this yields the integrability 

of  ))(2),(2,( 21 tttM h δδ ′′  which proves the theorem.■ 

  For each t in T and x,y in 
n

E  it is known that  

).,,(),,(lim
0

yxtMyxtM h

h

=
=

 

 However, the same property does not hold in general for 

),,(ˆ yxtM h  . This is the point of the next theorem. 

    Theorem 2.3: 

 For each 0>h let hx0  and hy0  be the minimizing point of ),,( yxtM h  

defining ),,(ˆ yxtM h .Then for each t  in T and each yx, in  nE ,there exists 

),,( yxtK  such that 

h

h

h

h
h

h

yxyxtKyxtMyxtM 0
0

0
0

0

limlim),,(),,(),,(ˆlim
==

=

+=  

Proof: 

By the definition of  ),,(ˆ yxtM h  we can write  

   ≤− ),,(),,(ˆ yxtMyxtM h                                                              

(2.2.1)          



dzdwwJzJ

yxtMwyzxtMwyyzxxtM

hh

nE nE

hhh

)()(

),,(),,(),,( 0000∫ ∫ −++−++++

                    

However, we know that                                                                                    

),,(),,(),,( 0000 yxtMwyzxtMwyyzxxtM hhhh −++−++++          (2.2.2) 

),,(),,( 00 yxtMwyyzxxtM hh −++++≤   

  .),,(),,(),,( 00 wztMwztMwyzxtM hh +−+++                                                                

Moreover , since ),,( yxtM  is a convex function, it satisfies a Lipshitz 

condition on compact subsets of nE (see[4,Th.5.1]).Therefore ,there 

exists ),,(1 yxtK  and ),,(2 yxtK  such that 

.00100 ),,(),,(),,( wyzxyxtKyxtMwyyzxxtM hhhh ++≤−++++  (2.2.3)      

and 

             hhhh yxyxtKwztMwyzxtM 00200 ),,(),,(),,( ≤−++ .           (2.2.4) 

If we combine (2.2.3) and (2.2.4) with (2.2.3) and if we substitute the 

resulting expression into (2.2.1), we achieve the inequality 

∫ ∫ ∫ ∫ ++

++≤−

nE nE nE nE
hh

h
hh

h

hh
h

dzdwwJzJzyxtKydzdwwJzJwyxtKx

yxtKyxtKyxyxtMyxtM

)()(),,()()(),,(

)),,(),,((),,(),,(ˆ

1010

21
0

0

  

∫ ∫+∫ ∫
nE nE

hhhhnE nE

dzdwwJzJwztMdzdwwJzJwzyxtK )()(),,()()(),,(  

Since the last four integrals on the right side tend to zero as h tends 

to zero, we prove the theorem by setting  

),,(),,(),,( 21 yxtKyxtKyxtK +=  

   

 Corollary 2.3:  



    Suppose ),,( yxtM is a GN*-function such that 

),,(),,( yxtMyxtM −−= . 

Then for each t in T and yx, in nE ,we have 

),,(ˆ),,(lim
0

yxtMyxtM h
h

=
=

 

  Proof: 

This result is clear since 0lim 0

0

=
=

h

h

x  and 0lim 0

0

=
=

h

h

y  

if ),,(),,(( yxtMyxtM −−= .In fact, if ),,( yxtM is even in x and y then the 

00 =hx and 00 =hy  for all h.■ 

 For each t in T let hA denote the set of minimizing points of 

 ),,( yxtM h  and let B represent the null space of ),,( yxtM relative to 

points in nn EE ×  , i.e., 

                   }0),,(:),({ =×= yxtMEEinyxB nn . 

If ),,( yxtM is a GN*-function, then B={(0,0)}. For the sake of argument, 

let us suppose that ),,( yxtM   has all the properties of a GN*-function 

except that 0),,( =yxtM  need not imply 0=x and 0=y . We will show 

the relationships that exist between Ah and B. This is the content of the 

next few theorems.  

Theorem 2.4:  

   The sets B and hA  are closed convex sets. 

   Proof:  

   This result follows from the convexity and continuity of ),,( yxtM in x 

and y for each t in T.■ 

 Theorem 2.5: 

      Let }),,(:),{( eyxtMyxBe <= for each t in T. Then given any e>0, 

 there is a constant .00 >h  such that eh BA ⊂  for each 0hh ≤ .      

Proof: 



Since eBB ⊆ , we can choose 0h  sufficiently small so that if ),( yx is 

in B then ),( wyzx ++  is in eB for all ),( wz such that 0|| hz ≤  and 

0|| hw ≤ . Let 1z  and 1w  be arbitrary but fixed points in 0, hhAh ≤  . Then    

    

),,(),,( 11 yxtMwztM hh ≤  

for all x and y . Therefore, if (x,y) in B, we have ewztM h <),,( 11 by our 

choice of 0h . Letting h tend to zero yields ewztM <),,( 11 , i.e., ),( 11 wz  in 

eB .     
 

We have commented above that )}0,0{(=hA  if          

                                     .),,(),,( yxtMyxtM −−=  

It is also true if  M(t,x,y) is strictly convex in x for each t in T. 

   Theorem 2.5: 

 Suppose M(t,x,y) is a GN*-function which is strictly convex in x and y  

for each t. Then )}0,0{(, =hAh for each h.  

     Proof: 

     Suppose that there exists 00 xz =/  and 
0

0 yw ≠  such that 0000 ,, andwzyx  

 are in hA . Let 
2

)( 00
1

zx
z

+
=  , 

2

)( 00
1

wy
w

+
= . Then, since ),,( yxtM  is  

strictly convex, ),,( yxtM h  is strictly convex in x and y, therefore, 

 we have 

                        .),,(
2

1
),,(

2

1
),,( 000011 wztMyxtMwztM hhh +<       (2.5.1)       

However, ),(),,( 0000 wzyx  are in hA  reduces (2.5.1) to the 

inequality ),,(),,( 11 yxtMwztM hh < for all x and y. This means 1z  

and 1w are in hA  and ),(),,( 0000 wzyx are not in hA  which is a 

contradiction. Hence, 00 zx = , 00 wy = .Since ),,( yxtM is a 

GN*function, { })0,0(=B  . In this case  000 == yx , 000 == wz  . 
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