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Abstract: A spandrel beam is a structural member lies at the edge of a frame and is connected by a 

joint to the floor beam extending into the slab. The spandrel beams are primarily responsible for 

transferring forces from a slab to the supporting edge columns. This work investigates the possibility of 

using the artificial neural networks to model the complicated nonlinear relationship between the 

various input parameters associated with reinforced concrete spandrel beams and the actual ultimate 

strength of them. The descent gradient backpropagation algorithm was employed for predicting the 

ultimate strength of the reinforced concrete spandrel beams. The optimum topology (which gives least 

mean square error for both training and testing with fewer number of epochs) is presented. Effects of 

parameters such as, number of hidden layer(s), number of nodes in the input layer, output layer and 

hidden layer(s), initialization weight factors and selection of the learning rate and momentum 

coefficient on the behaviour of the neural network have been investigated. Because of the slow 

convergence of results when using descent gradient backpropagation, another algorithm which is faster 

called "resilient backpropagation algorithm" has been used. The neural network trained with the 

resilient backpropagation RPROP algorithm gives better results than that trained with the steepest 

descent algorithm with momentum GDM algorithm. 

 

الشبكاث العصبيت تقنيت  باستخذام هقاوهت اللي القصوى لعتباث الحافت الخرسانيت الوسلحت تقيين

 الصناعيت

 *، هيادة يحيي هحوذ*نبيل عبذ الرزاق جاسن. د

 .قسٌ اىهْذسخ اىَذّيخ، مييخ اىهْذسخ، خبٍعخ اىجصشح، اىجصشح، اىعشاق*

  
 

ىزىل فأُ عزجبد اىحبفخ رنىُ , عزجخ اىحبفخ عجبسح عِ ععى إّشبئي يقع عْذ حبفخ اىَْشأ ويُشثط ٍع عزجخ الأسظيخ واىسقف: الولخص

يزحشي هزا اىجحث إٍنبّيخ اسزخذاً اىشجنبد اىعصجيخ . ٍسئىىخ ثصىسح سئيسيخ عِ ّقو اىقىي ٍِ اىسقف إىً الأعَذح اىسبّذح ىيحبفبد

 ثيِ اىَزغيشاد اىَخزيفخ اىخبصخ ثعزجخ اىحبفخ اىخشسبّيخ اىَسيحخ واىَقبوٍخ اىقصىي اىفعييخ  اىعلاقخ اىلاخطّيخ اىَعقّذحاىصْبعيخ ىزشنيو

أسزخذً ٍفهىً الاّحذاس اىعنسي في رذسيت َّىرج اىشجنخ اىعصجيخ ىزقييٌ اىَقبوٍخ اىقصىي ىعزجبد اىحبفخ اىخشسبّيخ . ىهزٓ اىعزجخ

ومزىل رٌ فحص . ( اىزذسيت واىفحص ثأقو عذد ٍِ اىذوسادجاىزي رعطي اقو ٍعذه ٍشثع اىخطأ ىَْبر)ووىذد اىشجنخ اىَثيً , اىَسيحخ

رأثيش اىَزغيشاد اىَخزيفخ ىيشجنخ ٍثو عذد اىطجقبد اىَخفيخ وعذد اىعقذ في طجقخ الإدخبه واىطجقبد اىَخفيخ واىفشض الأوىي ىَعبٍلاد 

وّزيدخ ىجطئ الإّدبص عْذ اسزخذاً  ٍفهىً الاّحذاس . الأوصاُ و اخزيبس ٍعذه اىزعيٌ وٍعبٍو اىضخٌ عيً سيىك وأداء اىشجنخ اىعصجيخ

ىزذسيت اىشجنخ اىعصجيخ ٍعطيخ ّزبئح أفعو " الإسخبع اىعنسي اىَشُ"اىعنسي رٌ اسزخذاً ٍفهىً آخش أسشع ٍِ اىَفهىً الأوه يسًَ 

ورقبسة أفعو ثيِ َّبرج اىزذسيت وَّبرج الاخزجبس  (عذد اىذوساد)ٍِ اىطشيقخ اىسبثقخ وهزا وخذ ٍِ خلاه رخفيط وقذ اىزذسيت 

 (.اىزذسيتواىزي ىيسذ ظَِ َّبرج )
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Introduction 

Artificial Neural Networks (ANNs) are a 

computational tool that attempt to simulate the 

architecture and internal features of the human 

brain and nervous system. They have been 

widely used for prediction and classification 

problems. 

Neural Network consists of a number of 

interconnected processing elements, commonly 

referred to as neurons or nodes as shown in Fig. 

(1).  
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The nodes are logically arranged into two or 

more layers and interact with each other via 

weighted connections. These scalar weights 

determine the nature and strength of the 

influence between interconnected nodes. Each 

node is connected to all the nodes in the next 

layer. There is an input layer where data are 

presented to the neural network and an output 

layer that hold the response of the network to 

the input. Between them there are intermediate 

layers, also known as the hidden layers, which 

enable these networks to represent and compute 

complicated associations between patterns.  

Each hidden and output node processes its 

inputs by multiplying each input by its weight, 

summing the product, and then passing the sum 

through a nonlinear activation function to 

produce a result [2]. Figure (2) shows 

Architecture of neural network. 
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The present study investigates the possibility 

of using the artificial neural networks to model 

the complicated nonlinear relationship between 

the various inputs parameters associated with a 

reinforced concrete spandrel beam and the 

actual ultimate strength of the spandrel beam. 

 
 

Behaviour of Reinforced Concrete 
Spandrel Beams 

A spandrel beam is a structural member lies 

at the edge of a frame, and is connected by a 

joint to the floor beam extending into the slab. 

The loads applied to the slab are carried by the 

floor beams, which transfer certain amount of 

these loads to the spandrel beams through the 

joint, causing the spandrel beams to twist under 

those eccentric loads [3], so that they are 

primarily responsible for transferring forces 

from a slab to the supporting edge columns and 

as a result, they are subjected to a combination 

of torsion, shear and bending [4]. 

Figure (3) shows a portion of a floor–

spandrel beam assembly within a frame lies 

between the points of inflection, which can be 

simulated by hinges. In these points the 

bending moment equals zero, as shown in Fig. 

(4). 

Fig. (1) A  Processing  Unit [1] 

Fig. (2)  Architecture  of  Neural  Network [1] 
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The design of a floor–spandrel beam 

assembly is entirely dependent on the value of 

the torsional moment (Tu). Different 

assumptions were made [3,6] for the value of 

(Tu) which was given by the equation: 

 

 
 

where (b) is the width of beam section, (h) is its 

overall depth, and (fc') is the cylinder concrete 

compressive strength (MPa). 

The value of the coefficient (φ) was taken as 

zero, 0.25, 0.33, and 0.44. 

Selection of the Training and 
Testing Patterns 

Multilayered feedforward backpropagation 

neural networks are used for this research, 

which are implemented using neural network 

toolbox that is available in MATLAB version 

7.0.0 (2004). This program implements several 

different neural network algorithms, including 

backpropagation algorithm 

The experimental results used to construct 

the neural network are those obtained from 

available literature [3, 6, 7, 8, and 9].  

The total experimental data are divided into 

two sets: a training set and a testing set. The 

training set is used for computing the gradient 

and updating the network weights and biases to 

diminish the training error, and thus finding the 

relationship between the input and output 

parameters. Hence, the learning process is a 

crucial phase in NN modeling. The testing set is 

used to evaluate the generalisation ability of the 

learning process. In this study the testing set 

contains approximately (15)% of total database. 

The parameters used in this study are shown in 

Table (1). Dimensions of the spandrel beam are 

shown in Fig. (5). 

 

 

 

 

Item Parameters 
Range of Parameters 

Units 
From To 

 Input 

Parameters 

 (bs) 120 180 mm 

 (hs) 200 300 mm 

 (ls) 1200 3000 mm 

 (Ast) 0 226.2 mm2 

 (fy1) 
no rein. 

& 289 
560.8 MPa 

 (Asb) 157.1 628.3 mm2 

 (fy2) 413.4 560.8 MPa 

 () 0 1 % 

 (fy3) 

no 

stirrup 

& 344.5 

540 MPa 

 (fc') 20 49.1 MPa 

Output 

Parameter 
 (Tu) 1.3 14.95 kN.m 

Table (1) Input and Output Parameters 

 

Fig. (3)  Spandrel  Beam  Within  a 

Structural  Frame 

Fig. (4)  Bending  Moment  Diagram  for 

the  Spandrel  Beam 

                 Assembly 
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The total number of (48) test beams were 

utilized. The training set contains (41) beams 

and the testing set comprises of (7) beams. 

Neural networks interpolate data very well. 

Therefore, the training set should be selected in 

such a way that it includes data from all regions 

of desirable operation. 

 

Input and Output Nodes 

The main difficulty in the structural 

identification of a complex nonlinear system 

arises from the huge amount of possible 

relationships among variables. The selection of 

outputs is straightforward and depends on the 

modeling goal. However, informed input-

variable selection is critical in achieving 

efficient model performance. In this study, the 

parameters which may be introduced as the 

components of the input vector consist of the 

total depth of spandrel beam cross section (hs), 

the width of spandrel beam cross section (bs), 

the length of spandrel beam (ls), area of 

compression steel reinforcement (Ast), yielding 

stress of compression steel reinforcement (fy1), 

area of tension steel reinforcement (Asb), 

yielding stress of tension steel reinforcement 

(fy2), the ratio of transverse stirrup (), yielding 

stress of transverse reinforcement (fy3), and 

concrete cylinder compressive strength (fc'). 

The output vector is the ultimate torsional 

moment of  spandrel beams (Tu). Therefore, the 

nodes in the input layer and output layer are 

(10) and (1), respectively. 

 

Weight Initialization 

The first step in the neural network 

computation is the initialization of the weight 

factors between any two nodes within the 

network. Because no prior information about 

the system being modeled is available, 

therefore in this study different initialization 

functions are used. These include Widrow-Hoff 

initialization function which changes the weight 

after each run, zero initialization function, and 

random initialization function with ranges      

[(-0.25 to +0.25), (-0.5 to +0.5), (-0.75 to 

+0.75), and (-1 to +1)]. Figure (6) shows the 

effect of using these initialization functions on 

the performance of network. The performance 

is determined as the difference between the 

target output which is known from the 

experimental work and the output of the 

network, and it is calculated as the square of 

this difference and denoted by the mean square 

error (MSE). This figure shows that the 

Widrow-Hoff gives better performance than 

other functions. Therefore Widrow-Hoff 

initialization function is used in this study. 
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Fig. (5) Dimensions of Spandrel Beam 

Fig. (6) Effect of Initialization Weight 

Functions 
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Number of Hidden Layers and 
Nodes in Each Hidden Layer 

The number of hidden layers depends on the 

nonlinearity of the problem. The choice of the 

number of hidden units is therefore a tradeoff 

between the necessary flexibility of the model 

and the time it takes to train the network. It is 

usually to start with a relatively small number 

of hidden units and increase it until the 

approximation quality of the network becomes 

acceptable. Unfortunately, the network needs to 

be fully retrained after each modification of its 

structure.  

The number of nodes in a hidden layer(s) 

drastically affects the outcome of the network 

training. If the number of nodes is small, the 

network becomes unable to perform the 

problem satisfactorily as shown in Fig. (7) in 

which (2) nodes are used in a network of one 

hidden layer. This is because reducing the 

number of hidden units will reduce the 

interconnection of the network. On the other 

hand, if the number of nodes selected is too 

large the network may give good training but 

the performance of testing data is poor (over-

fitting) as shown in Fig. (8) in which (25) nodes 

are used in a network of one hidden layer. This 

is because the neural networks developed 

complex relationship between input parameters 

and outputs. 
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Over-fittings and predictions in training and 

outputs of neural networks are commonly 

influenced by the number of hidden layers and 

nodes in each hidden layer. Therefore, trial-

and-error approach is carried out to choose an 

adequate number of hidden layers and number 

of nodes in each hidden layer.  
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The number of nodes in the hidden layer is 

selected according to the following rules [1]: 

1. The maximum error of the output network     

parameters should be as small as possible for 

both training patterns and testing patterns. 

2. The training epochs should be as few as 

possible. 

In this study the network is tested with one 

and two hidden layer configurations with an 

increasing number of nodes in each hidden 

layer(s). The optimal topology is determined 

first by using one hidden layer with activation 

function as hyperbolic tangent (tansig) function 

in hidden layer and linear (purelin) function in 

output layer. Different numbers of nodes from 

(2 to 15) are investigated and the performance 

of these topologies for both training and testing 

are shown in Fig. (9). From this figure the 

network with (6) nodes in the hidden layer 

gives the best performance for both training and 

testing than other (MSE=0.00373). Then two 

hidden layers are used with activation functions 

Fig. (7) Performance of Network (Under 

Fitting) 

Fig. (8) Performance of Network (Over 

Fitting) 
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as hyperbolic tangent (tansig) function in first 

hidden layer and linear (purelin) function in 

both second hidden and output layer. Different 

numbers of nodes in each hidden layer from (2 

to 12) nodes are used. The performance of these 

topologies of network for both training and 

testing is shown in Fig. (10). From this figure 

the network with (6-9) nodes in the first and 

second hidden layers gives the best 

performance for both training and testing 

(MSE=0.00254). The results show that a 

network with two hidden layers is significantly 

better than that with one hidden layer. Also the 

number of nodes in two hidden layers affects 

the number of epochs required for the results to 

converge. This is clearly shown in Fig. (11). 

From this figure it is found that the network 

with (6-9) gives best performance with small 

number of epochs. 

4 5 6 7 8 9 10 11 12 13 14 15
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Node Number

M
S

E

testing data

training data

 
 

 
 

2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

8

9

10
x 10

-3

No. of Node in Second Hidden Layer

M
S

E

testing data
training data

* No. of Node in
First Hidden Layer

(12*,2)

(7*,3)

(11*,4)

(2*,5)

(7*,6)

(12*,7) (6*,8)

(6*,9)

(6*,10)

(7*,11)

(7*,12)

 
 

4 6 8 10 12 14 16 18 20
5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

Total Number of Node in Hidden Layers

E
p
o
c
h
s

(2,2)

(3,2)

(3,4)

(3,5)

(3,6)

(2,9)

(6,9)

(7,6)

(6,8)

(6,10)

(5,12)

(7,12)

(8,2)

(7,11)

(11,9)

 
 

 

 

Table (2) shows how the number of nodes in 

the two hidden layers affects the response of 

network with different types and arrangements 

activation functions. 

 

 

 

 

Network 

type 

(tansig, 

purelin, 

purelin) 

(tansig, 

tansig, 

purelin) 

(tansig, 

tansig, 

tansig) 

(purelin

, tansig, 

tansig) 

(tansig, 

purelin, 

tansig) 

6-8 0.0028 0.0034 0.00338 0.0045 0.00493 

6-9 0.00254 0.00388 0.00559 0.00366 0.00411 

6-10 0.00452 0.00283 0.00276 0.00423 0.00508 

7-6 0.003 0.00323 0.00308 0.00668 0.00466 

7-11 0.00514 0.0033 0.00286 0.00268 0.00505 

7-12 0.00378 0.00457 0.00431 0.00356 0.00484 

11-4 0.00425 0.00385 0.00305 0.00368 0.00485 

12-7 0.0026 0.00312 0.00286 0.00335 0.00335 

 

From the Table above, it can be seen that the 

networks with [[6-9] (tansig, purelin, purelin), 

[6-10] (tansig, tansig, tansig), [7-11] (purelin, 

tansig, tansig)] give the best performance. 

Figure (12) shows the convergence history of 

these networks for both training and testing 

data. It can be seen that the network (6-9) gives 

the best performance for both training and 

testing. From the above analysis, the node 

number of (6-9) in the hidden layers [(6) nodes 

Table (2) MSE for The Networks with Different 

Types and Arrangements of Activation Functions 

 

Fig. (9) Performance of Network with One 

Hidden Layer 

Fig. (10) Performance of Network with 

Two Hidden Layers 

Fig. (11) Effect Number of Nodes on 

Number of Epochs 
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in the first hidden layer and (9) nodes in the 

second hidden layer] is chosen. The 

configuration of the neural network is shown in 

Fig. (13). 
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Selection of Learning Rate (α) and 
Momentum Coefficient (μ) 

The learning rate and momentum coefficient 

are two important parameters that control the 

effectiveness of the training algorithm. Using 

the steepest descent algorithm with momentum 

(GDM), the network performance can be 

improved by finding optimal values for 

learning rate (α) and the momentum coefficient 

(μ). The effect of learning rate (α) and 

momentum (μ) on the behaviour of neural 

network is studied by using the combination of 

(α) [from 0.05 to 0.9 with a step of 0.05] and 

(μ) [from 0.0 to 0.9 with a step of 0.1]. Each 

combination is trained with the selected 

network (two hidden layers 6,9) and with same 

set of data, and initial weight to (5100) epochs. 

Training results are shown in Fig. (14). From 

this figure it can be seen that for α=0.05 and μ 

=0.4 the network gives the best performance 

with (MSE=0.00254) and they are chosen for 

the proposed network. In addition, the learning 

rate has a considerable effect on convergence of 

results. If it is high the algorithm may oscillate 

and paralyzed (NaN), on the other hand if it is 

small the algorithm will take a long time to 

converge. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

2.5

3

3.5

4

4.5

5
x 10

-3

Momentum Coefficient

M
S

E

learning rate=0.05

learning rate=0.15

learning rate=0.1

 
 

 

 

 

The convergence history of this network is 

shown in Fig. (15), and Table (3) shows the 

properties of this network. 

 

 

 
 

Network Epochs 
MSE 

Training 

MSE 

Testing 

(6-9-1) 5100 0.00254 0.00378 

Table (3) Properties of The Proposed 

Network 

 

 

Fig. (12) Convergence History for Both 

Training and Testing 

Fig. (13) Configuration of Neural 

Network (6-9) 

Fig. (14) Effect of Combination of Learning 

Rate and Momentum 
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Generalization of Neural Network 

The performance of a trained network can be 

measured to some extent by the errors on the 

training and testing sets, but it is often useful to 

investigate the network response in more detail. 

One option is to perform a regression analysis 

between the network response and the 

corresponding targets. The routine (postreg) is 

designed to perform this analysis. 

The format of this routine is [m,c,r] = 

postreg (a,t), where (m) and (c) correspond to 

the slope and the y-axis intercept of the best 

linear regression that relates the targets to the 

network outputs. If the fit is perfect (outputs 

exactly equal to targets), the slope would be 

(1), and the intercept with the y-axis would be 

(0). The third variable, (r), is the correlation 

coefficient between the outputs and targets. It is 

a measure of how well the variation in the 

output is explained by the targets. If this 

number is equal to (1), then there is perfect 

correlation between targets and outputs. 

Figures (16) and (17) show the regression 

analysis between the output of neural network 

and the corresponding target for training and 

testing data respectively. In the figures, outputs 

are plotted versus the targets as open circles. 

The solid line indicates the best linear fit and 

the broken line indicates the perfect fit (output 

equals targets). The values of the slope are 

(0.986) and (1.1) respectively, interceptions 

with y-axis are (0.0571) and (-0.207) 

respectively, and correlation coefficient is 

(0.993). These values indicate that the mapping 

of neural network for the both training and 

testing data is very good. 
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Backpropagation Training 
Algorithms 

In this study the standard backpropagation 

algorithm with momentum (steepest descent 

with momentum) is first used to adjust both 

weights and biases and the results of this 

Fig. (15) Convergence History for Both 

Training and Testing Data 

for (6-9) Net Based on (GDM) 

Fig. (16) Regression Analysis Based on 

(GDM) for Training Data 

Fig. (17) Regression Analysis Based on 

(GDM) for Testing Data 
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method are explained in above. Normally, the 

multilayer networks use sigmoid and 

hyperbolic tangent activation functions, which 

are characterized by the fact that their slope 

must approach zeros as the input becomes 

large. This causes a problem when using the 

steepest descent to train a neural network, since 

the gradient can have a very small magnitude, 

and therefore cause small changes in the 

weights and biases, even though the weights 

and biases are far from their optimal values. 

The purpose of the Resilient PROPagation 

(RPROP) algorithm is to eliminate these 

harmful effects. In this algorithm, only the sign 

of the derivative is used to determine the 

direction of the weight update; the magnitude 

of the derivative has no effect on the weight 

update [1]. 

The training and testing sets are treated with 

the resilient backpropagation algorithm 

similarly as in the gradient descent 

backpropagation. Compared to the gradient 

descent backpropagation, the resilient 

backpropagation algorithm produces a smaller 

(MSE) for the two phases of training and 

testing as shown in Fig. (18). From this figure 

and Fig. (15), it is found that the resilient 

gradient gives convergence faster (small 

number of epochs) than the gradient descent 

backpropagation. 
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The resilient backpropagation algorithm 

requires exactly (425) epochs for MSE (for 

training set) to drop to a value of (0.0005), 

compared to (5100) epochs required to reach a 

value of (0.00254) MSE for gradient descent 

backpropagation method. The comparison 

between the results of both algorithms related 

to the performance of neural network is shown 

in Fig. (19), and is summarized in Table (4). 

 

 

 

 
 

Algorithm Epochs MSE 

training 

MSE 

testing 

GDM 5100 0.00254 0.00378 

RPROP 425 0.0005 0.0006 
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The performance of resilient 

backpropagation algorithm is tested by the 

regression analysis between the output of this 

network and the corresponding targets for both 

training and testing data as shown in Figs. (20) 

and (21). In the figures m= 0.997, 1.03, c= 

0.0108, -0.139, and r= 0.999, 0.998 for training 

and testing data respectively. These values 

indicate an excellent agreement between the 

predicted values and the target values. 

Table (4) Performance of Two Different 

Algorithms for Network Model 

 

 

 

Fig. (18) Convergence History for Both 

Training and Testing Data for (6-9) Net 

Using (RPROP) 

Fig. (19) Comparison Between (GDM) and 

(RPROP) Algorithms 
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Based on the above analysis, the optimal 

network architecture (6-9) with activation 

functions (tansig, purelin, purelin) with 

(RPROP) is used for this study. 

 

Parametric Analyses Based on 
Artificial Neural Network 

The influence of main parameters on the 

ultimate torsional moment of reinforced 

concrete spandrel beams is studied using the 

proposed network and experimental results in 

the database. 

Influence of Concrete Compressive 
Strength 

Figure (22) shows the effect of concrete 

compressive strength on the ultimate torsional 

moment of reinforced concrete spandrel beams. 

It can be seen from this figure that as the 

concrete compressive strength increases, the 

ultimate torsional moment increases. For an 

increase in compressive strength from (30 to 

48) MPa, the increase in the ultimate torsional 

moment is (40.87) %. 

As compared with the ACI limit design 

which is proposed by Hsu and Burton [8], it can 

be seen from Fig. (22) that the increase of 

ultimate torsional moment, due to the increase 

of concrete compressive strength, is always less 

than that given by the neural network. For an 

increase in compressive strength from (30 to 

48) MPa, the increase in the ultimate torsional 

moment according to ACI limit design is 

(20.95)%. 
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Size Effect (Influence of Beam Width 
& Depth) 

In Figs. (23) and (24), the ultimate torsional 

moment of reinforced concrete spandrel beams 

is plotted versus the width of spandrel beam 

(bs). It can be seen from the figures that the 

increase in width of spandrel beam leads the 

Fig. (20) Regression Analysis Based on 

(RPROP) for Training Data 

Fig. (21) Regression Analysis Based on 

(RPROP) for Testing Data 

Fig. (22) Variation of Ultimate Torsional 

Moment with Variation of Cylinder 

Concrete Compressive Strength 

bs= 150  mm 

hs= 250  mm 

ls= 1500  mm 

Ast=157.1  mm2  

fy1= 464.88 MPa 

Asb= 226.2  mm2 

fy2= 472.48 MPa 

ρ= 0.336 % 

fy3= 462.88  MPa 
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ultimate torsional moment to increase. From 

Fig. (23) for an increase in width from (130 to 

165) mm, the increase in the ultimate torsional 

moment is (41.25) %. 

The ACI limit design gives the same trend of 

relationship between the ultimate torsional 

moment and spandrel beam width, as shown in 

Fig. (23). However for an increase in width 

from (130 to 165) mm, the increase in the 

ultimate torsional moment according to ACI 

limit design is (37.9) %. 
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In Figs. (25) and (26), the ultimate torsional 

moment of reinforced concrete spandrel beams 

is plotted versus the total depth of spandrel 

beam (hs). It can be seen from the figures that 

the increase in depth of spandrel beam leads the 

ultimate torsional moment to increase. From 

Fig. (25) for an increase in depth from (240 to 

275) mm, the increase in the ultimate torsional 

moment is (42.24)%.  

The results of the ACI limit are also shown 

in Fig. (25). The ultimate torsional moment 

increases with the increase of spandrel beam 

depth. However, for an increase in depth from 

(240 to 275) mm, the increase in the ultimate 

torsional moment is (12.74) %. 
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Fig. (25) Variation of Ultimate Torsional 

Moment with Variation of Spandrel Beam 

Total Depth 

Fig. (26) Variation of Ultimate Torsional 

Moment with Variation of Spandrel Beam 

Total Depth for Different Value of (fc´) 

Fig. (23) Variation of Ultimate Torsional 

Moment with Variation of Spandrel Beam 

Width 

Fig. (24) Variation of Ultimate Torsional 

Moment with Variation of Spandrel Beam 

Width for Different Value of (fc´) 
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Influence of Ratio of Web 
Reinforcement 

Figure (27) shows the effect of the ratio of 

web reinforcement on the ultimate torsional 

moment of reinforced concrete spandrel beams. 

It can be seen from this figure that as the ratio 

of web reinforcement increases, the ultimate 

torsional moment increases. For an increase in 

ratio of web reinforcement from (0.244 to 

0.915) %, the increase in the ultimate torsional 

moment is (17.36) %. 

The artificial neural network predicts a non-

linear response of spandrel beams with the 

amount of web reinforcement. However, the 

ACI limit design gives a linear response as it 

can be seen in Fig. (27). 
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Conclusions 

This study investigates the ability of using 

the artificial neural networks to evaluate the 

ultimate strength of reinforced concrete 

spandrel beam. The neural network is 

particularly usefulness for evaluating systems 

with multitude of variables. The 

backpropagation neural network, which is a 

multi-layered feedforward neural network, has 

been proved to accurately predict the ultimate 

torsional moment of reinforced concrete 

spandrel beams. The most important 

conclusions that can be drawn from the present 

study are the followings: 

1. When using steepest descent algorithm with 

momentum algorithm the learning rate and 

momentum coefficient are effective in the 

training process performance and 

generalization capability. The convergence 

of the training becomes faster when the 

learning rate and momentum coefficient are 

(0.05) and (0.4) respectively. 

2. Using two hidden layers in the neural 

networks, rather than single hidden layer, 

significantly improves the performance of 

network. The configuration (6-9) (6 nodes in 

the first hidden layer and 9 in the second 

hidden layer) is proved to be very efficient 

for predicting the ultimate torsional strength 

of spandrel beams. The final number of 

nodes in each hidden layer is determined by 

the consideration of the training time, the 

mapping of the neural network for the 

training pattern, and generalization of the 

neural network monitored by the test 

patterns. 

3. The Widrow-Hoff method for initializing 

the weight factors and biases is found to give 

a minimum mean square error. 

4. The neural network trained with the 

resilient backpropagation RPROP algorithm 

exhibits better behaviour than that trained 

with the steepest descent algorithm with 

momentum GDM algorithm. This was found 

from the reduced training time (No. of 

epoch) and better mapping of the neural 

network for the training patterns and 

generalization for the testing patterns. 
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Notations 

a= neural network output. 

Asb= area of tension steel reinforcement. 

Ast= area of compression steel reinforcement. 

b= width of beam section. 

bs= width of spandrel beam. 

c= y-axis intercept of the best linear regression 

that relates the targets to the network outputs. 

ds= effective depth of spandrel beam. 

fc´= compressive strength of concrete cylinder. 

fy1=yielding stress of compression steel 

reinforcement. 

fy2=yielding stress of tension steel reinforcement. 

fy3=yielding stress of transverse reinforcement. 

GDM= steepest descent with momentum. 

h= total depth of beam section. 

hs= total depth of spandrel beam. 

I.P= inflection point. 

ls= length of spandrel beam. 

m= slop of the best linear regression that relates 

the targets to the network outputs. 

MSE= mean square error. 

Pu= ultimate applied load. 

r= correlation coefficient. 

RPROP= resilient backpropagation. 

t= target. 

Tu= ultimate torsional moment. 

α= learning rate. 

μ= momentum coefficient. 

ρ= the ratio of transverse stirrup. 


