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Abstract
The main object of this study is to investigate the influence of the column
geometric and operating variables ( i.e., column diameter, superficial gas veocity
and liquid viscosity) on the hydrodynamic parameter (i.e. , gas holdup, bubble
dynamics and liquid phase axial dispersion coefficient ). The experimental data
obtained showed that the gas holdup increases linearly with superficial gas
velocity at both homogeneous and heterogeneous regimes but the rate of
increasing is slower at the heterogeneous one. The bubble rise velocity was found
to decrease with increasing superficial gas veocity until a transition point was
reached and after that the reationship was linearly increasing. It was observed
that with an increase in liquid phase viscosity and increase in column diameters, a
decrease in gas holdup and an increase in bubble size were obtained. It was
observed that increasing axial position led to an increase in bubble diameter and a
decrease in bubble rise velocity.  Axia dispersion coefficient which is measured
by tracer response technique was found to increase with gas superficial veocity,
increases with column diameter, increases with axial position and decreases with
liquid viscosity. This work also presents a theoretical analysis that is used to
calculate the axial dispersion coefficient. The measured axial dispersion
coefficient was generally consistent with the predictions of the well established
corrdations from the literature. The validity of the modd was settled by
comparing its predication with the objective function of the well-Known empirical
corrdation formulated by ( Hikita and Kikukawa , 1974) .The comparison shows
that the present modd is statistically significant at a 95% confidence level by
using goodness — of — fit test .

Also a statstical analysis was performed to get a general corrdation for the gas
holdup (eg) as afunction of the parameters studied:

eg - 015325 FI‘ 0.29617 Ga 0.09223 BO -0.0424

Where the corrdation coafficient ( R ) was equal to ( 0.957) and the absolute
eror (3.5%).
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Introduction

Bubble columns are intensively
utilized as mitiphase contactors and
reactors in chemical, petrochemical
biochemical and metallurgical
industries (Kantarci et al, 2005). In all
these processes gas holdup and
bubble size are important design
parameters, since they define the gas-
liquid interfacial area available for
mass transfer (Mouza & al, 2005).
Thus, it is important to study the
effect of geometric variables, column
internals design, operating conditions,
superficial gas veocity on gas holdup
and bubble size distribution and hence
ther effect on mass transfer
coefficient. The main advantages in
using bubble columns compared to
other multi phase contactors (stirred
vessdls, packed towers, trickle bed
reactors) as summarized by (Shah et
a., 1982; Deckwer and Schumpe,
1993): Less maintenance is necessary
due to absence of moving parts.
Higher values of effective in
interfacial  areas, heat transfer
coefficients and overall mass transfer
coefficients can be obtained, Solids
can be handled without any erosion or
plugging problems. Less floor space
is occupied and bubble column
reactors are less costly. Slow
reactions can be carried out due to
high liquid resdence  time
Reasonable interphase mass transfer
rate Considerable backmixing in the
liquid phase (continuous) and the gas
phase (dispersed), high pressure drop
and bubble coalescence can be
isadvantageous, Most studies report
that the basic factors effecting gas
holdup are superficial gas velocity,

column dimensions, operating
temperature and pressure, gas
distributor design and liquid phase
properties (Kanterci et al, 2000). For
both bubble columns and sSlurry
bubble columns, gas holdup has been
found to increase with increasing
superficial gas velocity (Prakash and
Margarities, 2001; Li and Parkash,
2000; Pino e al, 1992), although the
systems investigated in these studies
are quite diffeeent from each
other.The effect of column diameter
and height on hydrodynamics is also
widdy investigated in literature.
(Ueyama and Miyauchi, 1979),
conclude that scale-up has very little
effect on the gas holdup. Ther
analysis yields that the gas holdup in
the churn-turbulent flow dlightly
decreases with an increase in the
column diameter. (Luo et al, 1999),
report that the influence of the column
height is insignificant if the height is
above 1-3 m and the ratio of the
column height to the diameter (aspect
ratio) is larger than 5. (Krishna et al,
2001) found that the total gas holdup
decreases with increasing column
diameter. The reason for this scale
dependency is because the strength of
the liquid circulations increases with
increasing scale. Such circulations
accderate the bubbles traveing
upwards in the central core.The liquid
phase property has an impact on
bubble formation and/or coalescing
tendencies and hence is an important
factor affecting gas holdup (Kantarci
et al, 2005). The effect of surface
tension on gas hold up can be
qualitatively described in that a lower
surface tension gives a lower bubble
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rise velocity and therefore a higher
holdup  (Hikita e a, 1980).
Gas hold up is very dependent on the
viscosity of the medium, An increase
in liquid viscosity results in large
bubbles

and thus higher bubble rising
velocities and lower gas holdup
(Akita and Yoshida, 1973, Ruzicka et
al, 2003).

The influence of the sparger type is
rather complex, mainly depending on
fluid characteristics. The diameter of
the bubbles in the column and thus
the holdup is determined by the
coalescence behavior of the liquid and
the initial bubble size at sparger
(Schugerl & al,1977). (Schumpe and
Grund, 1986), worked with perforated
plate and ring type gas sparger. They
conclude that with ring type
distributor, the total holdup was
smaller.

In many industrial multiphase
(gas-salid, liquid-liquid and gas
liquid-solid) contactors, a lager
degree of circulation of both discrete
and continuous phases occurs. This
circulation causes a good degree of
mixing and enhances heat and mass
transfer between fluid and walls
(Joshi et al. 1980, Rellly et al. 1994,
and Gupta et al. 2001).The circulation
of the liquid in the column is one of
the major observations, which should
be taken into account when
calculating mass or heat transfer
coefficients. This phenomenon is
rdated to bubble size, bubble
dynamic and holdup. Therefore, these
factors are very important in
determining the efficiency of contact
in bubble columns (Whalley and
Davidson 1974, Viswanathan and
Rao, 1983).The main driving force,
which induces the internal circulating
flow of liquid, is the difference in the
apparent  density of gasliquid

mixtures between the central and
peripheral regions of the column.

The effect of gas flow rates on bubble
size and bubble rise veocity was
investigated by (Akita and Yaoshida,
1974; Prakash, 2001) and a decrease
in bubble size with increasing gas
flow rate was reported. (Buwa and
Randa, 2002) have studied the effect
of gas veocity and coalescence
suppressing additives on bubble size
distribution in a bubble column using
photographic method. The others
observed that when they added
butanol as coalescence inhibitor into
water, fine bubbles are generated even
at higher gas veocity which indicates
effective suppression of coalescence.
The magnitude of the wall effects
depends on the ratio of the bubble
diameter to the column diameter,
db/DC. When the column diameter is
large enough, the bubbles are free
from wall effects. (Akita and
Yoshida, 1974), investigated the
bubble size distribution and gas
holdup in various liquids and they
found that the average bubble size for
a gven supeficial gas vdocity
decreases with increasing column
diameter. (Li and Prakash, 2001),
reported that the diameter of the
column has an effect on the rise
velocity of large bubbles only. They
discovered that as the column
diameter increases, the rise velocity of
large bubbles also increases. (Koide et
al., 1979), measured average bubble
sizes in two columns with different
diameters and a higher average
bubble size were obtained in the
larger diameter column. (Krishna and
van Baten, 2001), studied
experimentally the hydrodynamics of
bubble columns in 0.051 and 0.1 m
diameter bubble columns with air-
water system and found that the
bubble rises faster in the wider
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column. The reason for this is the
restraining effect of thewalls

When bubble rise is measured, the
effect of the operating conditions and
physical properties of the gas-liquid
systems become important and hence
the evaluation of Ub for ether small
or large bubbles will become a
function of all variables (Behkish,
2004). The average bubble size was
reported to decrease with decreasing
surface tension of liquid and increase
with increasing liquid viscosity
(Akita and Yoshida, 1974; Prakash,
1997). These results were also
reported by Kulkarni and Joshi, 2005.
Axial mixing, axial dispersion, and
longitudinal dispersion are all terms
used to describe a phenomenon that
causes a distribution of residence
time for a reaction mixture. Mixing in
the axial

direction is produced by rising gas
bubbles that carry dements of
circulating fluid in bubble wakes,
because bubbles rise faster than the
liquid, a certain amount of liquid is
carried forward faster than the bulk
flow of the liquid. In a bubble column
the dispersion has the effect of
reducing conversion in reactors, and
also influence of reaction sdectivity
(Lievenspid, 1992). The
experimental data of (Zhou et 4,
1995) have shown that in a fine
diffuser air-water bubble column and
as Ug increases Dax,L increases. This
result is also suggested by (Kastanek
et al 1993, Deckwer 1992). Itis
usually assumed that the dispersion
coefficient does not depend on the
column height. However, studies of
(Schugerl, 1967 and Deckwer et
al,1973) show that dispersion
coefficient may differ aong the
column height, decreasing from top to
bottom All correlations anticipate
a significant increase in Dax;L with

increasing column diameter Dc, often
corrdated as a power-law dependence
Dnc. The value of the power law
index n varies between 1 and 1.5
(Krishna, 2000). The effect of gas and
liquid properties on gas phase
backmixing has been investigated in
bubble columns (Kantak and Kelkar,
1995). Data were obtained in two 3 m
tall bubble columns (of diameters
0.15 and 0.25) and by varying
superficial gas veocity. Results
indicate that an increase in liquid
viscosity and decrease in the liquid
surface tension leads to a decrease in
the liquid phase backmixing. The
degree of axial dispersion is aso
affected by vessd internals and
surface-active agents that deay the
coalescence.

The aim of this paper is to investigate
the influence of the column geometric
and operating variables (i.e,
superficial gas veocity, column
diameter and liquid phase properties)
on the hydrodynamics parameters
(i.e, gas holdup, bubble dynamics
and liquid phase  dispersion
coefficient).

It is also to develop a modd that
simulates the behavior of the liquid
dispersion coefficient ( Dax,L ) with
different geometric and operating
variables of the bubble column.

Experimental Apparatus and
Procedure

1 Experimental Procedure
A schematic diagram of the
experimental apparatus used in this
work is shown in the figure (1).The
heart of the apparatus is three
columns of different diameters (7.5,
15, and 30) cm. Detailed description
of the experimental setup can be
found in (Farah, 2008).
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2. Experimental procedures

In all the experiments the height of
liquid in the column was kept
constant at 100 cm. The physica
properties and operating conditions
are listed in tables (1) and (2).
Detailed description of the procedure
followed during the hydrodynamics
experiments can be found in (Farah,
2008).A wide range of superficial
feed gas vedocity as wdl as
concentration of the coalescing agent
was investigated to study their effects
on the hydrodynamics of the bubble
column. Tracer experiments with
ddta function pulse input to the upper
part of the column are used to
estimate the liquid axial dispersion
coefficient.
Theory
1. Average gas holdup

The average gas holdup which
represents the fractional of the total
gas-liquid system that is occupied by
the gas and was measured using

equation (1):

2. Bubble Dynamics

Bubble populations, their holdup
contributions and rise velocities have
significant importance on altering the
hydrodynamics, as well as heat and
mass transfer coefficient in a bubble
column. Bubble diameters are
estimated high

speed digital cameratype
(OLYMPUS, C-400/Z0O0M) using
While bubblerise velocity was
calculated using the well-known
Mendelson equation with scale factor
for bubbles smaller than 17mm:

oo [, 9d, .2
V-2t o
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3. Center lineliquid velocity
(VL(0))
The upwardely directed axial
component of the liquid velocity at
the center of the column VL(0) is
considered as amesure of the strength
of the liquid circulation velocity for
bubble columns ((Krishna et al.,
2000).
Center lineliquid velocity is
estimated by using the well-known
Riquart, (1981) Eg. (4).

U8
®g’¢
éuLg T

2

V, (0=0.21/D.g
..(4)

Krishna e a., 2000) proved
experimentally that Riquart
corrdation works equally wdl for
water and high viscous liquids.

4. Liquid axial dispersion
coefficient, Dax,L

For the present work a mathematical
model is formulated to predict the
radial and axial dispersion
coefficients through the bubble
column following the subsequent

steps:

Set the principal assumption
(Unsteady state operation;The flow
maode is co-current upflow ;Physical
properties are constant throughout the
column;The radial convective motion
is neglected in comparing with the
axial one).

Set a differential mass balance

A mass balance for the tracer in liquid
phase is made over a cylindrical shell
of volume (2nrArAh) (Farah, 2008)
the following partial differential
equation obtained:
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16y fC.p G\ 1,

ﬂt rL ﬂr rL ﬂrz ax,L ﬂh
°C C
T 1, & ....(5)
ax,L 1‘|hZ r rL ﬂr
The dimensionless form of

equation (5) is:
ﬂCT :ﬂZCT - V8><,LL ﬂCT +1 ﬂCT +ﬂ2CT
Ta 2 D, Ty X T«

..... (6)

For a batch of liquid in a bubble
column, there is no superimposed liquid

flow and, hence, Vax,L= 0, the last
equation becomes:
1C, = f2C, +1 1C. + f2C,

g fTyz X x  fix2
..(7)
By using the B.c and Bessd function
the solutioniis:
¥
Cr= 4 Me’ (U%Q)(1+
n=133(nb)
¥
2 3 cos(mpy) e (m*p*®))
m=1 .. (8)

Note that when the CT in Eq. (4 - 2)
is radiadly invariant (i.e. Dr,L=c0),
vn,f and x become zero and JO (vnp)
= JO(vnx)=1. In this case Eq. (4 - 2)
reduces to:

¥
C;=1+2 3 cos(m py) e- (m?p 2q)

m=1
. (9)
Results and Discussion
1. GasHoldup
1.1 Effect of Superficial Gas

Velocity and Column Diameter

It is observed in figure (2) a, b & ¢
that, when the superficial gas veocity
increased the gas holdup in the bubble
column increases too, for water and
al Glycerin concentrations.
Therefore, the figure shows that the

gas holdup is mainly dependent on the
superficial gas veocity and liquid
concentrations. In the churn-turbulent
regime, as the superficial gas veocity
increases the overall holdup increases
due to the large bubble holdup
increase.  The contribution of small
bubbles to overall holdup is constant
and equal to the transition
holdup. In bubbly flow, small
bubble holdup is not constant
but changes significantly as the
superficial velocity is changed. While
the gas holdup is found to decrease
dightly with increasing column
diameter, see figure (2) a, b, ¢ & d.
This decrease in gas holdup evident in
both the  homogeneous  and
heterogeneous flow regimes is due to
increased liquid recirculation with
increasing column diameter, due to
these strong circulations, the bubbles
will be accderated. This acceleration
effect causes a reduction in gas
holdup with increasing column
diameter. This result is in agreement
with the observation of many
investigators (Mouza et. al., 2005,
Krishna and van Baten, 2002Al-
Banna, 2005, Krishna et al, 2001).

1.2 Effect of Liquid Viscosity

It can be noted in figures (3) a,b & ¢
that gas hold up decreases with
increasing viscosity for the range
above (3mPa.s) while gas hold up
increases for the range less than
(3mPa.s). This results confirms the
abnormal  behavior of Glycerin
solution at viscosity less than
(3mPa.s), a phenomenon which has
been reported by many investigators
of the fidd ( Ruzicka, 2003; Krishna
and Van Baten, 2001 ).

Also, figure (3) shows a strong
influence of Glycerin concentration
on gas holdup values. Thus, as the
concentration of Glycerin solution is
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increased, the mean gas holdup value
decreases in the bubble column, or in
other words, it was found that the gas
holdup decreases with

increasing liquid viscosity. The
viscosity range covered by the
present work was

(1 to 22 mPas). Therefore, the
decrease in gas holdup values may
be attributed to:

1-Increasing of the system viscosity.
2-Formation of large bubbles with
fast rising velocity.

On the other hand, there is a tendency
towards bubble coalescing behavior
as the liquid viscosity is increased;
therefore it is expected to abtain
lower values of the gas holdup as the
Glycerin liquid concentration
increases (viscosity increasing). Such
a behavior of high viscosity liquidsin
bubble column is in agreement with
most previous investigations
(Godbole, 1982, Walter and Blanch,
1983, and Mohammed, 1997,
Ruzicka et a;2003, Krishna and van
Baten, 2001).

2. Bubble Diameter

2.1 Effect of Superficia Gas
Velocity, Column Diameter, and
Liquid Viscosity

Figures (4) a,b & c, show the effect of
superficial gas veocity, Column
Diameter, and Liquid Viscosity on
bubble size for water and all Glycerin
concentration. From these figures, one
can notice that the bubble size
increases with increasing superficial
gas veocity, Column Diameter, and
Liquid Viscosity. It indicates that for
all Glycerin concentrations, and as the
air flow rate starts to increase, the
density of the small bubbles generated
is increased gradually, with slow rate
of collisions and coalescence resulting
in small increase in bubble diameter.
As transition point reached, the

coalescence rate increased with higher
rate of large bubble production, this
production rate continues over the
domain of the heterogeneous regime.
These results are in agreement with
those of (Mouza e a, 2005;
Marrucci, 1967; Onno Kramer, 2000,;
Koideet al, 1979).

2.1 Effect of Axial Position

Figures (5) ab & c, show the
effect of axial position of liquid in the
column on bubble diameter (dy). It
indicates that, the bubble diameter
decreases with increasing height of
liquid. This can be attributed to that,
when the bubble rises up through the
liquid, due to the collisons with
neighboring bubbles, phenomenon of
brakeup occur which results bubbles
with small diameter, this phenomenon
increases as the superficial velocity of
the gas increased. These results arein
agreement  with  (Lockett and
Kirkportick, 1975; Kolbel et al., 1972
and Krishna 2000).

3. Bubble Rise Velocity
3.1 Effect of Superficial Gas

velocity, Column Diameter and
Liquid Viscosity

Figures (6) a,b & c, show the effect of
superficial gas velocity on bubble rise
veocity at diffeeent  Glycerin
concentrations and axial positions for
each column diameter. It can be seen
that the small bubble rise veocity
decreases gradually as the gas
veocity is increased, then passes a
minimum and finally converges on a
more constant value leading to
continuously increases in large bubble
rise velocity. It also indicate that as
the liquid concentrations (i.e.; liquid
viscosity) increases the rise veocity
of small bubbles at the bubbly flow
region decreases due to the drag effect
of viscous liquid while at the
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heterogeneous region the effect of the
viscosity is to enhance coalescence
and the formation of large bubbles
resulting in higher bubble rise
veocity.

This is in agreement with the findings
of (Mouza et al; 2005, Krishna 2000).

3.2 Effect of Axial Position

Figure (7) ab & c, show the effect of
axial position on bubble rise veocity
for each column diameter, from figure
one can natice that the higher bubble
rise velocity is obtained near the gas
gparger and decreased gradually as
theliquid

levd increased. This is can be
attributed that Near the sparger, large
bubbles are formed due the effect of
higher liquid viscosity, so higher
bubble rise veocity is monitored near
the sparger, and as the bubble rises up
it undergoes a breakup phenomena,
smaller  bubbles formed and
consequently, the bubble rise velocity
decreases. This is in agreement with
finding of (Shumpe and Grund, 1986;
Camarasa, e a., 1999; Li and
Parakash, 2000; Krishna, 2000;
Ruzicka, 2003).

3.3 Effect of Bubble Diameter
Figures (8) ab & c, show the effect
of bubble diameter on bubble rise
veocity at diffeeent  Glycerin
concentrations and axial position for
each column diameter. It can be seen
that as the bubble diameter starts to
increase because of gradual increasing
of gas flow rate, the rise velocity of
the bubbles decreases due to the
increasing drag forces between small
bubbles formed indicating a region of
bubbly regime. A minimum value of
bubble rise velocity is reached after
which it begins to increase due to the
formation of large bubbles indicating
the onset of the heterogeneous

regime. This minimum value is
gradually decreased as the column
diameter increases and also as the
liquid concentration increases.This is
in agreement with (Miyahara e al,
1983; Schumpe and Grund, 1986).
4. Center Line Vdacity (VL (0))
4.1 Effect of Superficial Gas
velocity, Column Diameter and
Liquid Viscosity

Figures (9) a, b & c, show the effect
of superficial gas vdocity, Column
Diameter, and Liquid Viscosity on
center line veocity, figure (9)
indicates that, the center line liquid
veocity increases with increasing
superficial gas veocity for al other
geometric and operating variables.
This can be attributed to the
increasing of generating rate of
bubbles which are affected by two
drag forces, first the interfacial drag
between the bubbles and second the
column wall effect which is minimum
at the center line.
Consequently there is a proportional
relationship between superficial gas
veocity and center line liquid
velocity while it is decreases with
increasing liquid viscosity due to
gradual increasing of viscous forces
which retard the bubble motion
through the column and due to
increasing in bubble diameter. This is
in agreement with the findings of
(Riquart,1981; Joshi,1980; Wilkinson
et al,1992; Krishna, 2000 ).

5. Axial Liquid Dispersion in
Bubble Column (Dax,L)
5.1 Effect of Superficial Gas
Veocity, Column Diameter and
Liquid Viscosity

Figure (10) a,b & c, show effect of
superficial gas veocity, Column
Diameter, and Liquid Viscosity on
axial dispersion coefficient (Dax,L),
From these figures one can notice,
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that the increment in the axial
dispersion coefficient (Dax,L) is
dightly with increasing superficial
gas velocity in the homogenous flow
regime for different  Glycerin
concentrations and then the rate of
increasing becomes faster, this is a
mark for the beginning of the churn-
turbulent flow regime where the
coalescence of bubbles takes place to
produce the first fast rising 'large
bubble. The explanation for this
increase in  axial liquid phase
dispersion coefficient in the churn-
turbulent flow regime is that, in the
churn-turbulent flow regime the gas —
liquid flow has a higher gas bubble
concentration than that at lower
superficial gas velocity. Since the
liquid envelopes the gas bubbles, it
will  be entrained and dragged
upwards and also part of gas — liquid
dispersion will flow downwards and
consequently cause an increase in the
liquid phase dispersion coefficient (
Deckwer, 1992), in addition, the
larger bubbles in the churn-turbulent
flow regime undergo more fregquent
breakup and coalescence and this too
increased the axial  dispersion
coefficient relative to the situation in
the homogenous flow regime. This
result is in agreement with that of
(Camacho et al., 2004). Also, It can
be seen that, Dax,L increase in the 30
cm column diameter is more clearly
than that in the (15 and 7.5 ) cm
column diameters. This trend of
(Dax,L) is due to the increase in
liquid recirculation with increasing
column diameter resulting in  an
increase in the back mixing. This
result is in agreement with that of (
Krishna e a., 2000 ).Another
explanation for this increase in
(Dax,L) is that the decrease in column
diameter causes an increase in the gas
hold-up which reduces the liquid

circulation  velocity leading to
decrease in (Dax,L). This result is in
agreement with the findings of
(Pandit and Joshi, 1982). While one
can notice, that as the liquid viscosity
increases the axial liquid dispersion
coefficient (Dax,L) decreases because
of gradual increase in bubble diameter
due to the formation of large bubbles
by coalescence tendency leading to
decrease in (Dax,L). This is in
agreement with the results of (Hikita
and Kikukawa, 1974; Riquarts, 1981,
Bernemann, 1989; Kantak and kelkar,
1995).
5.2 Effect of Axial Position

Figure (11) a, b & c, show the effect
of the axial position (Z) from the
gparger on the axial liquid dispersion
coefficient (Dax,L). It can be seen
that, the axial liquid dispersion
coefficient (Dax,L) increases with
increase in the axial paosition (Z). This
increase in (Dax,L) is due to a
decrease in bubble diameter which
leads to increase in the liquid
circulation velocity, then increase in
the axial liquid dispersion coefficient
(Dax,L). These results are in
agreement with those of ( Pandit and
Joshi, 1982 and Krishna et al.,2000 ).
6. Empirical Correlations (Gas
Holdup Correlation)

An attempt was made to
formulate a corrdation that would
permit the prediction of gas holdup, a
variable that greatly affects the bubble
column operation. From the present
work and the careful inspection of the
experimental  results (from various
investigators) it can be concluded that
the gas holdup value is the result of
the interaction of several parameters
asfollows:

The superficial gas velocity.
The physical properties of
liquid phase.

The column cross section.
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The distributor cross section.

In order to formulate a
generalized corrdation that would
incorporate the relative effect of all
the above parameters, dimensional
analysis using Buckingham's x-
theorem was performed. The resulting
expression then has the form:

e, =d.Fr* Ga® Bo® (10)

The constants (d;) and the
powers (d;, d2 and ds) were estimated
by using the simplex method with the
ad of a computer program. The
values of the constants and the powers
of the above equation were illustrated
in table (3) above Then by
substituting the values in the above
table in eguation (5-5), the
recommended correation will be:

ey =0.15325 Fr %2%7 Ga® %% po~ 0%

..... (12)
This correation gives:
Corrdation coefficient (R) = 0.95783
Error = 0.03539
7. Validity of the Present Developed
M odel

To settle the validity of a modd, it
must be compared with another model
which was proven to be reliable. The
present mode is compared with the
corrdation of Hikita and Kikukawa,
1974, equation (12) using different
experimental  operating conditions.
Comparison  shows that the
mathematical modd is statistically
significant at a 95 % confidence leve.

_ = B0%C 1y
Da (015+069Ug° )D} éﬁé 12)
Figures (12) a & b show the
experimental results of liquid axial
dispersion coefficient (Dax,L)
predicted by above eguation and
presented modd for both Air-water
and Air-65% glycerin. These Figures

are used as bases of calculation for
the modd validity.
Conclusions
In this work, the gas hold-up,
the bubble characteristics and axial
liquid dispersion are investigated for
coalescing systems (air-water and air-
agueous glycerin  solutions). This
study has led to the following
conclusions:
The gas holdup increases with
increasing  superficial  gas
veocity.
The gas holdup and its critical
value (etrans) decrease with
increasing liquid viscosity for
pL=3-22 mPas. On the other
hand the measurements also
indicate that there is a narrow
viscosity range pL < 3 mPa.s
where  the gas holdup
increases  with  increasing
liquid viscosity.
Increasing column diameter,
Dc, leads to decrease in the
gas holdup and increase in the

bubble size.

The bubble size increases
with increasing liquid
viscosity and dightly
increases  with  increasing

superficial gas veocity.
The bubble rise veocity was
found to decrease as the

superficial gas  vdacity
increases then passes a
minimum and finally
converges at a more

constant value. The bubble
rises faster in the wider

column.
It has been observed that, the
axial liquid dispersion

coefficient (Dax,L) increases
with an increase in both
superficial gas velocity and
column diameter.
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It has been observed that, the
axial liquid dispersion
coefficient (Dax,L) increases
when the bubbles rise up
through the liquid (i.e,
increase height of axial probe

location).
The axial dispersion
coefficient values are

estimated using the complete
dispersion modd is generally

consistent with the
predictions of the existing
correations.

All  the expeiments were

performed with no liquid throughput.
The physical properties for the liquids
used arelisted in table (1).

Nomenclature

CL Tracer concentration
inside the column (kg/m3)

Dax,L Axial liquid phase dispersion
coefficient (m2/s)

Dr,L Radial liquid phase
dispersion coefficient
(m2/s)

Dc Column diameter (m)

db Bubble diameter (m)
G  Accderation dueto gravity
(M/s2)

H
d Fina liquid height with gas (m)

H. Initial liquid height without gas
(m)

R Radial positioninside the
column (m)

Ug Superficial gas vdocity (m/s)

Vax,L Theaxia vdocity of the

liquid (nVs)

Vr,L Theradia veocity in theliquid
(m's)

Vb°  Single bubble rise veocity
(m/s)

VL(0) Center lineliquid circulation

velocity (m/s)

4 Axial position (m)
Dimensionless Groups

Bo Bond number, gDCZr [ /S [
u,/(gD, )"

3 2
Ga Galilei number, gD, /ul

Fr  Froude number,

Greek Symbols

eg  Gas holdup (dimensionless)
etrans Gas holdup at transition regime
(dimensionless)

ul Liquid viscosity (mPa.s)
pg Gas density (kg/m3)
ol Liquid surface tension (mN/m)

U]  Kinematics viscosity (m2/s)
] Dimensionless time
(Da t/L?)
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Table (1) Physical Properties of the Liquids at 25 °C (Perry, 1997 )

Liquid Concentration | Density | Viscosity i:gi%%e
Phase (wt %) (kg/m?) | (mPa.s) (MN/m)
\?\};ié'red 0 998 1 72
Glycerin | 20 1050 2 68.7
Glycerin | 50 1126 8.2 68
Glycerin | 65 11625 |22 65.8

Table (2) Column dimensions and selected operating conditions

Ug (Air), cm/s

Pressure = atm

Liquid mode

Temperature, 25
°C
Initial  Liquid | 100
Height, H, cm
Volume of | 960 (for 30 cm diameter
column), 240 (for 15 cm
diameter column) and 60 (for
run, ml 7.5 cm diameter column) of
(6 wt %) saturated NaCl
solution was prepared.

tracer for each
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Table (3) Estimated values of the constant and the power s of equation (5-5)

do | 0.15325
d, | 029617
dy, |0.09223
dy | -0.0424

T
A 7.5 cm diameter colsmn

B |5 cm dismeter cofumn

€ 30 oo dimmseter cofumn
+5 | Graduated sular

Figure (1) Schematic diagram of experimental setup
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Fig (3) Effect of liquid viscosity on

gas holdup
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