On certain properties of $\alpha^{* *}$-continuous functions

Hadi J. Mustafa
Al-Kuffa University
College of Science
Dept. of Mathematics

Heyam Kh. Al- Awadi
Al-Kuffa University
College of Science
Dept. of Mathematics

Abstract

In this work, we introduce and study a new type of continuous functions, which we call $\alpha^{* *}$ - continuous function, these are the functions in which the inverse image of α - open set is also α - open. Several properties of these functions are proved.

 تكون (α (open). العديد من خواص هذا النوع من الاو ال قد تم برهانها .

Introduction:

In 1965, O.Najstad [${ }^{r}$] introduce the concept of α - open set as follows: Let (X, τ) be a topological space, let $\mathrm{A} \subseteq \mathrm{X}$. We say that A is α - open in X if $\mathrm{A} \subseteq$ Int cl intA. Where IntA means Interior of the set A , and cl A means the closure of A .
It is clear that every open set is α - open, but the converse is not necessarily true. In this work, we introduce and study a new type of continuous functions, which we call $\alpha^{* * *}$ continuous functions these are the functions in which the inverse image of α - open set is also α - open we will use the symbol (\square) to indicate the end of the proof.

1-Basic definitions:

In this section we recall and introduce the basic definition needed in this work .

1-1 definition:

Let (X, τ) and (Y,F), be two topological spaces, $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. We say that f is continuous if the inverse image of every open set in Y is an open set in X . Equivalently, $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if for every $\mathrm{x} \in \mathrm{X}$ and for every V open set in Y containing $f(\mathrm{x}), \exists$ an open set U in X containing x such that $f(\mathrm{U}) \subseteq \mathrm{V}$.

1-2 definition:

Let (X, τ) be a topological space and $\mathrm{A} \subseteq \mathrm{X}$. We say that A is α - open in X if $\mathrm{A} \subseteq$ Int cl int(A).
Every open set is α - open while the converse is not necessarily true as it is shown in the following example.

1-3 Example:

$$
\begin{aligned}
\text { Let } \mathrm{X} & =\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
\tau & =\{\Phi, \mathrm{X},\{\mathrm{a}\}\} \\
\mathrm{A} & =\{\mathrm{a}, \mathrm{~b}\} \subset \mathrm{X}
\end{aligned}
$$

$\mathrm{A} \alpha$ - open but not open when $\operatorname{Int} \mathrm{A}=\{\mathrm{a}\}, \mathrm{c} \operatorname{lint} \mathrm{A}=\operatorname{cl}\{\mathrm{a}\}$
$\tau^{c}=\{\mathrm{X}, \Phi,\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$
$\operatorname{cl} \operatorname{int} A=\operatorname{cl}\{a\}=X, \quad$ hence $A \subset X$.
Then A is α - open but not open.
The collection of all α-open sets in X forms a topology on X which is denoted by τ^{α} It is clear that

$$
\tau \subseteq \tau^{\alpha}
$$

1-4 Definitions:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. We say that:
$1-f$ is $\boldsymbol{\alpha}$-continuous if the inverse image of every open is α - open .
2- f is α^{*}-continuous if the inverse image of α - open is open.
3- f is $\alpha^{* * *}$ - continuous if the inverse image of α - open is α - open
The following diagram explain the relations between these types

α^{*} - continuous \longrightarrow Continuous

Definef: $\mathrm{X} \rightarrow \mathrm{Y}$ which is α^{*} - continuous function and let V an open set in Y by definition (1-2) V is α - open, f is α^{*} - continuous then the inverse image of α - open is Open in X hence f is continuous.
the Proof of the other parts are similar

1-5 Remark:

The concepts of continuous functions and $\boldsymbol{\alpha}^{* *}$ - continuous functions are independent for example:
1 - Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \quad \tau_{x}=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$
and $\mathrm{Y}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \quad \tau_{\mathrm{y}}=\{\phi, \mathrm{Y},\{\mathrm{x}\}\}$
Define $f: \mathrm{X} \rightarrow \mathrm{Y}$ by
$f(\mathrm{a})=\mathrm{x}, f(\mathrm{~b})=\mathrm{y}, f(\mathrm{c})=f(\mathrm{~d})=\mathrm{z}$
Then f is continuous but it is not $\boldsymbol{\alpha}^{* *}$ - continuous
2- Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \quad \tau_{x}=\{\phi, \mathrm{X},\{\mathrm{a}\}\}$
And $\mathrm{Y}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \quad \tau_{\mathrm{y}}=\{\phi, \mathrm{Y},\{\mathrm{x}\}\}$
Define $f: \mathrm{X} \rightarrow \mathrm{Y}$ by

$$
f(\mathrm{a})=f(\mathrm{~b})=\mathrm{x}, \quad f(\mathrm{c})=\mathrm{y}, f(\mathrm{~d})=\mathrm{z}
$$

Then f is $\boldsymbol{\alpha}^{* * *}$ - continuous but it is not continuous.

1-6 Definition:

The complement of α - open set is called α-closed.

1-7 Remark:

$f: \mathrm{X} \rightarrow \mathrm{Y}$ is $\boldsymbol{\alpha}^{* * *}$ - continuous iff the inverse image of α-closed is also α-closed

2-Main results:

In this section, we state and prove several properties of $\boldsymbol{\alpha}^{* *}$ - continuous functions.

2-1 Theorem:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are $\alpha^{* *}$ - continuous functions
Then $g \circ f: X \rightarrow Z$ is also $\alpha^{* *}$ - continuous.

Proof:

Let V be an α-open set in Z . Since g is $\alpha^{* * *}$ - continuous therefore the inverse image $\mathrm{g}^{-1}(\mathrm{v})$ is α-open in Y , and f is $\alpha^{* *}$ - continuous therefore the inverse image $\mathrm{f}^{-1}\left(\mathrm{~g}^{-}\right.$ $\left.{ }^{1}(\mathrm{v})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{v})$ is α - open in X. This implies that $\mathrm{g} \circ f$ is an $\alpha^{* * *}$ - continuous

2-2 theorem:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function of topological spaces. Then the following statement are equivalent:
1- f is $\boldsymbol{\alpha}^{* * *}$ - continuous
2- if $\mathrm{x} \in \mathrm{X}, \mathrm{V}$ is α - open in Y containing $f(\mathrm{x})$, then $\exists \alpha$ - open U in X containing x such that $f(\mathrm{U}) \subseteq \mathrm{V}$.

Proof:

(1) \Rightarrow (2)

Let V be α - open in Y and $f(\mathrm{x}) \in \mathrm{V}$. Since f is $\boldsymbol{\alpha}^{* *}$ - continuous, $f^{-1}(\mathrm{~V})$ is α - open in X and $\mathrm{x} \in f^{-1}(\mathrm{~V})$. Put $\mathrm{U}=f^{-1}(\mathrm{~V})$ therefore $\mathrm{x} \in \mathrm{U}$ and $f(\mathrm{U})=f\left(f^{-1}(\mathrm{~V})\right) \subseteq \mathrm{V}$.
(2) \Rightarrow (1)

Let V be α - open in Y and $\mathrm{x} \in f^{-1}(\mathrm{~V})$. Then $f(\mathrm{x}) \in \mathrm{V}$ therefore, $\exists \mathrm{a} \mathrm{U}_{x} \alpha$ - open in X such that $\mathrm{x} \in \mathrm{U}_{x}$ and $f\left(\mathrm{U}_{x}\right) \subseteq \mathrm{V}$. Therefore $\mathrm{x} \in \mathrm{U}_{x} \subseteq f^{-1}(\mathrm{~V})$.
This implies that $f^{-1}(\mathrm{~V})$ is a union of α - open sets, hence $f^{-1}(\mathrm{~V})$ is α - open in X , so f is $\boldsymbol{\alpha}^{* *}$ - continuous
Before, we state the theorem (2-5) we introduce and recall the following definition and remark.

2-3 Definition:

An α - open set which is closed is termed C- α - open.

2-4 Remark:

Let $B \subseteq A \subseteq X$. If A is closed in X and B is α - open in X, then B is α - open in A.

2-5 Theorem:

If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is $\boldsymbol{\alpha}^{* *}$ - continuous and A is C - α - open in X , then the restriction $\mathrm{g}=f / \mathrm{A}: \mathrm{A} \rightarrow \mathrm{Y}$ is $\boldsymbol{\alpha}^{* *}$ - continuous .

Proof:

Let V be α - open in Y. Since f is $\boldsymbol{\alpha}^{* *}$ - continuous therefore $f^{-1}(\mathrm{~V})$ is α - open in X . Now A is α - open in X , then $f^{-1}(\mathrm{~V}) \cap \mathrm{A}$ is α - open in X but A is closed, hence $f^{-1}(\mathrm{~V}) \cap \mathrm{A}$ is α - open in A , but $\mathrm{g}^{-1}(\mathrm{~V})=(f / \mathrm{A})^{-1}(\mathrm{~V})=f^{-1}(\mathrm{~V}) \cap \mathrm{A}$.
So $\mathrm{g}^{-1}(\mathrm{~V})$ is α - open in A which means that g is $\boldsymbol{\alpha}^{* *}$ - continuous \square.

2-6 Remark:

If A is closed only, then f / A is not always $\boldsymbol{\alpha}^{* *}$ - continuous.
For if we take:
$\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau_{x}=\{\phi, \mathrm{X},\{\mathrm{a}\}\}$
$\mathrm{Y}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \tau_{\mathrm{y}}=\{\phi, \mathrm{Y},\{\mathrm{x}\}\}$
$A=\{b, c, d\}$
Define $f: \mathrm{X} \rightarrow \mathrm{Y}$ by
$f(\mathrm{a})=f(\mathrm{~b})=\mathrm{x}$
$f(\mathrm{c})=\mathrm{y}, f(\mathrm{~d})=\mathrm{z}$
Then f is $\boldsymbol{\alpha}^{* *}$ - continuous but f / A is not $\boldsymbol{\alpha}^{* *}$ - continuous.
Before, we state the next theorem; we introduce and recall the following definition and remark.

2-7 Remark:

If A is α - open in X and B is α - open in Y then $\mathrm{A} \times \mathrm{B}$ is α - open in $\mathrm{X} \times \mathrm{Y}$.

2-8 definition:

A space X is said to be α-Hausdorf $\left(\alpha-\mathrm{T}_{2}\right)$ if for any two distinct points x, y of X, \exists disjoint α - open sets U, V of X such that $x \in U, y \in V$.

2-9 Definition:

Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. The subset $\{(\mathrm{x}, f(\mathrm{x}) \mid \mathrm{x} \in \mathrm{X}\}$ of $\mathrm{X} \times \mathrm{Y}$ is called the graph of f and is denoted by $\mathrm{G}(f)$
It is well known that $\mathrm{G}(f)$ is a closed set of $\mathrm{X} \times \mathrm{Y}$ whenever f is continuous and Y is T_{2}.

2-10 Theorem:

If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is $\boldsymbol{\alpha}^{* *}$ - continuous and Y is $\alpha-\mathrm{T}_{2}$ then $\mathrm{G}(f)$ is α-closed in $\mathrm{X} \times \mathrm{Y}$.

Proof:

Let $(\mathrm{x}, \mathrm{y}) \in \mathrm{X} \times \mathrm{Y}-\mathrm{G}(f)$, then $\mathrm{y} \neq f(\mathrm{x})$.
But Y is $\alpha-\mathrm{T}_{2}$, so \exists disjoint α - open sets W and V in Y э $f(\mathrm{x}) \in \mathrm{W}$ and $\mathrm{y} \in \mathrm{V}$.
Since f is $\boldsymbol{\alpha}^{* * *}$ - continuous therefore $\exists \mathrm{U} \alpha$ - open in X such that
$\mathrm{x} \in \mathrm{U}$ and $f(\mathrm{U}) \subseteq$ W.Now $(\mathrm{x}, \mathrm{y}) \in \mathrm{U} \times \mathrm{V} \subseteq \mathrm{X} \times \mathrm{Y}-\mathrm{G}(f)$.
Since $\mathrm{U} \times \mathrm{V}$ is α - open in $\mathrm{X} \times \mathrm{Y}$, hence $\mathrm{X} \times \mathrm{Y}-\mathrm{G}(f)$ is a union of α - open sets.
Therefore, $\mathrm{X} \times \mathrm{Y}-\mathrm{G}(f)$ is α - open.
Consequently, $\mathrm{G}(f)$ is α-closed in $\mathrm{X} \times \mathrm{Y}$.
Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ be tow functions of topological spaces. It is well known that the set (called difference kernel) $\mathrm{A}=\{\mathrm{x} \in \mathrm{X} \mid f(\mathrm{x})=\mathrm{g}(\mathrm{x})\}$ is closed in X whenever f and g are continuous and Y is T_{2}.
An analogous result can be given as follows:

2-11 Theorems:

If f and g are two $\boldsymbol{\alpha}^{* *}$ - continuous functions from a space X into an $\alpha-\mathrm{T}_{2}$ space Y then the set $\mathrm{A}=\{\mathrm{x} \in \mathrm{XI} f(\mathrm{x})=\mathrm{g}(\mathrm{x})\}$ is α-closed in X .
Proof:
Let $\mathrm{x} \in \mathrm{X}$-A then $f(\mathrm{x}) \neq \mathrm{g}(\mathrm{x})$.
Since Y is $\alpha-\mathrm{T}_{2} \exists$ disjoint α - open sets U and V in $\mathrm{Y} \ni f(\mathrm{x}) \in \mathrm{U}$ and $\mathrm{g}(\mathrm{x}) \in \mathrm{V}$.
Therefore $f^{-1}(\mathrm{U})$ and $\mathrm{g}^{-1}(\mathrm{~V})$ are α - open sets in X .
Let $\mathrm{B}=f^{-1}(\mathrm{U}) \cap \mathrm{g}^{-1}(\mathrm{~V})$, therefore $\mathrm{x} \in \mathrm{B}$ and B is α - open in X .
Moreover $\mathrm{B} \cap \mathrm{A}=\phi$.
For otherwise $\mathrm{U} \cap \mathrm{V} \neq \phi$. Consequently, $\mathrm{x} \in \mathrm{B} \subseteq \mathrm{X}$ - A .
So $\mathrm{X}-\mathrm{A}$ is a union of α - open sets in X , and thus $\mathrm{X}-\mathrm{A}$ is α - open, which means that A is α - closed in $\mathrm{X} \square$.

References

1. Hadi j. Mustafa, \mathbf{T}^{*}-separation axioms submitted to alzarqaa university conference, 2008-08-22
2. O.Njastad, on some closes of nearly open sets, pacific J.math 15(1965), 961970
3. W.J.pervin, Foundation of general topology, Academic press, new York, (1964).
