The Completion of ⊕ -measure

Noori F. AL-Mayahi Mathematical Department Science College AL-Qadisya University

Mohammed J. M. AL-Mousawi Mathematical Department Education College Thi-Qar University

1- Abstract

The theory of measure is an important subject in mathematics; in Ash [4,5] discusses many details about measure and proves some important results in measure theory.

In 1986, Dimiev [7] defined the operation addition and multiplication by real numbers on a set $E = (-\infty,1) \subset R$, he defined the operation multiplication on the set E and prove that E is a vector space over R and for any a>1 E_a is field, also he defined the fuzzifying functions on arbitrary set X.

In 1989, Dimiev [6] discussed the field E_a as in [7] and defined the operations addition, multiplication and multiplication by real number on a set of all fuzzifying functions defined on arbitrary set X, and also defined \oplus -measure on a measurable space and proved some results about it.

we mention the definition of the field E_a , and the fuzzifying functions on the arbitrary set X also we mention the definition of the operations.

Definition (1.1.1) [7]:

Let (R, +,.) be a field of real numbers with usual order and $E = (-\infty, 1) \subseteq R$, we introduce the operations addition \oplus and scalar multiplication \circ on the set *E* as follows:

For any $x, y \in E$ and $\lambda \in \mathbb{R}$ we have $x \oplus y = x + y - xy$, $\lambda \circ x = 1 - (1 - x)^{\lambda}$.

Proposition (1.2) [7]:

The set *E* with the operations \oplus , \circ and the relation order, represent ordered linear space.

Definition (1.3) [6]:

Let a > 1, we introduce an operation multiplication on the set *E* as follows For any $x, y \in E$ we have $x \circ y = 1 - a^{-\log_a(1-x)\log_a(1-y)}$.

Proposition (1.4) [6]:

The set E with the operations \oplus , \circ is a field which is denoted by E_a .

Remark (1.5):

Let $x, y \in E_a$, we denote $x \Theta y = x \oplus (-w) \circ y$ and $\Theta x = (-w) \circ x$ where $w = 1 - a^{-1}$ the unit element in the field E_a .

Definition (1.6)[6]:

Let X be arbitrary set, the map $f: X \to E_a$ is said to be E_a -valued fuzzifying function.

2- ⊕ - Measure:

In this section we mention the definition of \oplus -measure on a measurable space and proved some results about it, also we defined \oplus -outer measure and proved some results about it.

Definition (2.1)[5]:

A collection \mathcal{F} of subsets of a set Ω is said to be:

- a) σ -ring if
- 1- $\varphi \in \mathcal{F}$, where φ is empty set.
- 2- if $A, B \in \mathcal{F}$ then $A | B \in \mathcal{F}$.

3- if $\{A_n\}$ is a sequence of sets in \mathcal{F} then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

- b) σ -field (or σ -algebra) if
- 1- $\Omega \in \mathcal{F}$.
- 2- if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.

3- if $\{A_n\}$ is a sequence of sets in \mathcal{F} then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. A measurable space is a pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is σ -ring or σ -field and a measurable set is a subset A of Ω such that $A \in \mathcal{F}$.

Definition (2.2) [6]:

Let (Ω, \mathcal{F}) be a measurable space, a fuzzifying function $\mu: \mathcal{F} \to E_a$ is said to be:

- 1- \oplus -additive if $\mu(A \cup B) = \mu(A) \oplus \mu(B)$ for every disjoint sets A, B in \mathcal{F} .
- 2- Accountability \oplus -additive if $\mu(\bigcup_{n=1}^{\infty} A_n) = \bigoplus_{n=1}^{\infty} \mu(A_n)$ for every disjoint sequence $\{A_n\}$ of sets of \mathcal{F} .
- 3- \oplus measure, if μ is accountability \oplus additive and non-negative The triple $(\Omega, \mathcal{F}, \mu)$ is called a space with \oplus -measure.

Theorem (2.3):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus - measure and A, B $\in \mathcal{F}$ then:

- 1- $\mu(\varphi) = 0$.
- 2- $\mu(A) = \mu(A \cap B) \oplus \mu(A \cap B^{c})$.
- 3- $\mu(A \cup B) \oplus \mu(A \cap B) = \mu(A) \oplus \mu(B)$.
- 4- if $A \subseteq B$ then:
 - (a) $\mu(B|A) = \mu(B) \oplus (-w) \circ \mu(A)$.
 - (b) $\mu(A) \leq \mu(B)$.

Proof:

1- Since
$$A = A \cup \varphi$$
 and $A \cap \varphi = \varphi$.
 $\mu(A) = \mu(A \cup \varphi) = \mu(A) \oplus \mu(\varphi)$.
Since E_a is a field $\Rightarrow \mu(\varphi) = 0$.
2- Since $A = (A \cap B) \cup (A \cap B^c)$.
and $(A \cap B) \cap (A \cap B^c) = \varphi$.
 $\Rightarrow \mu(A) = \mu((A \cap B) \cup (A \cap B^c))$.
 $= \mu(A \cap B) \oplus \mu(A \cap B^c)$.
3- Since $A \cup B = (A \cap B^c) \cup B$ and $(A \cap B^c) \cap B = \varphi$.
 $\Rightarrow \mu(A \cup B) = \mu(A \cap B^c) \cup B$
 $= \mu(A \cap B^c) \oplus \mu(B)$.
 $\mu(A \cup B) \oplus \mu(A \cap B) = (\mu(A \cap B^c) \oplus \mu(B)) \oplus \mu(A \cap B)$.
 $= (\mu(A \cap B^c) \oplus \mu(A \cap B)) \oplus \mu(B)$.
 $= \mu(A) \oplus \mu(B)$.
 $= \mu(A) \oplus \mu(B)$.
4- (a) Since $A \subseteq B \Rightarrow B = A \cup (B|A)$ and $A \cap (B|A) = \varphi$.

$$\mu(\mathbf{B}) = \mu(\mathbf{A} \cup (\mathbf{B}|\mathbf{A})).$$

$$= \mu(\mathbf{A}) \oplus \mu(\mathbf{B}|\mathbf{A}).$$

Since E_a is a field $\Rightarrow \mu(B|A) = \mu(B) \oplus (-w) \circ \mu(A)$.

(b) Since $\mu(B|A) \ge \circ$ from (a) we get that $\mu(A) \le \mu(B)$.

Definition (2.4):

Let (Ω, \mathcal{F}) be a measurable space and let the fuzzifying $\mu: \mathcal{F} \to E_a$ be a \oplus -additive, we say that μ is :

1. \oplus – continuous from below at $A \in \mathcal{F}$ if $\mu(A_n) \rightarrow \mu(A)$.

For every non – decreasing sequence $\{A_n\}$ of sets in \mathcal{F} which converge to A (i.e $A_n \uparrow A$).

2. \oplus – continuous from below at $A \in \mathcal{F}$ if $\mu(A_n) \rightarrow \mu(A)$.

For every non- increasing sequence $\{A_n\}$ of sets in \mathcal{F} converge to

A (i.e $A_n \uparrow A$).

3. \oplus – continuous at A $\in \mathcal{F}$ if it is continuous at A from above and from below. **Theorem (2.5)**:

Let μ be \oplus -additive fuzzifying function on measurable space (Ω, \mathcal{F}) , then the following are valid.

1- If μ is countable \oplus -additive, then μ is \oplus -continuous at A for all $A \in \mathcal{F}$.

2- If μ is \oplus -continuous from below at every $A \in \mathcal{F}$, then μ is countable \oplus -additive.

3- If μ is continuous from above at φ then μ is countable \oplus -additive.

Proof:

1- Let $\{A_n\}$ be an increasing sequence of sets in \mathcal{F} which converge to A, i.e $A_n \uparrow A$.

(a) Let
$$B_1 = A_1$$
, $B_n = A_n | A_{n-1}$ $\forall n \ge 2$.
 $\Rightarrow B_n \cap B_m = \varphi, \forall n \ne m$ and $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n = A$.
 $\mu(A) = \mu(\bigcup_{n=1}^{\infty} B_n) = \mu(A_1) \oplus (\bigoplus_{N=2}^{\infty} \mu(B_n))$.
 $= \mu(A_1) \oplus (\bigoplus_{n=2}^{\infty} \mu(A_n | A_{n-1}))$.
 $\mu(A) = \mu(A_1) \oplus \lim_{K \to \infty} \bigoplus_{n=2}^{K} (\mu(A_n | A_{n-1}) = \lim_{K \to \infty} \mu(A_K))$.
 $\Rightarrow \mu$ is \oplus - continuous from below at $A \in \mathcal{F}$.
(b) Suppose that $A_n \downarrow A \to A_1 | A_n \uparrow A_1 | A$.
 $\Rightarrow \mu(A_1 | A_n) \to \mu(A_1 | A) \Rightarrow \mu(A_n) \to \mu(A)$.
So μ is \oplus - continuous from above at $A \in \mathcal{F}$.
From (a) and (b) we get that μ is \oplus - continuous at $A \in \mathcal{F}$.
From (a) and (b) we get that μ is \oplus - continuous at $A \in \mathcal{F}$.
2-Let $\{A_n\}$ be a disjoint sequence of sets in \mathcal{F} , and $A = \bigcup_{n=1}^{\infty} A_n$.
Since μ is \oplus - continuous from below at $A \in \mathcal{F}$.
Since μ is \oplus - continuous from below at $A \in \mathcal{F}$.
Since μ is \oplus - additive $\Rightarrow \mu(B_n) = \mu(\bigcup_{i=1}^{n} A_i) = \bigoplus_{i=1}^{m} \mu(A_i)$.
So μ is countable \oplus - additive.
3-In the notation of (2) put $C_n = A | B_n \Rightarrow C_n \in \mathcal{F}, n = 1, 2, \dots$.
 $\Rightarrow \mu(C_n) \to \mu(\varphi) = 0 \Rightarrow \mu(A | B_n) \to 0$.

$$\mu(A) = \bigoplus_{i=1}^{n} \mu(A_i) \oplus \mu(C_n).$$

So that $\mu(A) = \bigoplus_{i=1}^{\infty} \mu(A_i).$

3- The completion of ⊕-measure

In this section we construct the completion of \oplus – measure.

Definition (3.1)

Let (Ω, \mathcal{F}) be a measurable space with \mathcal{F} a σ -ring and μ is \oplus measure on \mathcal{F} , $E \in \mathcal{F}$ is said to be μ -null set if $\mu(E) = 0$. The \oplus -measure μ is said to be complete on \mathcal{F} if \mathcal{F} contains the subsets of every μ -null sets.

Theorem (3.2):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure where \mathcal{F} is σ -ring and $N_{\mu} = \{E : E \subset A \in \mathcal{F} \text{ and } \mu(A) = 0\}$ then N_{μ} is a σ -ring.

Proof:

1- Clearly $\varphi \in N_{\mu}$.

2- Let $E_1, E_2 \in N_{\mu} \implies$ there exists $A_1, A_2 \in \mathcal{F}$ such that $E_1 \subseteq A_1, E_2 \subset A_2$ and $\mu(A_1) = 0, \mu(A_2) = 0$.

 $E_1 | E_2 \subset E_1 \subset A_1 \in \mathcal{F}$ So $E_1 | E_2 \in N_\mu$.

3- Let $\{E_i\}$ be a sequence of sets in N_{ij} $i = 1, 2, ... \Rightarrow$ there exist a sequence

 $\{A_i\}$ $i = 1, 2, \dots$ of sets in \mathcal{F} such that $E_i \subset A_i$ and $\mu(A_i) = 0$.

$$\bigcup_{i=1}^{\tilde{\bigcup}} E_i \subset \bigcup_{i=1}^{\tilde{\bigcup}} A_i \text{ Since } \mathcal{F} \text{ is } \sigma - \operatorname{ring} \Longrightarrow \bigcup_{i=1}^{\tilde{\bigcup}} A_i \in \mathcal{F}.$$
$$\mu(\bigcup_{i=1}^{\tilde{\bigcup}} A_i) \leq \bigoplus_{i=1}^{\tilde{\bigoplus}} \mu(A_i) = 0 \Longrightarrow \mu(\bigcup_{i=1}^{\tilde{\bigcup}} A_i) = 0.$$

So $\bigcup_{i=1}^{\infty} E_i \in N_{\mu}$ therefore N_{μ} is σ -ring.

Theorem (3.3):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure where \mathcal{F} is a σ -ring, define $\overline{\mathcal{F}} = \{(E \cup E_1) - E_2 : E \in \mathcal{F}, E_1, E_2 \in N_\mu\}$ then $A \in \overline{\mathcal{F}}$ iff there exist sets $M, N \in \mathcal{F}$ such that $M \subset A \subset N$ and $\mu(N - M) = 0$.

Proof:

Let $M, N \in \mathcal{F}$ and $M \subset A \subset N$ such that $\mu(N - M) = 0$, so $A = (N \cup \varphi) - (N - A)$. Since $N - A \subset N - M \in \mathcal{F}$ and $\mu(N - M) = 0$. $\Rightarrow N - A \in N_{\mu}$. Therefore $A \in \overline{\mathcal{F}}$. Suppose that $A \in \overline{\mathcal{F}}$. Then $A = (E \cup E_1) - E_2$, $E \in \mathcal{F}, E_1, E_2 \in N_{\mu}$. Therefore there exist $A_1, A_2 \in \mathcal{F}$ such that $\mu(A_i) = 0$ and $E_i \subset A_i$, $E - A_2 \subset A \subset E \cup A_1$. $E \cup A_1, E - A_2 \in \mathcal{F}$ and $\mu((E \cup A_1) - (E - A_2)) = \mu((A_1 - E) \cup (A_2 \cap E))$. $= \mu((A_1 - E)) \oplus \mu(A_2 \cap E)$. Since $A_1 - E \subset A_1$ and $A_2 \cap E \subset A_2$. $\Rightarrow \mu(A_1 - E) = 0 \quad \land \mu(A_2 \cap E) = 0$. So $\mu((E \cup A_1) - (E - A_2)) = 0$.

Corollary (3.4):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure where \mathcal{F} is σ -ring then $A \in \overline{\mathcal{F}}$ iff $A = E \cup M$, $E \in \mathcal{F}$ and $M \in N_{\mu}$.

Proof:

Suppose that $A \in \overline{\mathcal{F}}$. By theorem (1.3.3) there exist $M, N \in \mathcal{F}$ such that $N \subset A \subset M$ and $\mu(M - N) = 0$ $A = N \cup (A - N)$, $N \in \mathcal{F}$. Since $A - N \subset M - N \in \mathcal{F}$ and $\mu(M - N) = 0$. $\Rightarrow A - N \in N_{\mu}$. Conversely suppose $A = E \cup M$, $E \in \mathcal{F} \land M \in N_{\mu}$. $A = (E \cup M) - \varphi$, $\varphi \in N_{\mu}$.

$$\Rightarrow A \in \overline{\mathcal{F}} .$$

Corollary (3.5):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure where \mathcal{F} is σ -ring then $A \in \overline{\mathcal{F}}$ iff A = E - D with $E \in \mathcal{F}$ and $D \in N_{\mu}$.

Proof:

Suppose that $A \in \overline{F}$. \Rightarrow There exist $M, N \in \overline{F}$ such that $M \subset A \subset N$. and $\mu(N-M) = 0$. A = N - (N-A), $N \in \overline{F}$. Since $N - A \subset N - M \in F$ and $\mu(N-M) = 0$. So $N - A \in N_{\mu}$. Conversely suppose that A = E - D where $E \in \overline{F}$ Λ $D \in N_{\mu}$.

$$\Rightarrow A = (E \cup \varphi) - D \qquad D, \ \varphi \in N_{\mu}.$$
$$\Rightarrow A \in \overline{F}.$$

Theorem (3.6):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure where \mathcal{F} is σ -ring then $\overline{\mathcal{F}}$ is σ -ring.

Proof:

1-clearly $\varphi \in \overline{F}$.

2-Let $\{A_i\}$ i =1,2,... be a sequence of sets such that $A_i \in \overline{\mathcal{F}} \Rightarrow A_i = M_i \cup N_i$ where $M_i \in \mathcal{F}$ and $N_i \in N_{\mu}$.

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (M_i \cup N_i) .$$
$$= (\bigcup_{i=1}^{\infty} M_i) \cup (\bigcup_{i=1}^{\infty} N_i) .$$

Since \mathcal{F} and N_{μ} are σ -ring.

$$\Rightarrow \bigcup_{i=1}^{\infty} M_i \in F_1$$
$$\bigcup_{i=1}^{\infty} N_i \in N_{\mu}$$

So $\bigcup_{i=1}^{\infty} A_i \in \overline{F}$. 3- Let $A, B \in \overline{F}$ from Corollary (1.3.4) we obtain $A = M_1 \cup N_1$ $B = M_2 \cup N_2$. $A - B = (M_1 \cup N_1) - (M_2 \cup N_2)$. $= ((M_1 - M_2) - N_2) \cup ((N_1 - M_2) - N_2)$. $= [(M_1 - M_2) - E_2) \cup (E_2 - N_2) \cap (M_1 - M_2))] \cup ((N_1 - M_2) - N_2)$ $N_2 \subset E_2 \in \overline{F}$, $\mu(E_2) = 0$ $A - B \in \overline{F}$.

Therefore \overline{F} is σ -ring.

Theorem (3.7):

Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus -measure and $\overline{\mu} : \overline{\mathcal{F}} \to E_a$ defined as follows $\overline{\mu}(A) = \mu(M)$ where $A = (M \cup N), M \in \mathcal{F}$ and $N \in N_{\mu}$.

Then $\overline{\mu}$ is complete \oplus -measure on \overline{F} , where is restriction to F is μ .

Proof:

$$1 - \overline{\mu}(\varphi) = \mu(\varphi) = 0$$

2-Let $\{A_i\}$ be a sequence of sets in $\overline{\mathcal{F}}$ i = 1, 2, ...

 $\Rightarrow \text{There exist a sequence of sets } \{E_i\} \text{ in } \mathcal{F} \text{ and a sequence of sets } \{N_i\} \text{ in } N_{\mu} \text{ such that } A_i = E_i \cup N_i.$

 $\overline{\mu}(\bigcup_{i=1}^{\infty} A_i) = \overline{\mu}(\bigcup_{i=1}^{\infty} (E_i \cup N_i)).$ $= \overline{\mu}((\bigcup_{i=1}^{\infty} E_i) \cup (\bigcup_{i=1}^{\infty} N_i)))$ $= \mu(\bigcup_{i=1}^{\infty} E_i) = \bigoplus_{i=1}^{\infty} \mu(E_i) = \bigoplus_{i=1}^{\infty} \overline{\mu}(A_i)$ So $\overline{\mu}$ is \oplus -measure on \overline{F} .
3-Let $A \in \mathcal{F}$, $A = A \cup \varphi, \varphi \in N_{\mu}$. $\overline{\mu}(A) = \overline{\mu}(A \cup \varphi) = \mu(A).$ μ is \oplus -restriction of $\overline{\mu}$ to \mathcal{F} .

4- Let $E \in \overline{F}$ and $\overline{\mu}(E) = 0$, $A \subset E$. $E = M \cup N$, $M \in \overline{F}, N \in N_{\mu}$. $\overline{\mu}(E) = \mu(M) \Rightarrow \mu(M) = 0$. Since $N \in N_{\mu} \Rightarrow$ There exists $E_1 \in \overline{F}$ such that $N \subset E_1$ and $\mu(E_1) = 0$, since $\mu(E_1) = \mu(M) = 0 \Rightarrow M, E \in N_{\mu}$. $A \subset E = M \cup N \subset M \cup E_1 \Rightarrow A \subset M \cup E_1 \in \overline{F}, \mu(M \cup E_1) = \mu(M) \oplus \mu(E_1) = 0 \Rightarrow A \in N_{\mu}$ $A = (M \cup E_1) - ((M \cup E_1) - A), M \cup E_1 \in \overline{F}, (M \cup E_1) - A \in N_{\mu} \Rightarrow A \in \overline{F} \Rightarrow \overline{\mu}$ is complete on \overline{F} . 5- To show that the definition of $\overline{\mu}$ is well defined. Let $A \in \overline{F} \Rightarrow A = M \cup N$, $M \in \overline{F}$ and $N \in N_{\mu}$. $\Rightarrow \exists E \in \overline{F} \quad N \subset E$ and $\mu(E) = 0$.

The relations $M \cup N = (M - E) \cup (E \cap (M \cup N))$.

and $M\Delta N = (M - E) \cup (E \cap (M\Delta N))$ show that

the class $\overline{\mathcal{F}}$ may also be decried as there class of the form $M\Delta N, M \in \mathcal{F}$ and $N \in N_u, \overline{\mu}(M\Delta N) = \overline{\mu}(M \cup N) = \mu(M)$.

Let $F_1 \Delta N_1 = F_2 \Delta N_2$.

 $F_i \in \mathcal{F}$, $N_i \subseteq E_i \in \mathcal{F}$, $\mu(E_i) = 0$ i=1,2.

Then $F_1 \Delta F_2 = N_1 \Delta N_2$.

Therefore $\mu(F_1 \Delta F_2) = 0 \Rightarrow \mu(F_1) = \mu(F_2) \Rightarrow \overline{\mu}(F_1 \Delta N_1) = \overline{\mu}(F_2 \Delta N_2)$.

So the definition of $\overline{\mu}$ is well defined.

References

- [1] C.Guo and D.Zhang, "On set-valued fuzzy measures", In formation sciences 160(2004)13-25.
- [2] L.Lushu, "**Random fuzzy sets and fuzzy martingales**", Fuzzy Sets and Systems 69(1995)181-192.
- [3] M.Sugeno, "**Theory of fuzzy integrals and it's applications**", Ph.D.Dissertation, Tokyo Institute of Technology, 1974.
- [4] R.B.Ash, "Measure integration and functional analysis", Academic Press, Newyork, (1972).
- [5] R.B.Ash, "Real analysis and probability", Academic Press, New York (1972).
- [6] V.Dimiev, "Fuzzifying functions", Fuzzy Sets and Systems 33(1989) 47-58.
- [7] V.Dimiev, "Metric spaces on fuzzy sets". C.R.Acad. Bulgare Sci. 39(1986) 9-12.