The Completion of \oplus-measure

Noori F. AL-Mayahi Mathematical Department

Science College

AL-Qadisya University

Mohammed J. M. AL-Mousawi
Mathematical Department
Education College
Thi-Qar University

1- Abstract

The theory of measure is an important subject in mathematics; in Ash $[4,5]$ discusses many details about measure and proves some important results in measure theory.

In 1986, Dimiev [7] defined the operation addition and multiplication by real numbers on a set $E=(-\infty, 1) \subset R$, he defined the operation multiplication on the set E and prove that E is a vector space over R and for any $a>1 E_{a}$ is field, also he defined the fuzzifying functions on arbitrary set X.

In 1989, Dimiev [6] discussed the field E_{a} as in [7] and defined the operations addition, multiplication and multiplication by real number on a set of all fuzzifying functions defined on arbitrary set X , and also defined \oplus-measure on a measurable space and proved some results about it.
we mention the definition of the field E_{a}, and the fuzzifying functions on the arbitrary set X also we mention the definition of the operations.

Definition (1.1.1) [7]:

Let $(\mathrm{R},+,$.$) be a field of real numbers with usual order and E=(-\infty, 1) \subseteq \mathrm{R}$, we introduce the operations addition \oplus and scalar multiplication \odot on the set E as follows:
For any $x, y \in E$ and $\lambda \in \mathrm{R}$ we have
$x \oplus y=x+y-x y, \quad \lambda \odot x=1-(1-x)^{\lambda}$.

Proposition (1.2) [7]:

The set E with the operations \oplus, \odot and the relation order, represent ordered linear space.
Definition (1.3) [6]:
Let $a>1$, we introduce an operation multiplication on the set E as follows
For any $x, y \in E$ we have $x \circ y=1-a^{-\log _{a}(1-x) \log _{a}(1-y)}$.

Proposition (1.4) [6]:

The set E with the operations \oplus, \circ is a field which is denoted by E_{a}.

Remark (1.5):

Let $x, y \in E_{a}$, we denote $x \Theta y=x \oplus(-w) \circ y$ and $\Theta x=(-w) \circ x$ where $w=1-a^{-1}$ the unit element in the field E_{a}.
Definition (1.6)[6]:
Let X be arbitrary set, the map $f: X \rightarrow E_{a}$ is said to be E_{a}-valued fuzzifying function.

2- \oplus - Measure:

In this section we mention the definition of \oplus-measure on a measurable space and proved some results about it, also we defined \oplus - outer measure and proved some results about it.

Definition (2.1)[5]:

A collection F of subsets of a set Ω is said to be:
a) σ-ring if

1- $\varphi \in \mathcal{F}$, where φ is empty set.
2 - if $\mathrm{A}, \mathrm{B} \in \mathcal{F}$ then $\mathrm{A} \mid \mathrm{B} \in \mathcal{F}$.
3- if $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is a sequence of sets in F then $\bigcup_{\mathrm{n}=1}^{\infty} \mathrm{A}_{\mathrm{n}} \in \mathcal{F}$.
b) σ-field (or σ-algebra) if

$1-\Omega \in F$.

2- if $\mathrm{A} \in \mathcal{F}$ then $\mathrm{A}^{\mathrm{c}} \in \mathcal{F}$.
3- if $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is a sequence of sets in \mathcal{F} then $\bigcup_{n=1}^{\infty} \mathrm{A}_{\mathrm{n}} \in \mathcal{F}$. A measurable space is a pair (Ω, F) where Ω is a set and \mathcal{F} is σ-ring or σ-field and a measurable set is a subset A of Ω such that $A \in F$.
Definition (2.2) [6]:
Let (Ω, F) be a measurable space, a fuzzifying function $\mu: F \rightarrow E_{a}$ is said to be:
1- \oplus-additive if $\mu(\mathrm{A} \cup \mathrm{B})=\mu(A) \oplus \mu(B)$ for every disjoint sets A, B in F.
2- Accountability \oplus-additive if $\mu\left(\mathrm{U}_{n=1}^{\infty} \mathrm{A}_{n}\right)=\oplus_{n=1}^{\infty} \mu\left(A_{n}\right)$ for every disjoint sequence $\left\{A_{n}\right\}$ of sets of F.
3- \oplus - measure, if μ is accountability \oplus-additive and non-negative
The triple (Ω, F, μ) is called a space with \oplus-measure.

Theorem (2.3):

Let (Ω, F, μ) be a space with \oplus - measure and $\mathrm{A}, \mathrm{B} \in \mathcal{F}$ then:
1- $\mu(\varphi)=0$.
2- $\mu(A)=\mu(A \cap B) \oplus \mu\left(A \cap B^{C}\right)$.
3- $\mu(A \cup B) \oplus \mu(A \cap B)=\mu(A) \oplus \mu(B)$.
4- if $A \subseteq B$ then:
(a) $\mu(B \mid A)=\mu(B) \oplus(-w) \circ \mu(A)$.
(b) $\mu(A) \leq \mu(B)$.

Proof:

1 - Since $\mathrm{A}=\mathrm{A} \cup \varphi \quad$ and $\mathrm{A} \cap \varphi=\varphi$.

$$
\mu(\mathrm{A})=\mu(\mathrm{A} \cup \varphi)=\mu(\mathrm{A}) \oplus \mu(\varphi)
$$

Since E_{a} is a field $\Rightarrow \mu(\varphi)=0$.
2- Since $\left.A=(A \cap B) \cup\left(A \cap B^{c}\right)\right)$.
and $(A \cap B) \cap\left(A \cap B^{c}\right)=\varphi$.
$\Rightarrow \mu(\mathrm{A})=\mu\left((\mathrm{A} \cap \mathrm{B}) \cup\left(\mathrm{A} \cap \mathrm{B}^{c}\right)\right)$.
$=\mu(\mathrm{A} \cap \mathrm{B}) \oplus \mu\left(\mathrm{A} \cap \mathrm{B}^{c}\right)$.
3- Since $\mathrm{A} \cup \mathrm{B}=\left(\mathrm{A} \cap \mathrm{B}^{c}\right) \cup \mathrm{B} \quad$ and $\quad\left(\mathrm{A} \cap \mathrm{B}^{c}\right) \cap \mathrm{B}=\varphi$.
$\left.\left.\Rightarrow \mu(\mathrm{A} \cup \mathrm{B})=\mu\left(\mathrm{A} \cap \mathrm{B}^{c}\right)\right) \cup B\right)$
$=\mu\left(\mathrm{A} \cap \mathrm{B}^{c}\right) \oplus \mu(\mathrm{B})$.
$\mu(\mathrm{A} \cup \mathrm{B}) \oplus \mu(\mathrm{A} \cap \mathrm{B})=\left(\mu\left(\mathrm{A} \cap \mathrm{B}^{c}\right) \oplus \mu(\mathrm{B})\right) \oplus \mu(\mathrm{A} \cap \mathrm{B})$.
$=\left(\mu\left(\mathrm{A} \cap \mathrm{B}^{c}\right) \oplus \mu(\mathrm{A} \cap \mathrm{B})\right) \oplus \mu(\mathrm{B})$.
$=\mu(\mathrm{A}) \oplus \mu(\mathrm{B})$.
4- (a) Since $\mathrm{A} \subseteq \mathrm{B} \Rightarrow \mathrm{B}=\mathrm{A} \cup(\mathrm{B} \mid \mathrm{A})$ and $\mathrm{A} \cap(\mathrm{B} \mid \mathrm{A})=\varphi$.

$$
\begin{aligned}
\mu(\mathrm{B}) & =\mu(\mathrm{A} \cup(\mathrm{~B} \mid \mathrm{A})) . \\
& =\mu(\mathrm{A}) \oplus \mu(\mathrm{B} \mid \mathrm{A}) .
\end{aligned}
$$

Since E_{a} is a field $\Rightarrow \mu(\mathrm{B} \mid \mathrm{A})=\mu(\mathrm{B}) \oplus(-w) \circ \mu(\mathrm{A})$.
(b) Since $\mu(\mathrm{B} \mid \mathrm{A}) \geq 0$ from (a) we get that $\mu(\mathrm{A}) \leq \mu(\mathrm{B})$.

Definition (2.4):

Let (Ω, F) be a measurable space and let the fuzzifying $\mu: F \rightarrow E_{a}$ be a \oplus-additive, we say that μ is :

1. \oplus-continuous from below at $A \in \mathcal{F}$ if $\mu\left(A_{n}\right) \rightarrow \mu(\mathrm{A})$.

For every non - decreasing sequence $\left\{A_{n}\right\}$ of sets in F which converge to A (i.e $A_{n} \uparrow A$).
2. \oplus-continuous from below at $\mathrm{A} \in \mathcal{F}$ if $\mu\left(A_{n}\right) \rightarrow \mu(\mathrm{A})$.

For every non- increasing sequence $\left\{A_{n}\right\}$ of sets in F converge to A (i.e $A_{n} \uparrow A$).
3. \oplus-continuous at $\mathrm{A} \in \mathcal{F}$ if it is continuous at A from above and from below.

Theorem (2.5):
Let μ be \oplus-additive fuzzifying function on measurable space (Ω, F), then the following are valid.

1- If μ is countable \oplus-additive, then μ is \oplus-continuous at A for all $\mathrm{A} \in \mathcal{F}$.
2- If μ is \oplus-continuous from below at every $A \in \mathcal{F}$, then μ is countable \oplus-additive.
3- If μ is continuous from above at φ then μ is countable \oplus-additive.

Proof:

1- Let $\left\{\mathrm{A}_{n}\right\}$ be an increasing sequence of sets in F which converge to A, i.e A_{n} $\uparrow \mathrm{A}$.
(a) Let $\mathrm{B}_{1}=\mathrm{A}_{1}, \mathrm{~B}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mid \mathrm{A}_{\mathrm{n}-1} \quad \forall n \geq 2$.
$\Rightarrow B_{n} \cap B_{m}=\varphi, \forall n \neq m$ and $\bigcup_{n=1}^{\infty} \mathrm{B}_{n}=\bigcup_{n=1}^{\infty} A_{n}=A$.
$\mu(\mathrm{A})=\mu\left(\bigcup_{n=1}^{\infty} \mathrm{B}_{n}\right)=\mu\left(\mathrm{A}_{1}\right) \oplus\left(\bigoplus_{N=2}^{\infty} \mu\left(B_{n}\right)\right)$.
$=\mu\left(\mathrm{A}_{1}\right) \oplus\left(\underset{n=2}{\oplus} \mu\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{A}_{\mathrm{n}-1}\right)\right.$.
$\mu(\mathrm{A})=\mu\left(\mathrm{A}_{1}\right) \oplus \lim _{\mathrm{K} \rightarrow \infty} \bigoplus_{n=2}^{\mathrm{K}}\left(\mu\left(\mathrm{A}_{\mathrm{n}} \mid \mathrm{A}_{\mathrm{n}-1}\right)=\lim _{\mathrm{K} \rightarrow \infty} \mu\left(A_{K}\right)\right.$.
$\Rightarrow \mu$ is \oplus-continuous from below at $A \in F$.
(b) Suppose that $A_{n} \downarrow A \rightarrow \mathrm{~A}_{1}\left|\mathrm{~A}_{\mathrm{n}} \uparrow \mathrm{A}_{1}\right| \mathrm{A}$.
$\Rightarrow \mu\left(\mathrm{A}_{1} \mid \mathrm{A}_{\mathrm{n}}\right) \rightarrow \mu\left(\mathrm{A}_{1} \mid \mathrm{A}\right) \Rightarrow \mu\left(A_{n}\right) \rightarrow \mu(A)$.
So μ is \oplus-continuous from above at $A \in \mathcal{F}$.
From (a) and (b) we get that μ is \oplus-continuous at $\mathrm{A} \in \mathcal{F}$.
2-Let $\left\{\mathrm{A}_{n}\right\}$ be a disjoint sequence of sets in \mathcal{F}, and $\mathrm{A}=\bigcup_{n=1}^{\infty} \mathrm{A}_{n}$.
Put $\quad B_{n}=\bigcup_{\zeta=1}^{n} \mathrm{~A}_{i} \Rightarrow \mathrm{~B}_{n} \in F \Rightarrow \mathrm{~B}_{n} \uparrow \mathrm{~A}$.
Since μ is $\oplus-$ continuous from below at $\mathrm{A} \in F$.
$\Rightarrow \mu\left(\mathrm{B}_{n}\right) \rightarrow \mu(\mathrm{A})$.
Since μ is \oplus-additive $\Rightarrow \mu\left(B_{n}\right)=\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\stackrel{n}{i=1} \underset{\oplus}{\mu}\left(\mathrm{~A}_{i}\right)$.

$$
\Rightarrow \oplus_{i=1}^{n} \mu\left(A_{i}\right) \rightarrow \mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right) \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)=\underset{n=1}{\infty} \mu\left(\mathrm{~A}_{n}\right) .
$$

So μ is countable \oplus-additive.
3-In the notation of (2) put $\mathrm{C}_{\mathrm{n}}=\mathrm{A} \mid \mathrm{B}_{\mathrm{n}} \Rightarrow C_{n} \in \mathcal{F}, n=1,2, \ldots \ldots$.

$$
\begin{aligned}
& \Rightarrow C_{n} \downarrow \varphi . \\
& \Rightarrow \mu\left(C_{n}\right) \rightarrow \mu(\varphi)=0 \Rightarrow \mu\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{n}}\right) \rightarrow 0 . \\
& \mu(A)=\underset{i=1}{n} \mu\left(A_{i}\right) \oplus \mu\left(C_{n}\right) .
\end{aligned}
$$

So that $\mu(A)=\underset{i=1}{\infty} \mu\left(A_{i}\right)$.

3- The completion of \oplus-measure

In this section we construct the completion of \oplus-measure.
Definition (3.1)
Let (Ω, \mathcal{F}) be a measurable space with F a σ-ring and μ is $\oplus-$ measure on $F, E \in F$ is said to be μ-null set if $\mu(E)=0$.The \oplus-measure μ is said to be complete on \mathcal{F} if \mathcal{F} contains the subsets of every μ-null sets.
Theorem (3.2):
Let $(\Omega, \mathcal{F}, \mu)$ be a space with \oplus-measure where \mathcal{F} is σ-ring and $N_{\mu}=\{E: E \subset A \in \mathcal{F}$ and $\mu(A)=0\}$ then N_{μ} is a σ-ring.

Proof:

1- Clearly $\varphi \in N_{\mu}$.
2- Let $E_{1}, E_{2} \in N_{\mu} \Rightarrow$ there exists $A_{1}, A_{2} \in \mathcal{F}$ such that $E_{1} \subseteq A_{1}, E_{2} \subset A_{2}$ and $\mu\left(A_{1}\right)=0, \mu\left(A_{2}\right)=0$.
$E_{1} \mid E_{2} \subset E_{1} \subset A_{1} \in \mathcal{F} \quad$ So $E_{1} \mid E_{2} \in N_{\mu}$.
3- Let $\left\{E_{i}\right\}$ be a sequence of sets in $N_{\mu} \quad i=1,2, \ldots . \Rightarrow$ there exist a sequence
$\left\{A_{i}\right\} \quad i=1,2, \ldots$ of sets in F such that $E_{i} \subset A_{i}$ and $\mu\left(A_{i}\right)=0$.
$\bigcup_{i=1}^{\infty} E_{i} \subset \bigcup_{i=1}^{\infty} A_{i}$ Since \mathcal{F} is σ-ring $\Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
$\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \oplus_{i=1}^{\infty} \mu\left(A_{i}\right)=0 \Rightarrow \mu\left(\left(_{i=1}^{\infty} A_{i}\right)=0\right.$.
So $\bigcup_{i=1}^{\infty} E_{i} \in N_{\mu}$ therefore N_{μ} is σ-ring.

Theorem (3.3):

Let (Ω, F, μ) be a space with \oplus-measure where F is a σ-ring, define $\bar{F}=\left\{\left(E \cup E_{1}\right)-E_{2}: E \in \mathcal{F}, E_{1}, E_{2} \in N_{\mu}\right\}$ then $A \in \bar{F}$ iff there exist sets $M, N \in \mathcal{F}$ such that $M \subset A \subset N$ and $\mu(N-M)=0$.
Proof:
Let $M, N \in F$ and $M \subset A \subset N$ such that $\mu(N-M)=0$, so $A=(N \cup \varphi)-(N-A)$.
Since $N-A \subset N-M \in F$ and $\mu(N-M)=0$.
$\Rightarrow N-A \in N_{\mu}$.
Therefore $A \in \bar{F}$.
Suppose that $A \in \bar{F}$.
Then $A=\left(E \cup E_{1}\right)-E_{2}, E \in \mathcal{F}, E_{1}, E_{2} \in N_{\mu}$.
Therefore there exist $A_{1}, A_{2} \in \mathcal{F}$ such that $\mu\left(A_{i}\right)=0$ and $E_{i} \subset A_{i}, E-A_{2} \subset A \subset E \cup A_{1}$
$E \cup A_{1}, E-A_{2} \in \mathcal{F}$ and
$\mu\left(\left(E \cup A_{1}\right)-\left(E-A_{2}\right)\right)=\mu\left(\left(A_{1}-E\right) \cup\left(A_{2} \cap E\right)\right)$.
$=\mu\left(\left(A_{1}-E\right)\right) \oplus \mu\left(A_{2} \cap E\right)$.
Since $A_{1}-E \subset A_{1}$ and $A_{2} \cap E \subset A_{2}$.
$\Rightarrow \mu\left(A_{1}-E\right)=0 \wedge \mu\left(A_{2} \cap E\right)=0$.
So $\mu\left(\left(E \cup A_{1}\right)-\left(E-A_{2}\right)\right)=0$.

Corollary (3.4):

Let (Ω, F, μ) be a space with \oplus-measure where F is σ-ring then $A \in \bar{F}$ iff $A=E \cup M, E \in \mathcal{F}$ and $M \in N_{\mu}$.

Proof:

Suppose that $A \in \bar{F}$.
By theorem (1.3.3) there exist $M, N \in \mathcal{F}$ such that $N \subset A \subset M$ and $\mu(M-N)=0$
$A=N \cup(A-N), N \in F$.
Since $A-N \subset M-N \in F$ and $\mu(M-N)=0$.
$\Rightarrow A-N \in N_{\mu}$.
Conversely suppose $A=E \cup M \quad, E \in F \mathcal{F} \wedge \mathcal{N}_{\mu}$.

$$
\begin{aligned}
& A=(E \cup M)-\varphi \quad \varphi \in N_{\mu} . \\
& \Rightarrow A \in \bar{F} .
\end{aligned}
$$

Corollary (3.5):

Let (Ω, F, μ) be a space with \oplus-measure where \mathcal{F} is σ-ring then $A \in \bar{F}$ iff $A=E-D$ with $E \in F$ and $D \in N_{\mu}$.

Proof:

Suppose that $A \in \bar{F}$.
\Rightarrow There exist $M, N \in \mathcal{F}$ such that $M \subset A \subset N$.
and $\mu(N-M)=0$.
$A=N-(N-A) \quad, N \in \mathcal{F}$.
Since $N-A \subset N-M \in F$ and $\mu(N-M)=0$.
So $N-A \in N_{\mu}$.
Conversely suppose that $A=E-D$ where $E \in F \quad \Lambda \quad D \in N_{\mu}$.

$$
\begin{aligned}
& \Rightarrow A=(E \cup \varphi)-D \quad D, \varphi \in N_{\mu} . \\
& \Rightarrow A \in \bar{F} .
\end{aligned}
$$

Theorem (3.6):

Let (Ω, F, μ) be a space with \oplus-measure where F is a σ-ring then \bar{F} is σ-ring.

Proof:

1-clearly $\varphi \in \bar{F}$.
2-Let $\left\{A_{i}\right\} \quad \mathrm{i}=1,2, \ldots$ be a sequence of sets such that $A_{i} \in \bar{F} \Rightarrow A_{i}=M_{i} \cup N_{i}$ where
$M_{i} \in \mathcal{F}$ and $N_{i} \in N_{\mu}$.
$\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty}\left(M_{i} \cup N_{i}\right)$.
$=\left(\bigcup_{i=1}^{\infty} M_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} N_{i}\right)$.
Since F and N_{μ} are σ-ring.

$$
\begin{aligned}
\Rightarrow & \bigcup_{i=1}^{\infty} M_{i} \in F_{1} \\
& \bigcup_{i=1}^{\infty} N_{i} \in N_{\mu}
\end{aligned}
$$

So $\bigcup_{i=1}^{\infty} A_{i} \in \overline{\mathcal{F}}$.
3- Let $A, B \in \bar{F}$ from Corollary (1.3.4) we obtain $A=M_{1} \cup N_{1} \quad B=M_{2} \cup N_{2}$.
$A-B=\left(M_{1} \cup N_{1}\right)-\left(M_{2} \cup N_{2}\right)$.
$=\left(\left(M_{1}-M_{2}\right)-N_{2}\right) \cup\left(\left(N_{1}-M_{2}\right)-N_{2}\right)$.
$\left.\left.=\left[\left(M_{1}-M_{2}\right)-E_{2}\right) \cup\left(E_{2}-N_{2}\right) \cap\left(M_{1}-M_{2}\right)\right)\right] \cup\left(\left(N_{1}-M_{2}\right)-N_{2}\right)$
$N_{2} \subset E_{2} \in F, \quad \mu\left(E_{2}\right)=0$
$A-B \in \bar{F}$.
Therefore \bar{F} is σ-ring.

Theorem (3.7):

Let (Ω, F, μ) be a space with \oplus-measure and $\bar{\mu}: \bar{F} \rightarrow E_{a}$ defined as follows $\bar{\mu}(A)=\mu(M)$ where $A=(M \cup N), M \in F$ and $N \in N_{\mu}$.

Then $\bar{\mu}$ is complete \oplus-measure on \bar{F}, where is restriction to \mathcal{F} is μ.

Proof:

$1-\bar{\mu}(\varphi)=\mu(\varphi)=0$.
2-Let $\left\{A_{i}\right\}$ be a sequence of sets in $\bar{F} \quad i=1,2, \ldots$
\Rightarrow There exist a sequence of sets $\left\{E_{i}\right\}$ in F and a sequence of $\operatorname{sets}\left\{N_{i}\right\}$ in N_{μ} such that $A_{i}=E_{i} \cup N_{i}$.
$\bar{\mu}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\bar{\mu}\left(\bigcup_{i=1}^{\infty}\left(E_{i} \cup N_{i}\right)\right)$.
$=\bar{\mu}\left(\left(\bigcup_{i=1}^{\infty} E_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} N_{i}\right)\right)$
$=\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\stackrel{\infty}{i=1}+\mu\left(E_{i}\right)=\underset{i=1}{\infty} \bar{\mu}\left(A_{i}\right)$
So $\bar{\mu}$ is \oplus-measure on $\overline{\mathcal{F}}$.
3-Let $A \in \mathcal{F} \quad, A=A \cup \varphi, \varphi \in N_{\mu}$.
$\bar{\mu}(A)=\bar{\mu}(A \cup \varphi)=\mu(A)$.
μ is \oplus-restriction of $\bar{\mu}$ to \mathcal{F}.

4- Let $E \in \bar{F}$ and $\bar{\mu}(E)=0, A \subset E$.
$E=M \cup N \quad, M \in F, N \in N_{\mu}$.
$\bar{\mu}(E)=\mu(M) \quad \Rightarrow \mu(M)=0$.
Since $N \in N_{\mu} \Rightarrow$ There exists $E_{1} \in F \quad$ such that $N \subset E_{1}$ and $\mu\left(E_{1}\right)=0$, since $\mu\left(E_{1}\right)=\mu(M)=0 \Rightarrow M, E \in N_{\mu}$.
$A \subset E=M \cup N \subset M \cup E_{1} \Rightarrow A \subset M \cup E_{1} \in F, \mu\left(M \cup E_{1}\right)=\mu(M) \oplus \mu\left(E_{1}\right)=0 \Rightarrow A \in N_{\mu}$
$A=\left(M \cup E_{1}\right)-\left(\left(M \cup E_{1}\right)-A\right), M \cup E_{1} \in \mathcal{F},\left(M \cup E_{1}\right)-A \in N_{\mu} \Rightarrow A \in \bar{F} \Rightarrow \bar{\mu}$ is complete on \bar{F}.
5- To show that the definition of $\bar{\mu}$ is well defined.
Let $A \in \bar{F} \Rightarrow A=M \cup N, M \in \mathcal{F}$ and $N \in N_{\mu}$.

$$
\Rightarrow \exists E \in F \quad N \subset E \text { and } \mu(E)=0 .
$$

The relations $M \cup N=(M-E) \cup(E \cap(M \cup N))$.
and $M \Delta N=(M-E) \cup(E \cap(M \Delta N))$ show that
the class $\overline{\mathcal{F}}$ may also be decried as there class of the form $M \Delta N, M \in \mathcal{F}$ and $N \in N_{\mu}, \bar{\mu}(M \Delta N)=\bar{\mu}(M \cup N)=\mu(M)$.

Let $F_{1} \Delta N_{1}=F_{2} \Delta N_{2}$.

$$
F_{i} \in \mathcal{F} \quad, N_{i} \subseteq E_{i} \in \mathcal{F} \quad, \mu\left(E_{i}\right)=0 \quad \mathrm{i}=1,2
$$

Then $F_{1} \Delta F_{2}=N_{1} \Delta N_{2}$.
Therefore $\mu\left(F_{1} \Delta F_{2}\right)=0 \Rightarrow \mu\left(F_{1}\right)=\mu\left(F_{2}\right) \Rightarrow \bar{\mu}\left(F_{1} \Delta N_{1}\right)=\bar{\mu}\left(F_{2} \Delta N_{2}\right)$.
So the definition of $\bar{\mu}$ is well defined.

References

[1] C.Guo and D.Zhang, "On set-valued fuzzy measures", In formation sciences 160(2004)13-25.
[2] L.Lushu, "Random fuzzy sets and fuzzy martingales", Fuzzy Sets and Systems 69(1995)181-192.
[3] M.Sugeno, "Theory of fuzzy integrals and it's applications", Ph.D.Dissertation, Tokyo Institute of Technology, 1974.
[4] R.B.Ash, "Measure integration and functional analysis", Academic Press, Newyork, (1972).
[5] R.B.Ash, "Real analysis and probability", Academic Press, New York (1972).
[6] V.Dimiev, "Fuzzifying functions", Fuzzy Sets and Systems 33(1989) 47-58.
[7] V.Dimiev, "Metric spaces on fuzzy sets". C.R.Acad. Bulgare Sci. 39(1986) 9-12.

