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ABSTRACT 

A mathematical technique for analyzing folds was proposed instead of the tedious 
and slow graphical method. Procedure of this technique comprises converting the data of 
bedding planes to pole attitudes, calculation of the mean pole vector of fold limbs, 
obtaining the best fit π-circle, determining the fold geometric properties and finding fold 
cylindricity. This procedure was carried out by FOLDPI, a GWBASIC computer program 
written for the purpose of this application. Most of the geometrical properties of fold 
were dealt with. In addition, an example taken from the Sinjar Anticline was used for 
testing the validity of this technique. The results of testing the program against manually 
obtained solutions proved that this technique can be very helpful in getting faster and 
more accurate results   
 ــــــــــــــــــــــــــــــــــــــــــــــــــ

   FOLDPIطـريقة رياضية لتحليل الطيات باستخدام البرنامج الحاسوبي 
  

  الملخص

). طريقة شكل باي(أُقترحت هذه الطريقة الرياضية لتحليل الطيات بدلاً من الطريقة البيانية السابقة 
تويات الطبقات إلى وضعيات الأقطاب ثم إيجاد الاتجـاه  تتضمن هذه الطريقة تحويل قراءات وضعيات مس

إن (، حساب معدل وضعية جنـاحي الطيـة والمنطقـة المفصـلية     )الأقطاب(الجيبتمامي لهذه المتجهات 
، أيجاد أفضل دائرة باي تَمر  بمعدل وضعية جناحي الطية، حساب الصـفات الهندسـية للطيـة    )وجدت

وهو برنامج أُعد  FOLDPIوأُلحق بهذه الطريقة البرنامج الحاسوبي . ةوأخيراً إيجاد درجة اسطوانية الطي
وقد حللَت طية سنجار بواسطة هذه الطريقة كنموذج لاختبـار مـدى   . بلغة بيسك لتسريع إنجاز عملياتها

  .وكنتيجة، أُثبت أن هذه الطريقة ليست مشجعة فقط بل إنها أسهل وأسرع وأدق. صلاحيتها
  ــــــــــــــــــــــــــــــــــــــــــــــــــــ

INTRODUCTION 
Conventionally, folds were analyzed using the common graphical technique of π-

diagram, which is one of the stereographic projection applications. This graphical method 
has a worldwide usage and it has an advantage of graphically showing fold geometry but 
it is tedious and time consuming specially in plotting and counting the S-poles on the 



Nabeel K. Al-Azzawi 

stereonet. Recently, and for the sake of faster and easier techniques, many structural 
geologists have attempted to modify their related methods towards the trend of 
mathematics and computer programming approaches. Accordingly, the present author 
suggests a mathematical technique for digital execution of this π-diagram and the 
determinion of the geometric parameters of folds using mathematics and computer 
program. 

Previously, some authors made contributions in this trend. They performed some 
steps in this respect. Ramsay (1967) suggested two mathematical techniques in the scope 
of fold analysis. The first was applied for determination of unimodal poles distribution by 
vectors of directional cosines. While the second method was used for determining the 
best-fit π-circles of cylindrical folds.  Bengston (1980) mentioned, marginally, about this 
idea through out his study of tangent diagram. Ramsay and Huber (1987) described the 
methods of Ramsay (1967) by  “ the accuracy contained in such methods is only justified 
if it is imperative to exploit the full potential of very precise primary data”.  

π-diagram of fold analysis is a method applied by using  an equal area stereographic 
projection (stereonet) to plot the perpendiculars to the bedding planes (S-poles). Attitudes 
of such bedding planes are collected along traverse which must be transverse to the fold 
axis. Plotting the S-poles of such a fold (point diagram), counting the concentration of 
points in 1% of the stereonet area, and lastly contouring the counted values in the form of 
contour percentages (contour %) to produce the π-diagram of this fold. The advantage of 
this diagram is the geometric view of the fold parameters. Such parameters are fold axis, 
fold plunge, fold symmetry, interlimb angle and attitude of axial plane.  
          
 
 
 
 
 
 
 
 
 
 
 
 

In π–diagram, if the fold is perfectly cylindrical, the bedding S-poles fall, perfectly, 
along a great circle of the stereonet (π-circle). When the fold transforms geometrically to 
non-cylindrical types, the scattering of the poles around π-circle becomes more 
pronounced. The perpendicular to the π-circle is called π-axis that is coinciding with the 
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fold axis. Consequently, if the fold is perfectly cylindrical the angle between each S-pole 
and fold axis is perfectly  90° (Fig. 1). Practically, the S-poles of any natural fold do not 
lie exactly on a certain great circle but fall in zone around this circle. Nevertheless, the 
human error in field measurements plays a role in the accuracy of these measurements; 
which amount to ±2 degree (Ramsay and Huber, 1987). However, the mean reason 
responsible for the scattering of S-poles is the absence of perfectly cylindrical folds in the 
field. Many of natural folds are of cylindrical, sub-cylindrical and non-cylindrical styles. 
In this respect Ramsay (1967) designed his method for determining the best-fit π-circles 
for perfectly cylindrical folds. This is because only in this type of folds the π-axis makes 
a right angle with each S-pole; and he built up his mathematics on this property. It must 
be mentioned that in Ramsay (1967) terminology, the term cylindrical fold is analogous 
to perfectly cylindrical one. In the more recent synthesis, Ramsay and Huber (1987) 
classified the folds into perfectly cylindrical, cylindrical, sub-cylindrical and non-
cylindrical types (Fig. 2). Previously, folds classified as cylindrical and non-cylindrical 
and some time cylindroid (Fleuty, 1964). In the classification of Ramsay and 
Huber(1987) the perfectly cylindrical fold has its S-poles lie perfectly on the π-circle.  

  

 
 
While if more than 90% of the S-poles fall within an angle of ±10° from the 

constructed π–circle the fold should be termed cylindrical. But if more than 90% of the 
data lie within ±20° of the π -circle the fold is then called sub-cylindrical fold. Folds with 
more than 10% of their S-poles falling outside the limit of ±20° are termed non-
cylindrical (Fig. 2). In addition to the scope of the present work, the author extended the 
method of Ramsay (1967) from its application only on perfectly cylindrical to include all 
types of folds described by Ramsay and Huber (1987). This extension was based on the 
styles of poles distribution a round the best-fit π-circle. 
 

 
 
 



Nabeel K. Al-Azzawi 

METHODOLOGY 
The proposed mathematical method comprises the following procedures: 

1st- Converting the data of bedding plane attitudes of both fold limbs (strike direction/dip 
amount when strike was taken clockwise from dip direction) to pole attitude (dip 
direction/dip amount) and finally to their corresponding directional cosine vectors 
(α, β  & γ).  

2nd- Calculation of the mean vector of each fold limb and hinge area by unimodal poles 
distribution method (summing method). 

3rd- Obtaining the best-fit π-circle for these two means of fold limbs, or three means (two 
limbs and a hinge area) 

4th- Determination of fold parameters which reflect its geometry.  
5th- Determination of the cylindricity of folds according to Ramsay and Huber (1987). 
 
1st- Determination of directional cosines : 

Mathematical equations needed for the determination of directional cosines from 
attitudes of bedding planes are derived in this work. So the angles α, β & γ are 
determined from strike directions and dip amounts. The following steps explain this 
procedure. 

 

 
 
1. Conversion of bedding plane attitudes (strike direction /dip amount) to pole attitude 

(dip direction / dip amount). 
So,  dr = 90 + ds       ,   dp = 90 – dpl    cdr = 90 – dr 

Where dr and dp are the angles of dip direction and dip amount of the pole, ds 
and dpl are of strike direction and dip amount of the bedding plane and cdr is the 
complimentary angle of dr. 

2. Determination of the directional cosines. These can fall into four cases. Each case 
represents one of the upper four quarters of the Cartesian coordinate. It must be 
mentioned that in the four cases the angle γ  is always equal to (90 – dp) with negative 
sign (Fig.4). 

The first case: if the pole of any plane falls in the first quarter (Fig.3). 
Determination of the angle α: 

         In Figure (3), suppose the line OA in the triangle OAB is unity.  
    Then   

AB = sin dp    and   OB = cos dp. 
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 In the triangle OBC the angle OCB is a right angle, then 
Sin cdr = CB / OB       so     CB = Cos dp. Sin cdr 

Also  
Cos cdr = OC / OB    so   OC = Cos cdr . Cos dp 

    According to Pythagorean Theorem 
(AC)2 = (AB)2 + (BC)2 

Therefore, 
(AC)2 = Sin2 dp + Cos2 dp . Sin2 cdr 

And, in the triangle OAC 
(AC)2 = (OC)2 + (OA)2 – 2 . OC. OA. Cos α 
Cos α = [(OC)2 + (OA)2 – (AC)2] / ( 2 . OC . OA) 

Resultant, the equation which is shown below is used for the determination of Cosα: 
 
 
 
 
Determination of the angle β: 

In the triangle OAB, OBA is a right angle, suppose the hypotenuse OA is unity (Fig. 
3). Therefore, 

OB = Cos dp              and             AB = Sin dp 
The angle BCO in the triangle BCO was drawn to be 90°. So, 

Sin dr  = CB / Cos dp          so          CB = Sin dr . Cos dp 
Cos dr =  OC / Cos dp         so          OC = Cos dr . Cos dp 

ABC is a right triangle, So according to the Pythagorean theorem 
(AC)2 = (CB)2 + (AB)2 

Then, 
(AC)2 = Sin2 dr . Cos2 dp + Sin2 dp 

Lastly, in the triangle AOC  
(AC)2 = (OA)2 + (OC)2 – 2 . OA . OC . Cos β 
Cos β = ( 1+ (OC)2 – (AC)2) / (2 . OC )        ------ OA is unity 

Resultant, the equation listed below, determine Cos β: 
 
   
   

It must be noted that this equation is similar to that equation of Cosα, accept the 
angle cdr is replaced by the angle dr. In this case, when the angle α fall in the first quarter 
it has a positive sign whereas the angle β is negative (Fig. 4). 

Cos β=[Cos2dr.Cos2dp+1- Sin2dp-Cos2dp. Sin2dr]/[2.Cos dr.Cos dp]  

Cosα = [Cos2cdr.Cos2dp+1–Sin2dp–Cos2dp.Sin2cdr]/[2.Cos cdr.Cos dp] 
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The second case: If the pole of any plane falls in the second quarter (Fig. 3). Therefore, 
drnew = drold – 90 
cdr = 90 – dr 

Similar to the first case, the angle α and β can be determined by: 
 
 
And, 
 
 

 
In this case, both α and β have positive signs (Fig. 4). 

 
The third case: If the pole of any plane falls into the third quarter. 
 Then,                    drnew = drold – 180 
                              cdr = 90 - dr 
Similarly, 
 
 
And 
 
 
 
In this quarter, α has negative sign. While β is positive (Fig. 4). 
 
The forth case: When the pole lies in the forth quarter.                  
Therefore,                  drnew = dr old –270 
                                   cdr = 90 – dr 

Similar to the previous cases, the angles α and β   can be determined by the 
following equations: 
 
 
 
 
And 

     Cosα = [Cos2dr.Cos2dp+1–Sin2dp–Cos2dp.Sin2dr]/[2.Cos dr.Cos dp] 

Cos β=[Cos2cdr.Cos2dp+1- Sin2dp-Cos2dp. Sin2cdr]/[2.Cos cdr.Cos dp] 

Cosα = [Cos2cdr.Cos2dp+1–Sin2dp–Cos2dp.Sin2cdr]/[2.Cos cdr.Cos dp] 

Cos β=[Cos2dr.Cos2dp+1- Sin2dp-Cos2dp. Sin2dr]/[2.Cos dr.Cos dp] 

Cosα = [Cos2dr.Cos2dp+1–Sin2dp–Cos2dp.Sin2dr]/[2.Cos dr.Cos dp] 
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In this quarter, the angles α and β have negative signs. Resultant, data of poles 
(directions and dip amounts) representing bedding planes are converted to directional 
cosines which represented by the cosines of the angles α, β and γ. 
 
2nd- The unimodal pole distribution method: 

The unimodal pole distribution was suggested and described by Ramsay (1967). It 
is also called method of summing vectors. Considering the pole as a unit vector, the 
method is used for determining the mean vector of poles of any geologic planes. This is 
done after determining the angles α, β and γ of each pole (unit vector) with respect to the 
coordinate axes x, y and z respectively (Fig. 5A). These angles, in the present work, are 
an output of the previous procedure (mentioned in 1st). The x, y, and z components of the 
side of the vector box (Fig. 5B) for each measurement are then calculated by Cosα, Cosβ 
and Cosγ respectively. These directional cosines are determined for all poles and sums of 
the vector components are calculated (Σ cosα, Σ cosβ and Σ cosγ). These sums give the 
dimentions of the x, y, and z components of the total vector sum and the diagonal of this 
box gives the strength of the total vector sum (TVS) which is equal to: 

TVS =   [(Σcosα )2 + (Σcosβ )2 + (Σcosγ )2]1/2 ------ (Ramsay,1967) 
Therefore, the mean vector direction with respect to x, y and z axes are given by: 
Cosα⎯  = Σcosα / TVS     ----------------------- 1 
Cosβ⎯  = Σcosβ / TVS     ----------------------- 2 
Cosγ⎯ = Σcosγ / TVS      ------------------------ 3  
           

  
 
In the course of this work, data that were taken from a fold can be differentiated into 

two or three concentrations. If the folds are of chevronic or mostly chevronic style, two 
concentrations of pole distribution are found. That is because the hinge is angular and 
there is no hinge area then the two concentrations representing the two limbs. Whereas, 
in the box type folds or near this shape, three concentrations are found. Two of them for 
the limbs and the third represent the hinge area. It means that each fold has two or three 
mean vectors. Consequently, the users of this method (Unimodal poles distribution) must 
process each concentration of fold poles and determine the mean vector of each one. 
These mean vectors (with the angles α, β and γ) can be used for determining the best-fit 

Cos β=[Cos2cdr.Cos2dp+1- Sin2dp-Cos2dp. Sin2cdr]/[2.Cos cdr.Cos dp] 
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π-circle of such a fold.  Mean vectors can be plotted manually by setting the angles α, β 
and γ on the stereonet or they can be processed mathematically to determine the fold π-
circle. 
 
3rd- Determination of best fit π-circle of folds: 

Fold π-circle, as it mentioned above, is a stereographic best-fitted great circle to 
bedding S-poles. The method for determining the best-fit π-circles was suggested by 
Ramsay (1967). In this method, π-axis was determined mathematically by finding the 
normal to each bedding S-poles of perfectly cylindrical fold. Then π-circle can be drown, 
stereographiclly, perpendicular to this normal. The method was based on the usual 
technique of minimizing the squares of the deviations of the observed bedding S-poles 
from this surface.  

Ramasy (1967; pp.18-20) designed this method for number of poles that fall 
perfectly on the π-circle, so this method is constrained for perfectly cylindrical folds only. 

The present author made a simple modification for wider range of applications 
including cylindrical and sub-cylindrical fold, which are dominant in the field. Therefore, 
it is modified by obtaining the mean vector of large number of poles for the two fold 
limbs or two-fold limbs and hinge area by the unimodal pole distribution. Then, 
determining of the π-circle best fitted to the two or the three concentrations. By this way 
of drawing the π-cirle, limits of ±10º and ±20º from π-cirle can be plotted and type of 
fold cylindricity can be found (As in E). According to this modification many types of 
folds can be identified. 

The method was described in (Ramsay, 1967), and it is summarized here as the 
following: 

Suppose α, β and γ are angles between π-axis vector of any fold and the three 
coordinate axes X, Y and Z respectively . Also, suppose a, b and c are angles between any 
bedding S-pole vector and the same coordinate axes (Fig. 6). 
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A =  ( Σ lm Σmn – Σl n Σ m2 ) / ( Σ l2 Σm2 – (Σ lm)2 ) 
B =  ( Σ lm Σ ln – Σ mn Σ l2 ) / ( Σ l2 Σ m2 – (Σ lm)2 ) 

Where, 
cos a = l , cos b = m, cos c = n, cos α / cos γ = A  and cos β / cos γ = B 
Ramsay (1967) derived three equations for determination of α, β and γ. These 

equations are described below. 
Because,          cos2 α + cos2 β + cos2 γ = 1  
 And                A = cos α / cos γ          and      B = cos β / cos γ 
Therefore        A2 Cos2 γ  + B2 cos2 γ  + cos2 γ = 1 
                       cos2 γ (A2 + B2 + 1) = 1 
And                cos2 γ = 1/ (A2 + B2 + 1) 
so 
  
 
Similarly, equations responsible for determining α and β were derived. 
 
  
  
         

By the values and signs of these angles the Cartesian coordinate position of π-axis 
was found. Fold π- circle can be drawn considering this π-axis normal to it. 
 
4th- Determination of fold geometry: 

Most of the important geometric properties of folds can be determined from this 
technique. Such properties are fold axis, fold plunge, interlimb angle, fold symmetry, 
attitude of axial plane and fold cylindricity.  
 
Fold axis: 

The angles α, β and γ which were calculated in (3rd page 6 ) are used for 
determining the attitude of fold axis (dip direction / dip amount).  
From figure (7), 

 
 

Also from the same figure, the triangle OAC has the right angle OCA   and the 
hypotenuse OA suppose to be unity. 

dp = 90 – γ  when dp  is the dip amount of fold axis  

cos γ = ( 1+ A2 +  B2 ) –1/2

cos α =  A (1 + A2 + B2 ) -1/2

cos β =  B ( 1+ A2 + B2 ) –1/2



Nabeel K. Al-Azzawi 

AC = sin β        and        OC = cos β 
Also in the triangle, OBA is a right angle. 

OB = cos dp      and      AB = sin dp 
 Whereas in the triangle ABC   

AC2 = AB2 + CB2 
CB =  (sin2 β – sin2 dp)1/2 

In the triangle OBC, 
CB2 = OC2 + OB2 – 2. OC. OB.Cos dr 
Sin2 β – sin2  dp = cos2 β . cos2 dp – 2 .cos β .cos dp . cos dr 
2. cos β . cos dp . cos dr = cos2 β + cos2dp –sin2 β + sin2 dp  

 
 

 
When dr is the dip direction of fold axis. The signs of the angles α and β serve as 

indicators to show in which quarter of Cartesian coordinate the fold axis was fall (Table 
1). 

 
Table 1 : Signs of the angles α and β in each coordinate quarter. 

Sign of the angle α  Sign of the angle β Position 
Positive Negative First quarter 
Positive Positive Second quarter 
Negative Positive Third quarter 
Negative Negative Forth quarter 

         
If the fold axis falls in the first quarter, dr remains without change. Whereas, if it 

falls in the second, third and forth quarter, then 90°, 180° and 270° are added to the angle 
dr for obtaining its correct dip direction).  
 
 
 
Fold plunge: 

Fold plunge depends upon dip amount of fold axis (dp). When (dp) is equal to zero, 
the fold is nonplunging. While if (dp) is more than zero, the fold becomes plunging. And 
increasing of dp angle means increasing of degree of plunging. 
 
 
 
Interlimb angle: 

According to this procedure, interlimb angle can be calculated by adding the 
absolute value of γ1 (of the first limb) to the absolute value of γ2 (of the second one).  The 
angles γ1  and γ2  are always having negative sign (Fig.4) then it must be considered their 
absolute values when the interlimb angle was determined. This calculation must be done 
along a plane perpendicular to the fold axis. Then concentrations of the two limbs must 
be rotated until the fold axis becomes horizontal and determination of the interlimb angle 
was done along the N-S vertical plane (Fig. 8). 

        dr = cos-1 [ (cos2β+cos2dp- sin2β +sin2dp)/(2*cos β* cosdp)] 

Attitude of fold axis = dip direction (dr) / dip amount (dp)  

Fold Plunge =  dp of  fold axis
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Where adpl1  and adpl2  are mean dips of the two limbs 
 
Folds symmetry: 

Fold symmetry can be found by comparing adpl1 with adpl2 or γlimb1 with γlimb2. 
Resultant, if dpl1 is equal to dpl2. Then the fold is symmetrical, otherwise it is 
asymmetrical with the vergency being towards the limb which has greater pole dip angle 
(dp).      
         
 
 
Attitude of axial plane: 

This attitude will be possible if the attitude of axial trace is known (Ramsay and 
Huber, 1987). While if the fold is of parallel type, axial plane can be obtained by joining 
the bisector of interlimb angle with the fold axis. This is because in the parallel fold the 
axial plane always bisects the interlimb angle. In this work the axial plane determination 
was restricted to parallel fold type because other types are more complicated to be 
processed mathematically. 

Axial plane attitude can be represented by its dip amount Apdp and dip direction 
Apdr. 

Apdp= 90 – ((( γmax + γmin ) / 2) – γmin ) 
Where γmax and γmin are dip angles of steep and gentle limbs respectively. 

Apdr  coincide with the dip direction of gentle limb.  
 
 
 

5th- Determination of fold cylindericity:  
Ramsay and Huber (1987) classified the folds into perfectly cylindrical, cylindrical, 

sub-cylindrical and non-cylindrical, which were described previously in the introduction 
(Fig. 2).  

   Interlimb angle = γlimb1 + γlimb2  = 180- (adpl1 + adpl2 ) 

 Folds symmetry :      adpl1  < = >  adpl2  OR   γlimb1 <=>  γlimb2 

Attitude of axial plane = Apdp /  Apdr 
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Different natural folds show different properties or different π-diagram models. And 
it is very complicated to put a solution for each model. So a simplification was made for 
putting a general procedure for all these models. This is to revolve and rotate the data 
(mentioned below) to make a general solution for all the cases and keeping the entire 
relative geometrical relationships constant with each other but not with the coordinate 
axes. 
 
Revolving and rotating fold data 

Many authors suggested various methods for rotation of oriented data. Saha (1987) 
designed a FORTRAN program for rotation of data by transformation matrix. Al-Azzawi 
and Al-Jumaily (2000) proposed a mathematical procedure for rotation of joint planes 
relative to bedding rotation by trigonometric method. 

For the sake of applying this idea, two stages are used. Firstly, revolving of data, 
horizonally, until direction of π-axis coincides with east direction of stereonet. This is 
done by adding (90 – dr) when dr less than 90°, and subtracting (dr – 90) when dr more 
than 90° to or from the angle dr.  
 
 
 
          

Secondly, rotation of all data around Y coordinate axis ( N-S line in the stereonet) 
until π-axis becomes horizontal; it means rotation angle (R) = dp  of  π-axis (Fig. 8). 
When π-axis rotated by the angle R , π-circle became vertical plane. This is because π-
axis is always perpendiocular to the plane containing bedding S-poles (π-circle). This 
rotation can be done by transformation matrix. Many authors such as Arfken (1970) and 
Saha (1987) described this method. And it is summarizes here by the followings: 
1- Determination of L, M & N components for each S-pole vector before rotation. 

L = cos dp . sin dr ,     M = cos dp . cos dr     and    N = sin dp 
2- Multiplication of the components L, M & N by the transformational matrix that is 

responsible for rotation of vectors anticlockwise around Y-axis and through an angle R.  
 

L                          cos R               0                sin R 
                               M          *                 0                    1                  0 

N                          -sin R               0                cos R 
     

The resultant are new L, M & N  components ( after rotation)which are used to 
determine the direction dr  and dip angle dp of a pole vector. 
 
 
         

Mathematically, this fold classification could not be applied without revolving and 
rotating data (as it mentioned above). Rotating all data until π-axis becomes horizontal 
standardize all natural cases in into one form. Figure (9) shows the rotated state of Figure 
(2) which responsible for this classification. Figure (9) can be used to plot the revolved 
and rotated bedding S-poles of any fold and to find the type of this fold according to its 
cylindricity. 

If  dr < 90  then dr = dr + (90 – dr ) clockwise rotation 
Wheras,  if  dr > 90  then dr = dr – (dr – 90) anticlockwise  

dp = sin-1 Nnew  and  dr = sin-1 (Lnew / cos dp) or  dr = cos-1 (Mnew / cos dp) 
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Ramsay and Huber (1987) suggested limits for difining fold cylindricity (Fig. 2). 
These limits are ±10 and ±20 around π-circle of perfect cylindrical fold. These limits 
were divided the stereonet into fields; each field represents one of fold types.  Figure (9) 
showed these limits after revolution and rotation. Empirically, the present author derived 
mathematical equations to deal with these limits during the present technique. And using 
Lagrangian interpolation method mentioned in (Al-Azzawi, 2004) does this. For more 
explanation, the author exhibited curves shown in figure (10) representing these limits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
S-pole directions of stereonet normally range from 1° to 360°. So that, direction of 

each S-pole can be tested and determined in which field it fall. Counting of these poles 
and obtaining the percentage of each field was done. Then the fold can be classifying as 
in the followings:  
1- If all S-poles fall on the plane of perfectly cylindrical (π-circle) (Fig. 11), then it is 

called perfectly cylindrical fold. 
2- If 90% of S-poles fall between plane-10 and plane+10 around the mean π-circle 

(Fig.9) or on and above the standard curve of cylindrical fold (Fig. 10), then the fold 
named cylindrical type. 



Nabeel K. Al-Azzawi 

3- If 90% of them fall between plane-20 and plane+20 (Fig.9) or on and above the 
standard curve of sub-cylindrical fold (Fig.10), the fold classified as sub-cylindrical 
type. 

4- Otherwise or when more than 10% of the S-poles lie outside plane-20 and plane+20 
(Fig.9) or fall below the standard curve of sub-cylindrical fold (Fig.10), the fold 
becomes non-cylindrical type. 

So, mathematically or by computer programming, the number of bedding S-poles 
that fall between these limits can be determined.  

The procedure for analyzing fold was designed in GWBASIC computer program 
called FOLDPI (see the Appendix)  
 
Tested sample: 

Data for checking the validity of this technique has been taken from Sinjar 
Anticline. Al-Azzawi (1982) studied this anticline through three traverses. They named 
Gaulat, Sinjar and Jeribi. The first one was used for this test. The anticline in this traverse 
is, stratigraphically, comprise Shiranish formation of Upper Cretaceous age (the older 
formation). And it is followed by Aliji Fn. (Paleocene –L. Eocene), Jaddala Fn (Middle 
to Upper Eocene), Avana Fn. (M. to U. Eocene), Euphrates Fn. (L. Miocene), Serigakni 
Fn. (L. Miocene), Jeribe Fn. (L. Miocene), Alfatha Fn. (M. Miocene) and Injana Fn. (U. 
Miocene), (Al-Azzawi, 1982; Numan and Al-Azzawi, 2002). Tested data was taken from 
Serikagni Fn. (both Sinjar and Gaulat traverse) and analyzed graphically by π-diagram.  
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Consequently, the geometric properties of this fold are shown in a π-diagram of Figure 
(11).  This Figure showed that the mean pole attitudes of first and second limb are 340/74 
and 182/43, attitude of fold axis is 087/5, it is asymmetrical fold with N vergency, 
plunging fold with 7 degrees, the interlimb angle is 120º, dip amount of axial plane is 76º 
toward SE and more than 90% of bedding S-poles are fall within ±10 around the mean π-
circle then the fold classified as cylindrical fold. A computer program output for this 
analysis is exhibited in Figure (12) that shows not only encouraging result but it is more 
easy, fast and accurate than the graphical method specially when it done by computer 
scheme. 
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APPENDIX 
 
10 REM                                                                        FOLDPI 
20 REM PROGGRAM FOR  ANALIZING FOLDS BY NEW MATHEMATICAL TECHNIQUE  
30 REM DEPENDING ON THE PI- DIAGRAM PRINCIPALS . WRITTEN BY DR. NABEEL K .  
40 REM AL –AZZAWI, JONE ,2005. DEPARTEMENT OF GEOIOGY/UNIVERSITY OF MOSUL. 
50 CLS. 
60 PRINT 
70 PRINT “                                                    GEOMETRIC ANALYSIS OF FOLDS “ 
80 PRIN “ 
90 PRINT 
100 N1=50 
110 N2=15 
120 N3=0 
130 K=N1+N2 
140 M=N1+N2 +N3 
150 DIM DS(M), DPL(M), DR(M), DR1(M), DR2(M), DR3(M), DRR(M), DP(M), DP1(M), DP2(M), DPP(M), 
CDR(M), ALFA(M), BETA(M), GAMA(M), OFIE1(M), OFIE2(M), COSALF(M), COSBET(M),COSGAM(M), 
X(10), FX(10), LU(10), LD(10) 
160 CINDY=1 
170 REM INPUT DATA OF BEDDING PLANES AS STRIKE DIRECTIONS / DIP AMOUNTS. 
180 IF CINDY=1 THEN PRINT”*********ALFA, BETA & GAMMA OF FIRST LIMB” 
190 IF CINDY=2 THEN PRINT”*********ALFA, BETA & GAMMA OF SECOND LIMB” 
200 IF CINDY=3 THEN PRINT”*********ALFA, BETA & GAMMA OF HINGE AREA” 
210 ON CINDY GOTO 220,230,240 
220 N = N1 : GOTO 250 
230 N = N2 : GOTO 250 
240 N = N3 
250 SDPL=0 
260 SDDR=0 
270 FOR I = 1 TO N 
280 READ DS(I) , DPL(I) 
290 SDPL = SDPL +DPL(I) 
300 DDR = DS(I) – 90 
310 SDDR = SDDR + DDR 
320 NEXT I 

      330 DATA 234,16, 240,17, 246,15, 242,18, 240,18, 242, 17, 260,21,242,18, 252,20, 240,23,248, 23,15,     
250,13, 236, 13, 250,10, 270,18, 248,20 
340 DATA  236,19, 240, 18, 242,12, 256, 12, 250,10, 244,12, 250,14, 236, 16, 240, 20, 260,18 ,268,20, 250, 

18,264, 21, 252, 18,264, 20, 240,20 
350 DATA 230, 20,240,20, 260, 20, 286,22,242, 20, 232, 22, 250, 23, 230,32,228, 30,230,18, 252, 20, 254,12,18, 

248, 15,258, 20, 258,15 
360 DATA 100, 25, 110, 28, 90, 60, 89, 69, 100, 60, 80, 42, 74, 43, 90, 42, 100, 37, 87,45,100,45, 88, 49, 94, 42, 

98, 34, 79, 45 
370 ADPL(CINDY) = INT(SDPL/N) 
380 ADDR(CINDY) = INT(SDDR/N) 
390 IF ADDR(CINDY) < 0 THEN ADDR(CINDY) = 360 – ADDR(CINDY) 
400 SDR=0 
410 FOR I = 1 TO N 
420 REM DR AND DP ARE DIP DIRECTION  AND DIP AMOUNT OF S-POLE,  
430 REM WHERE CDR  IS THE COMLIMENTARY ANGLE OF  DR. 
440 DR(I) = 90+ DS(I) :DP(I) = 90- DPL(I) : IF DR(I) > 360 THEN DR(I) = DR(I) –360 
450 SDR = SDR + DR(I) 
460 REM THE THREE STATEMENTS BELOW ARE TO PUT ALL READINGS (OF 2 LIMBS AND HINGEA 
REA) IN ONE ARRY. 
470IF CINDY = 1 THEN DR2(I) = DR(I) : DP2(I) = DP(I) 
480 IF CINDY=2 THEN DR2( I+ N1 ) =DR ( I ) : DP2 (I+N1) =DP ( I ) 
490 IF CINDY=3 THEN DR2 ( I + K ) = DR ( I ) : DP2 (I + K )= DPI 
500 IF DR (I )<=90 THEN DR1 ( I )=DR ( I ) 
510 IF DR ( I )> 90 AND DR ( I ) <=180 THEN DR1 ( I )=DR ( I )  - 90 
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520 IF DR ( I ) > 180 AND DR ( I )<=270 THEN DR1 ( I )= DR ( I ) – 180 
530 IF DR ( I ) >270 AND DR ( I ) <=360 THEN DR1 ( I )=DR ( I ) –270 
540 CDR ( I )= 90 – DR1 ( I ) 
550 DR1 ( I ) = DR1 ( I ) * 3.132857 / 180 
560 DP ( I )=DP ( I ) * 3.142857 / 180 : CDR ( I )= CDR ( I ) * 3. 142857 / 180 
570 NEXT I 
580 ADR(CINDY) = SDR/N 
590 REM DETERMINATION OF DIRECTIONAL COSINES: THERE ARE FOUR CASES. 
600 REM GAMMA=90-DP WITH  -VE  SIGN. 
610 FOR  I = 1 TO N 
620 GAMA(I) = 90 – DP(I) * 180 / 3.142857 
630 GAMA(I) = GAMA(I) * 3.142857 / 180 
640 IF GAMA(I) > 0 THEN GAMA(I) = 0 – GAMA(I) 

650 OFIE1 (I) = ((COS(CDR(I)))^2 * (COS(DP(I)))^2 + 1 –(SIN(DP(I)))^2- (COS(DP(I)))^ 2 
*SIN(DR1(I))) ^2) / (2 * COS(DR1(I)) * COS(DP(I))) 

670 IF DR(I) > 90 THEN 750 
680 COSALF(I) = OFIE1(I) 
690 COSBET(I) = OFIE2(I) 
700 ALFA(I) = ATN(SQR(1- (OFIE1(I)) ^2) / OFIE1(I)) 
710 BETA(I) = ATN(SQR(1- ( OFIE2(I))^2) / OFIE2(I)) 
720 IF ALFA(I) < 0 THEN ALFA(I) = 0 - ALFA(I) 
730 IF BETA(I) > 0 THEN BETA(I) = 0 – BETA(I) 
740 GOTO 980 
750 IF DR(I) > 180 THEN 830 
760 COSALF(I) = OFIE2(I) 
770 COSBET(I) = OFIE1(I) 
780 ALFA(I) = ATN(SQR(1- ( OFIE2(I))^2) / OFIE2(I)) 
790 BETA(I) = ATN(SQR( 1- ( OFIE1(I))^2) / OFIE1(I)) 
800 IF ALFA(I) < 0 THEN ALFA(I) = ALFA(I) * (-1) 
810 IF BETA(I) < 0 THEN BETA(I) = BETA(I) * (-1) 
820 GOTO 980 
830 IF DR(I) > 270 THEN 910 
840 COSALF(I) = OFIE1(I) 
850 COSBET(I) = OFIE2(I) 
860 ALFA(I) = ATN ( SQR( 1 – (OFIE1(I))^2) / OFIE1(I)) 
870 BETA (I) = ATN) SQR( 1 – ( OFIE2(I)^2) / OFIE2(I)) 
880 IF ALFA(I) > 0 THEN ALFA(I) = 0 – ALFA(I) 
890 IF BETA(I) < 0 THEN BETA(I) = 0- BETA(I) 
900 GOTO 980 
910 REM WHEN DR MORE THAN 270 . 
920 COSALF(I) = OFIE2(I) 
930 COSBET(I) = OFIE1(I) 
940 ALFA(I) = ATN(SQR( 1 – (OFIE2(I))^2) / OFIE2(I)) 
950 BETA(I) = ATN(SQR( 1 – (OFIE1(I))^2) / OFIE1(I)) 
960 IF ALFA(I) > 0 THEN ALFA(I) = 0- ALFA(I) 
970 IF BETA9i0 > 0 THEN BETA(I) = 0- BETA(I) 
980 NEXT I 
990 REM  DETERMINING THE SUMMATION OF COSALF, COSBET &COSGAM 
1000 SCOSALF = 0 : SCOSBET = 0 : SCOSGAM=0 
1010 FOR I = 1 TO N 
1020 COSGAM(I) = COS( GAMA(I)) 
1030 SCOSALF = SCOSALF + COSALF(I) 
1040 SCOSBET = SCOS BET + COSBET(I) 
1050 SCOSGAM = SCOSGAM + COSGAM(I) 
1060 NEXT I 

1070 REM DETERMINATION OF UNIMODAL POLE DISTRIBUTION BY SUMMING METHOD. COSALF, 
COSBET & COSGAM ARE DIRECTIONAL COSINES OF THE MEAN OF POLE VECTORS. 

1080 TVS = ((SCOSALF)^2 + ( SCOSBET)^2 + (SCOSGAM)^2)^(1/2) 
1090 COSA(CINDY) = SCOSALF / TVS 
1100 COSB(CINDY) = SCOSBET / TVS 
1110 COSC(CINDY) = SCOSGAM / TVS 
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1120 A(CINDY) = ATN(SQR( 1 – COSA(CINDY) ^ 2 / COSA(CINDY)) 
1130 B(CINDY) = ATN(SQR( 1 – COSB(CINDY) ^ 2 / COSB(CINDY)) 
1140 C(CINDY) = ATN(SQR( 1 – COSC(CINDY) ^2 / COSC(CINDY)) 
1150 PRINT “ THE DIR. OF LIMB NO. “ ; CINDY; “ IS “ ; ADR(CINDY) 
1160 IF ADR(CINDY) <= 90 THEN 1200 
1170 IF ADR(CINDY) <= 180 THEN 1210 
1180 IF ADR(CINDY) <= 270 THEN 1220 
1190 ADR(CINDY) > 270 THEN 
1200 A(CINDY) = ABS(A(CINDY)) : B(CINDY) = ABS(B(CINDY)) * (-1) : C(CINDY) = ABS(C(CINDY)) 

* (-1) : GOTO 1240 
1210 A(CINDY) = ABS(A(CINDY)) : B(CINDY) = ABS(B(CINDY)) : C(CINDY) = ABS(C(CINDY) * (-1)  

: GOTO 1240 
1220 A(CINDY) = ABS(A(CINDY) *(-1)  : B(CINDY) = ABS(B(CINDY)) : C(CINDY)= ABS(C(CINDY)) * 

(-1) : GOTO 1240 
1230 A(CINDY)= ABS(A(CINDY)) (-1) : B(CINDY) = ABS( B(CINDY)) * (-1) : C(CINDY) = 

ABS(C(CINDY)) * (-1) 
1240 A1(CINDY) = A(CINDY) * 180 / 3.142857 : B1(CINDY) = B(CINDY) * 180 / 3.142857 : C1(CINDY) 

= C(CINDY) * 180 / 3.142857 
1250 PRINT A1(CINDY),B1(CINDY),C1(CINDY),CINDY 
1260 IF CINDY = 1 THEN CINDY = CINDY +1 : GOTO 170 
1270 IF CINDY = 2 THEN INPUT “TO INPUT DATA OF HINGE AREA PRESS ..2 OTHERWISE PRESS 

..0”; XXX: IF XXX= 2 THEN CINDY = CINDY + 1: GOTO 170 
1280 REM DETERMINATION OF BEST –FIT  PI-CIRCLE OF FOLD. 
1290 SLM= SMN=SLN=SM2=SL2=0 
1300 FOR I = 1 TO 2 
1310 L(I)= COS(A(I)) : M(I)= COS(B(I)) : N(I) = COS(C(I)) 
1320 IF A1(I)>0 THEN L(I) = L(I) * (-1)  
1330 IFB1(I) > 0 THEN M(I)= M(I)* (-1) 
1340 IF C1(I) <0 THEN N(I)= N(I) * (-1) 
1350 SLM= SLM + L(I) * M(I) 
1360 SMN= SMN + M(I) * N(I) 
1370 SLN = SLN + L(I) * N(I) 
1380 SL2 =  SL2 + (L(I)) ^2 
1390 SM2 = SM2 + (M(I)) ^2 
1400 NEXT I 
1410 AA=( SLM* SMN – SLN * SM2 / (SL2*SM2 – (SLM)^2) 
1420 BB= (SLM*SLN – SMN*SL2) / (SL2SL2*SM2 – (SLM)^2) 
1430 COSALF1= AA*(1+AA^2+BB^2 )^ ( - 1/ 2 ) 
1440 COSBET1 = BB* (1+AA^2 +BB ^ 2 ) ^ ( -1/ 2 )  
1450 COSGAM1= 1+AA^2+BB ^ 2 ) ^ (-1/2) 
1460 ALFA1=  ATN(SQR( 1- (COSALF1) ^2) / COSALF1) 
1470 BETA1= ATN(SQR( 1- ( COSBET1) ^ 2) / COSBET1) 
1480 GAMA1= ATN(SQR( 1- (COSGAM1) ^ 2) /  COSGAM1) 
1490 IF GAMA1 > 0 THEN 1530 
1500 GAMA1= GAMA1 * (-1) 
1510 BETA1= BETA1 * (-1) 
1520 ALFA1= ALFA1 * (-1) 
1530 ALFA2= ALFA1 * 180 / 3.142857 
1540 BETA2= BETA1 * 180 / 3.142857 
1550 GAMA2= GAMA1 * 180 / 3.142857 
1560 PRINT “********ALFA, BETA & GAMA OF FOLD AXIS” 
1670 PRINT ALFA2,BETA2,GAMA2 
1580 REM THIS ALFA,BETA AND GAMMA ARE OF PI-AXIS THAT IS NORMAL TO PI-CIRCLE 
1590 REM IF ALFA IS +VE & BETA –VE ------PI-AXIS FALL IN THE FIRST QUARTER. 
1600 REM IF ALFA IS +VE & BETA +VE ------PI-AXIS FALL IN THE SECOND QUARTER 
1610 REM IF ALFA IS -VE & BETA –VE ------PI-AXIS FALL IN THE THIRD QUARTER 
1620 REM IF ALFA IS -VE & BETA –VE ------PI-AXIS FALL IN THE FIRST QUARTER 
1630 REM DP (HERE) IS DIP OF PI-AXIS AND DR IS ITS DIP DIRECTION. 
1640 DP= 90 – ABS( GAMA2) 
1650 DP1 = DP * 3.142857 / 180 
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1660 AXIS= ((COS(ALFA1))^2 + (COS(DP1))^2 – (SIN(ALFA1))^2 + (SIN(DP1))^2) / (2*COS(ALFA1) 
*COS(DP1)) 
1670 DR = ATN(SQR(ABS( 1- AXIS ^ 2 )) / AXIS) 
1680 DR= DR 8 3,142857 
1690 IF ALFA1 > 0 AND BETA1 < 0 THEN QR=1 
1700 IF ALFA1 > 0 AND BETA1 > 0 THEN QR=2 
1710 IF ALFA1 < 0 AND BETA1 < 0 THEN QR=3 
1720 IF ALFA1 < 0 AND BETA1 < 0 THEN QR=4 
1730 IF QR=1 THEN DR= 90-DR 
1750 IF QR=2 THEN DR= DR+90 
1760 IF QR=3 THEN DR=DR +180 
1770 IF QR=4 THEN DR = DR +270 
1780 PRINT 
1790 PRINT “THE FOLD AXIS IS FALL IN THE QUARTER NO.”;QR 
1800 REM DETERMINING THE ATTITUDE OF FOLD AXIS 
1810 REM_----------------------------------------------------------------- 
1820 PRINT”******** THE ATTITUDE OF FOLD AXIS IS (“;INT(DR);”/”;INT(DP)”)” 
1830 REM DETERMINATION OF FOLD PLUNGE 
1840 REM---------------------------------------------------- 
1850 IF DP=0 THEN PLUNGE$=”NONPLUNGING” 
1860 IF DP>0 THEN PLUNGE$= “ PLUNGING” 
1870 PRINT”********THIS FOLD IS”;PLUNGE$ 
1880 PRINT”********AMOUNT OF PLUNGING IS”;INT(DP);”DEGREE” 
1890 REM DETERMINATION OF INTERLIM ANGLE 
1900 REM -------------------------------------------------------- 

1910 REM FOR THE SAKE OF DETERMINING INTERLIMB ANGLE, DATA OF THE TWO LIMBS MUST 
BE ROTATED TO VERTICAL PLANE 

1920 FOR I = 1 TO 2 
1930 IF DR < 90 THEN REV=90- DR : ADDR(I) = ADDR(I) + REV 
1940 IF DR >90 THEN REV= DR –90 : ADDR(I) = ADDR(I) – REV 
1950 ADPL(I) = ADPL(I) * 3.142857 / 180 
1960 ADDR(I) + ADDR(I) * 3.142857 / 180 
1970 R = DP * 3.142857 / 180 
1980 REM CALCULATING THE PARAMETERS L, M AND N BEFOR ROTATION 
1990 L1 = COS(ADPL(I)) * SIN (ADDR(I)) 
2000 M1 = COS(ADPL(I) * COS(ADDR(I)) 
2010 N1 = SIN(ADPL(I) 
2020 REM CALCULATING L, M AND N PARAMETERS AFTER ROTATION 
2030 L2 = L1 * COS(R) + N1 * SIN(R ) 
2040 M2 = M1 
2050 N2 = L1 * (-1) * SIN(R ) + N1 * COS(R ) 
2060 ADPL1(I) = ATN(N2/(1-N2 ^2) ^ (1/2)) 
2070 ADPL1(I)= ADPL1(I) * 180 / 3.142857 
2080 NEXT I 
2090 INTERLIMB = 180 – (ADPL1(1) + ADPL1(2)) 

2100 PRINT “ ********THE INTERLIMB ANGLE OF THIS FOLD IS = “; INT(INTERLIMB) ;”DEGREE” 
2110 REM FOLD SYMMETRY 
2120 REM ------------------------- 
2130 IF C(1) > C(2) THEN 2190 
2140 IF A(2) > 0 AND B(2) > 0 THEN VERG$= “ NW” 
2150 IF A(2) > 0 AND B(2) < 0 THEN VERG$= “ SW” 
2160 IF A(2) < 0 AND B(2) > 0 THEN VERG$= “ NE” 
2170 IF A(2) < 0 AND B(2) < 0 THEN VERG$= “ SE” 
2180 GOTO 2230 
2190 IF A(1) > 0 AND B(1) > 0 THEN VERG$= “ NW” 
2200 IF A(1) > 0 AND B(1)< 0 THEN VERG$= “ SW” 
2210 IF A(1) < 0 AND B(1) > 0 THEN VERG$= “ NE” 
2220 IF A(1) < 0 AND B(1) < 0 THEN VERG$= “ SE” 

2230 IF C(1) = C(2) THEN PRINT” ********THE FOLD IS SYMMETRICAL” ELSE PRINT”********THE 
FOLD IS ASYMMETRICAL AND VERGENT TOWARD”;VERG$ 

2240 REM -------------------------------------------------------------------------------------------------------------- 
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2250 C1(1) = INT(ABS( C1(1))) 
2260 C1(2) = INT(ABS(C1(2))) 
2270 IF C1(1)>C1(2) THEN CC=90-((C1(1)+C1(2))/2)–C1(2) ELSECC=90-((C1(1)+C1(2))/2)– C1(1) 
2280 APDP= INT(ABS(CC)) 
2290 IF APPL(1) > APPL(2) THEN APDR = ADDR(2) ELSE APDR=ADDR(1) 
2300 IF APDR > 0 AND APDR< 90 THEN APDR$ = “ NE” 
2310 IF APDR > 90 AND APDR< 180 THEN APDR$ = “ SE” 
2320 IF APDR >180 AND APDR< 270 THEN APDR$ = “ SW” 
2330 IF APDR >27 0 AND APDR<360 THEN APDR$ = “ NW” 
2340 IF APDR = 0 OR APDR = 360 THEN APDR$ = “N” 
2350 IF APDR = 90  THEN APDR$ = “E” 
2360 IF APDR =180  THEN APDR$ = “S” 
2370 IF APDR = 270 THEN APDR$ = “W” 
2380 PRINT”********DIP OF AXIAL PLANE IS “;APDP;”TOWARD”;APDR$;”(IF PARALLEL FOLD)” 
2390 REM TO DETERNIME THE CYLINDRICITY OF FOLD,  DATA MUST BE REVOLVING & 
ROTATING. THIS IS TO MAKE ALL DATA MOVE UNTIL PI—CIRCLE COINCIDE N-S LINE ON 
STEREOMET. 
2400 REM 1- REVOLVING OF PI-DIAGRAM UNTIL PI-AXIS POINT COINCIDE WITH E-W LINE OF 
STEREONET. 
2410 REM -------------------------------------------------------------------------------------------------------------- 
2420 FOR I = 1 TO M 
2430 IF DR < 90 THEN REV = 90 – DR : DR2(I)=DR2(I) + REV 
2440 IF DR > 90 THEN REV = DR – 90 : DR2(I) = DR2(I) – REV 

2450 REM 2- ROTATION OF POLES AROUND Y-AXIS  THROUGH THE ANGLE (R) & UNTIL PI-AXIS 
BECOME HORIZONTAL. 

 2460 IF DR2(I)= 90 OR DR2(I) = 270 THEN DR2(I) = DR2(I) –1 
2470 DP2(I) = DP2(I) * 3,142857 / 180 
2480 DR2(I) = DR2(I) * 3.142857 / 180 
2490 R = DP * 3.142857 / 180 
2500 REM DETERMINATION OF THE PARAMETERS L, M & N BEFORE ROTATION. 
2510 L1 = COS(DP2(I)) * SIN(DR2(I)) 
2520 M1 = COS(DP2(I)) * COS(DR2(I)) 
2530 N1 = SIN(DP2(I)) 
2540 REM DETERMINATION OF THE PARAMETER AFTER  ROTATION 
2550 L2 = L1 * COS (R ) + N1 * SIN(R ) 
2560 M2 = M1 
2570 N2 = L1 * (-1) * SIN(R ) + N1 * COS(R ) 
2580 DP1(I) = ATN(N2 / (1-N2^2) ^ (1/2) 
2590 ANG = ABS(COS(DP1(I))) 
2600 DR1(I) = ATN((L2 / ANG) / ( 1- (L2 / ANG) ^ 2) ^ (1/2) 
2610 DP1(I) = DP1(I) * 180 / 3.142857 
2620 DR1(I) = DR1(I) * 180 / 3.142857 
2630 DR2(I) = DR2(I) * 180 / 3.142857 
2640 IF DR2(I) > 180 AND DR2(I) < 270 THEN DR1(I) = 180 – DR1(I) 
2650 IF DR2(I) > =270 AND DR2(I) > 180 THEN DR1(I) = 360 + DR1(I) 
2660 IF DR1(I) > 360 THEN DR1(I) = DR1(I) – 360 
2670 IF DP1(I) < 0  THEN DP1(I) = ABS( DP1(I)) : DR1(I) = 180 + DR1(I) 
2680 NEXT I 
2690 REM ************************************************************************* 
2700 REM DETERMINATION OF FOLD CYLINDRICITY. 
2710 PER=0 : CYN=0 : SUB=0 : NON=0 
2720 REM READ THE STANDARD CURVE FOR PERFECT CYLINDRICAL FOLD. 
2730 FOR I = 1 TO 10 
2740 READ X(K), FX(K) 
2750 DATA 0, 0, 1, 36, 2, 78, 3, 82, 4, 86, 5, 86, 6, 86, 7, 87, 8, 88, 9, 89 
2760 NEXT K 
2770 FOR I = 1 TO M 
2780 IF DR1(I) <= 90 THEN DR3(I) = INT(DR1(I)) 
2790 IF DR1(I) > 90 AND DR1(I) <= 180 THEN DR3(I) = INT( 180 – DR1(I)) 
2800 IF DR1(I) > 180 AND DR1(I) <= 270 THEN DR3(I) = INT( DR1(I) – 180) 
2810 IF DR1(I) > 270 AND DR1(I) <= 360 THEN DR3(I) = INT( 360 – DR1(I)) 
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2820 IF DR3(I) = > 10 AND DP1(I) = 90 THEN PER = PER + 1 :GOTO 2880 
2830 IF DR3(I) = > 10 AND DP1(I) < 90 THEN 2880 
2840 IF DR3(I) < 1 THEN DR3(I) = 0 
2850 XX = DR3(I) 
2860 GOSUB  3240 
2870 IF INT(DP1(I)) >= TLX THEN PER=PER+1 
2880 NEXT I 
2890 REM STANDARD CURVE FOR CYLINDRICAL FOLD. 
2900 FOR K = 1 TO 10 
2910 READ X(K) , FX(K) 
2920 DATA 0, 0, 10, 0, 20, 60, 30, 70, 40, 75, 50, 77, 60, 79, 70, 80, 80, 90, 80 
2930 NEXT K 
2940 FOR I = 1 TO M 
2950 IF DR3(I) =< 10 THEN SYN=SYN +1 : GOTO 3020 
2960 IF DR3(I) >= 70 AND DP1(I) >= 80 THEN SYN=SYN +1 : GOTO 3020 
2970 IF DR3(I) >= 70 AND DP1(I) < 80 THEN 3020 
2980 IF DR3(I) < 1 THEN DR3(I) = 0 
2990 XX= DR3(I) 
3000 GOSUB 3240 
3010 IF INT(DP1(I))  >= INT(TLX) THEN SYN=SYN+1 
3020 NEXT I 
3030 REM STANDARD CURVE FOR SUB-CYLINDRICAL FOLD. 
3040 FOR K = 1 TO 10 
3050 READ X(K) , FX(K) 
3060 DATA 0, 0, 10, 0, 20, 0, 30, 45, 40, 58, 50, 64, 60, 66, 70, 68, 80, 70, 90, 70 
3070 NEXT K  
3080 FOR I = 1 TO M 
3090 IF DR3 (I ) =< 20 THEN SUB=SUB + 1 : GOTO 3160 
3100 IF DR3 ( I )  > = 80 AND DP1( I ) >=70 THEN SUB = SUB +1 :GOTO 3160 
3110 IF DR3 ( I ) > = 80 AND DP1 ( I )< 70 THEN 3160 
3120 IF DR3 ( I )< 1 THEN DR3 ( I ) = 0 
3130 XX = DR3 ( I ) 
3140 GOSUB 3240 
3150 IF INT (DP1 ( I )) > = INT ( TLX ) THEN SUB=SUB+1 
3160 NEXT I 
3170 NON = M – SUB 
3180 REM THE  PERCENTAGE  DETERMINATION OF EACH TYPE 
3190 IF PER / M >= .9 THEN PRINT”******** THIS FOLD IS PERFECT CYLINDRICAL” :GOTO 3230 
3200 IF SYN/M>=.9 THEN PRINT”********THIS FOLD IS  CYLINDRICAL”:GOTO 3230 
3210 IF SUB/M>. 9 THEN PRINT”********THIS FOLD IS  SUB-CYLINDRICAL”:GOTO 3230 
3220 IF NON / M > .1 THEN PRINT” ********THIS FOLD IS NON-CYLINDRICAL “  
3230 END 
3240 REM************************************************************************** 
3250 REM A SUBROUTINE FOR LAGRANGIAN INTERPOLATING A POINT WITHIN A CURVE. 
3260 TLX=O 
3270 FOR K = 1 TO 10 
3280 LU(K) = 1 : LD(K) = 1 
3290 FOR J =  1 TO 10 
3300 IF K = J THEN 3330 
3310 LU(K) = LU(K) * ( XX – X(J)) 
3320 LD(K) = LD(K) * ( X(K) – X(J)) 
3330 NEXT J 
3340 LX(K) = LU(K) / LD(K) * FX(K) 
3350 TLX = TLX + LX(K) 
3360 NEXT K 
3370 RETURN 
3380 REM ************************************************************************* 
 
 

 


