Synthesis , Characterization and antibacterial activity of Several New Schiff Bases Linked to Phthalimide Moiety

Ahlam Marouf Al-Azzawi and Marwa Shawqi Abdul Razzak

Department of Chemistry, College of Science, Baghdad University, Baghdad-Iraq

(K.J.Pharm.Sci)

(Received Nov. 2011, Accepted Nov. 2011)

<u>Abstract</u>

Some novel Schiff bases linked to phthalimide moiety have been synthesized via multistep synthesis. The first step involved reaction of phthalic anhydride with aniline producing N-phenyl phthalamic acid which was subsequently dehydrated to the corresponding N-phenyl phthalimide via treatment with acetic anhydride and anhydrous sodium acetate. The synthesized imide was treated with chlorosulfonic acid in the third step producing 4-(N-phthalimidyl)phenyl sulfonyl chloride which on amination with hydrazine hydrate in the fourth step afforded 4-(N-phthalimidyl)phenyl sulfonyl sulfonyl hydrazine and this in turn when introduced in condensation reaction with various aromatic aldehydes and ketones afforded the desirable new Schiff bases.

Structures of the prepared compounds were elucidated on the basis of FTIR, ¹HNMR and ¹³CNMR spectral data which agreed with the proposed structures.

The synthesized compounds were screened for their antibacterial activity against two microorganisms *Staphylococcus aureus* and *Escherichia Coli* and they were found to exhibit good to moderate antibacterial activity.

Keywords: Phthalic anhydride, phthalimide, Schiff bases.

تحضير وتشخيص مع تقدير الفعالية المضادة للبكتريا لعدد من قواعد شيف الجديدة المرتبطة بمكونة الفثال ايمايد أحلام معروف العزاوي و مروة شوقي عبد الرزاق قسم الكيمياء / كلية العلوم / جامعة بغداد

ر بين معذا البحث تحضر عدد من قواعد شيف الجديدة المرتبطة بمكونة الفثال ايمايد وذلك من خلال انجاز تم في هذا البحث تحضر عدد من قواعد شيف الجديدة المرتبطة بمكونة الفثال ايمايد وذلك من خلال انجاز التحضير المتعدد الخطوات حيث تم في الخطوة الاولى اجراء تفاعل بين انهيدريد الفثاليك والانيلين للحصول على حامض N- فنيل اميك الذي سحب منه الماء في الخطوة الثانية من خلال معاملته مع انهيدريد الخليك وخلات الصوديوم اللامائية للحصول على N- فنيل فثال ايمايد. اما في الخطوة الثالثة فقد تم معاملة N- فنيل فثال ايمايد المحضر مع كلورو حامض السلفونيك للحصول على 4- (N- فثال ايميديل) فنيل كلوريد السلفونيك والذي بدوره ادخل في تفاعل مع الهيدرازين في الخطوة الرابعة لانتاج 4- (N- فثال ايميديل) فنيل سلفونيك والذي والذي تم ادخاله في الخطوة الخامسة في تفاعل تكاثف مع الديهايدات وكيتونات مختلفة لانتاج قواعد شيف الجديدة. تم اثبات صحة تراكيب المركبات المحضرة من خلال الاعتماد على مطيافية الاستحصالة مطابقة الجديدة. تم اثبات صحة تراكيب المركبات المحضرة من خلال الاعتماد على مطيافية الاشعة تحت الحمراء والذي تم ادخاله في الخطوة الخامسة في تفاعل تكاثف مع الديهايدات وكيتونات مختلفة لانتاج قواعد شيف الجديدة. تم اثبات صحة تراكيب المركبات المحضرة من خلال الاعتماد على مطيافية الاشعة تحت الحمراء والذي المقترحة. كذلك تضمن البحث دراسة الفعالية البايولوجية لعدد من قواعد شيف المحضرة ضد انواع من البكتريا وقد اظهرت النتائج بان لقواعد شيف المحضرة فعالية جيدة ضد انواع البكتريا قيد الدراسة.

Introduction

Nitrogen heterocycle is an important part of the chemical structures of many natural and synthetic products with a variety of properties and applications in medicine⁽¹⁾. Among the bicyclic non-aromatic nitrogen heterocycles, phthalimides are an interesting class of compounds with a large range of applications⁽²⁾. Phthalimides have served as starting materials and intermediates for the synthesis of many types alkaloids of and pharmacophores⁽³⁾. Recently. phthalimide and some of its derivatives have proved to have important biological effects similar or even higher than known pharmacological molecules and so their biological being a subject of activity is biomedical research⁽⁴⁻⁷⁾.On the other hand Schiff bases belong to a widely used group of organic intermediates important for production of specially chemicals like pharmaceuticals or rubber additive⁽⁸⁾. They also have uses in many fields including analytical⁽⁹⁾, inorganic⁽¹⁰⁾, medicinal^(11,12) and polymer chemistry⁽¹³⁾. Moreover Schiff bases are also known to have biological activities such as antimicrobial⁽¹⁴⁾, antifungal $^{(15)}$, antitumor⁽¹⁶⁾ and as herbicider⁽¹⁷⁾.Keeping in view the facts mentioned we thought it is worthwhile to synthesize new Schiff bases containing phthalimide moiety which were predicated to have useful biological activities.

Experimental

Melting points were determined on Thomas Hoover apparatus and were uncorrected. FTIR spectra were recorded on SHIMADZU FTIR-8400 Fourier Transform Infrared spectrophotometer. ¹HNMR and ¹³CNMR spectra were recorded on Bruker 300MHz instrument in Al-Albate University in Jordan using

tetramethylsilane (TMS) as an internal standard and DMSO-d6 as a solvent.

<u>1. Synthesis of N-Phenylphthalamic</u> acid [1]

Literature procedures⁽¹⁸⁾ were used in preparation of the titled compound with minor modification. To a solution of (0.01 mole) of phthalic anhydride in (25 mL) of acetone, (0.01 mole) of aniline was added dropwise with stirring and cooling. Stirring was continued for two hours at room temperature then the resulted precipitate was filtered, dried then purified by recrystallization from ethanol.

<u>2. Synthesis of N-Phenylphthalimide</u> [2]

A mixture of (0.01 mole) of Nphenylphthalamic acid in (25 mL) of acetic anhydride and (5%) by weight of anhydrous sodium acetate was refluxed for two hours with stirring⁽¹⁹⁾. The resulted homogenous solution was cooled to room temperature before pouring into crushed ice then the obtained precipitate was filtered, dried and purified by recrystallization from acetone.

<u>3. Synthesis of 4-(N-phthalimidyl)phenylsulfonyl</u> Chloride [3]

Chlorosulfonic acid (4 mL) was added dropwise to (0.01 mole) of Nphenylphthalimide during two hours with stirring and keeping temperature at zero° $C^{(19)}$. Stirring was continued for ten hours at room temperature then the resulted mixture was poured into crushed ice carefully with stirring. The obtained precipitate was filtered, washed thoroughly with cold water, dried and purified by recrystallization from acetone.

4.Synthesisof4-(N-phthalimidyl)phenylsulfonylhydrazine [4]

To a solution of (0.01 mole) of compound [3] in (5 mL) of absolute

ethanol, (0.01 mole) of hydrazine hydrate was added dropwise with stirring and keeping temperature at (zero)°C. The resulted mixture was refluxed for 6 hours then cooled to room temperature before pouring on crushed ice with stirring. The resulted precipitate was filtered, washed with cold water, dried and finally recrystallized from ethanol. Physical properties of compounds [1-4] are listed in Table (1).

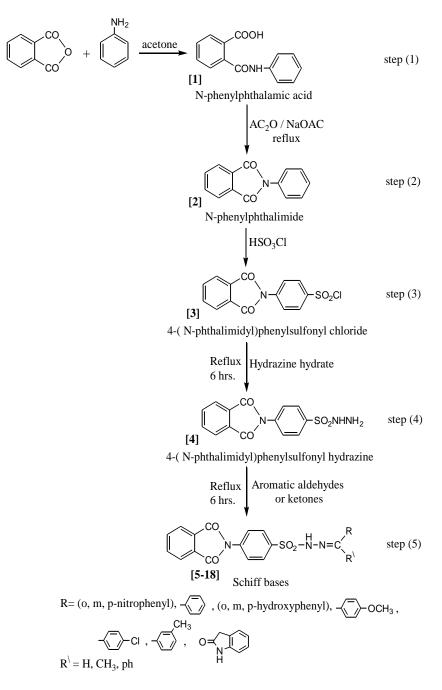
5. Synthesis of Schiff Bases [5-18]

A mixture of 4-(Nphthalimidyl)phenylsulfonyl hydrazine (0.01 mole), aromatic aldehyde or ketone (0.01 mole) and (2-3) drops of glacial acetic acid in absolute ethanol (20 mL) was refluxed for 6 hours⁽²⁰⁾. After cooling the obtained precipitate was filtered then washed with cold ethanol, dried and recrystallized from a suitable solvent. Physical properties of compounds [5-18] are listed in Table (2).

6.Biological study

The cup plate method using nutrient agar medium was employed in studying the antibacterial activity of the prepared imides against two types of bacteria, Staphylococcus aureous (Gram positive) and Escherichia Coli (Gram negative). DMF was used as sample solution and sample size for all the compounds was fixed at (0.1 mL). Using a sterilized cork borer cups were scooped out of agar medium contained in a petridish which was previously inoculated with the microorganisms . The tested compound solution (0.1 mL) was added in the cups and the Petridishes subsequently were

incubated at 37°C for 48 hrs . Zones of inhibition produced by each compound was measured in mm and the results are listed in Table (5).


Results and Discussion

Since both N-substituted phthalimides and Schiff bases are known biologically active compounds having wide spectrum of various applications, the target of the present work has been directed toward building of new molecules containing these two active moieties (phthalimide and Schiff base) with expected biological activity.

Performing this target was made by multistep synthesis described in Scheme (1).

The first step involved synthesis of Nphenyl phthalamic acid via reaction of equimolar amounts of phthalic anhydride and aniline⁽¹⁸⁾. The prepared phthalamic acid was introduced in dehydration reaction in the second step via treatment with acetic anhydride and anhydrous sodium acetate as dehydrating agent.

This step involved both dehydration and cyclization under the influence of acetic anhydride and the catalyst NaOAC producing N-phenyl phthalimide [2]. In the third step the prepared imide was introduced in chlorosulfonation reaction via treatment with chlorosulfonic acid producing compound [3] which in turn was introduced subsequently in reaction with hydrazine hydrate producing phthalimidyl phenylsulfonyl hydrazine [4]. In the final step of this work the prepared hydrazine derivative [4] was introduced in condensation reaction with different aldehydes and ketones producing the desirable Schiff bases [5-18].

Scheme(1)

The strategy which we depend on in building the new Schiff bases involved introducing of sulfonyl chloride group in para position of phenyl ring attached to phthalimide moiety followed by nucleophilic replacement of chloride with hydrazine moiety which created a suitable position represented by amino group which in turn was ready for condensation with different aldehydes and ketones producing the desirable Schiff bases.

Structures of the prepared compounds were confirmed by FTIR, ¹HNMR and ¹³CNMR spectral data.

FTIR spectrum of compound [1] showed strong absorption bands at 3325 cm⁻¹ and at 3136 cm⁻¹ due to v(O-H) carboxylic and v(N-H) amide. Other absorption bands appeared at 1720,1643 and at 1600 cm⁻¹ belong to

v(C=O)carboxylic, v(C=O)amide and v(C=C)aromatic respectively. FTIR spectrum of compound [2] showed disappearance of v(O-H) and v(N-H) absorption bands proving success of dehydration reaction and appearance of two bands at 1735 cm⁻¹ and 1708 cm⁻¹ due to asym., and sym., bands of v(C=O) imide.

FTIR spectrum of compound [3] showed two clear bands at 1365 cm⁻¹ and 1188 cm⁻¹ due to $v(SO_2)$ asym., and $v(SO_2)$ sym., respectively indicating success of introducing sulfonyl chloride moiety in phenyl phthalimide molecule.

Finally FTIR spectrum of compound [4] showed two strong absorption bands at 3359 cm^{-1} and 3265 cm^{-1} respectively which belong to (-NH-NH₂) group and this is an excellent proof for the success of hydrazine compound formation. FTIR spectra of the prepared Schiff bases [5-18] showed disappearance of the two characteristic absorption bands at $(3359 \text{ and } 3265) \text{ cm}^{-1}$ which belong to in (-NH-NH₂) group hydrazine compound [4] and appearance of new clear absorption band at (1608-1658) cm^{-1} due to v(C=N) imine. These two points are excellent proofs for the success of Schiff base formation⁽²¹⁾.

Besides FTIR spectra of Schiff bases [5-18] showed also clear absorption bands at (1735-1743) cm⁻¹ and (1706-1720) cm⁻¹ which were attributed to asym., and sym., v(C=O) imide.

Other absorptions appeared at (1573-1604) cm⁻¹, (1373-1388) cm⁻¹, (1157-1170) cm⁻¹ and (1315-1348) cm⁻¹ which belong to v(C=C) aromatic, asym., $v(SO_2)$ sym., $v(SO_2)$ and v(C-N)imide respectively.

Moreover FTIR spectra of Schiff bases [6, 8, 12, 15] showed clear absorption band at (3429-3479) cm⁻¹ belong to v(O-H) phenolic, while compound [7] showed two absorption bands at (1234 and 1126) cm⁻¹ belong to (C-O-C) ether and finally compound [14] showed strong absorption band at (1091) cm⁻¹ due to v(C-Cl).

All details of FTIR spectral data of compounds [1-4] and [5-18] are listed in Table (3) and (4) respectively.

On the other hand ¹HNMR and ¹³CNMR spectra of the prepared compounds showed characteristic clear signals thus ¹HNMR spectrum of compound [1] showed signals at δ =(7.04-7.89) ppm belong to aromatic protons and NH proton. A clear signal appeared at δ = 10.33 ppm belong to (OH) carboxylic proton. ¹³CNMR spectrum of compound [1] showed signals at δ = (119.9-140) ppm, 167.8 and 167.92 ppm which belong to aromatic ring carbons, (C=O) amide and (C=O) carboxyl respectively⁽²¹⁾.

¹HNMR spectrum of compound [2] Nphenyl phthalimide showed disappearance of (OH) carboxyl proton signal and appearance of two multiplet signals at $\delta = (7.44-7.56)$ and (7.89-7.97) ppm belong to protons of two aromatic rings. ¹³CNMR spectrum of compound [2] showed signals at δ =(123.8-135.1) ppm and at δ = 167.4 ppm which belong to aromatic ring carbons and (C=O) imide respectively. ¹HNMR spectrum of compound [4] 4-(N-phthalimidyl) phenyl sulforyl

(N-phthalimidyl) phenyl sulfonyl hydrazine showed signals at $\delta = (3.5)$ and 3.8) ppm which belong to NH₂ and NH of hydrazine moiety while signals of aromatic protons appeared at $\delta = (7.39-7.99)$ ppm.

¹³CNMR spectrum of compound [4] showed signals at $\delta = (124-137.9)$ and (167) ppm which belong to aromatic ring carbons and (C=O) imide respectively.

¹HNMR spectrum of Schiff base [5] showed signal at $\delta = 1.4$ ppm belong to (CH) protons, multiplet signals at $\delta =$ (7.39-8.34) ppm belong to aromatic protons and signal at $\delta = 8.97$ ppm belong to imine (-CH=N-) proton.

¹³CNMR spectrum of compound [5] showed signals at $\delta = 24.97$, (123.8-134.4), 135.3 and 159.1 ppm which belong to CH3, aromatic ring carbons, (C=N) and (C=O) imide respectively.

¹HNMR spectrum of Schiff base [7] showed signal at $\delta = 3.51$ ppm due to OCH₃ protons and four multiplet signals at $\delta = (6.89-7.96)$ ppm belong to aromatic protons.

¹³CNMR spectrum of Schiff base [7] showed signal at $\delta = 57$ ppm belong to OCH₃ group and signals at $\delta = (123.9-$ 127.1), 135.1 and 168 ppm belong to aromatic carbons, (C=N) and (C=O) imide respectively.

Biological activity

Antibacterial activities for some of the prepared Schiff bases against two types of bacteria were evaluated and the results which are listed in Table (5) indicated that compounds [6,7,12] showed very high activity against , compounds S.aureus [5,17,18] showed high activity against this bacteria while compounds [10,14,16] moderate activity showed and compound [11] showed no activity against this bacteria. On the other hand compounds [7,18] showed very high activity against *E.coli*, compounds [10,14,16] showed high activity against this bacteria while compounds [5,11,12,17] showed moderate activity and compound [6] was found not active against this bacteria.

Comp. No.	Compound structure	color	Melting points °C	Yield %	Solvent of Recrystallization
1	COOH CONH-C	White	170-172	88	Ethanol
2		Off white	204-205	85	Acetone
3	CO N-SO ₂ CI	Brown	200 dec.	72	Acetone
4		White	210 dec.	95	Ethanol

Table (1): Physical properties of prepared compounds [1-4]

Comp. No.	Compound structure	color	Melting points °C	Yield %	Solvent of Recrystallization
5	$\begin{array}{c} \overbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Pale yellow	119-120	85	Acetone
6	CON-SO2-N-N=C-OH	Orange	168-170	87	Acetone
7	CONSO2-N-N=C-COCH3	Off white	192-193	81	Ethanol
8	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} HO \\ SO_2 - N - N = C \end{array}}_{H - N = C} + \underbrace{ \begin{array}{c} HO \\ H \\ H \end{array}}_{H - N = C} + \underbrace{ \begin{array}{c} HO \\ H \\ H \\ H \end{array}}_{H - N = C} + \underbrace{ \begin{array}{c} HO \\ H $	Deep yellow	196-198	54	Acetone
9	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} CH_3 \\ I \\ SO_2 - N - N = C \end{array}}_{I - N - N = C - \underbrace{ \begin{array}{c} CH_3 \\ I \\ I \\ C \end{array}}_{I - N - N - N - N - N - N - N - N - N - $	White	179-181	80	Ethanol
10	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} O_2 N \\ SO_2 - N - N = C \end{array}}_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ H \\ C \end{array} }_{O_2 - N - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - N = C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - N - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ \\}_{O_2 - C} \underbrace{ \begin{array}{c} O_2 N \\ C \end{array} }_{O$	Off white	138-139	66	Ethanol
11	CO $N SO_2-N-N=C-$	Off white	200 dec.	72	Acetone
12		Off white	174-175	63	Ethanol
13	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} SO_2 - H \\ SO_2 - N - N = C \end{array}}_{CO} - NO_2 $	Pale yellow	130-132	91	Ethanol
14	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}} N - \underbrace{ \begin{array}{c} SO_2 - N - N = C \\ CO \end{array}} + \underbrace{ \begin{array}{c} H \\ CO \end{array}} + \underbrace{ \begin{array}{c} CO \\ + \underbrace{ CO \\ + \underbrace{ CO } + \underbrace{ CO \\ + \underbrace{ CO \\ + \underbrace{ CO } + \underbrace{ CO \\ + \underbrace{ CO } + \underbrace{ CO } + \underbrace{ CO \\ + \underbrace{ CO } + \underbrace{ CO } + \underbrace{ CO \\ + \underbrace{ CO } + \underbrace{ CO } + \underbrace{ CO } + \underbrace{ CO \\ + \underbrace{ CO } + CO$	White	226 dec.	77	Ethanol
15	CO $N SO_2-N-N=C OH$	Off white	135-136	83	Acetone
16	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} CO \\ SO_2 - N - N = C \end{array}}_{N - N = C} + \underbrace{ \begin{array}{c} CH_3 \\ I \\ I \\ O \\ O \end{array}}_{N - N - N = C - \underbrace{ \begin{array}{c} CH_3 \\ I \\ I \\ O \\ O$	Pale yellow	> 220	93	Ethanol
17	$ \underbrace{ \begin{array}{c} CO \\ CO \end{array}}_{CO} N - \underbrace{ \begin{array}{c} SO_2 - N - N = C \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N = C \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{c} H \\ SO_2 - N - N \end{array}}_{O} + \underbrace{ \begin{array}{$	White	187-188	90	Acetone
18	$ \underbrace{ \begin{array}{c} \begin{array}{c} CO \\ CO \end{array}}^{CO} N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} SO_2 - N - N = C \end{array} }^{CO - N} \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - N - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - \underbrace{ \begin{array}{c} \\ \\ \end{array}}^{-} O - O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - O - \underbrace{ \end{array}}^{-} O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - O - \underbrace{ \end{array}}^{-} O - O - O - O - O - \underbrace{ \begin{array}{c} \\ \end{array}}^{-} O - O - O - O - O - O - O - O - O - O$	Yellow	198 dec.	86	Ethanol

Table (2): Physical properties of Schiff bases [5-18]

Comp.	FTIR spectral data cm ⁻¹											
No.	v(O-H) carboxylic	v(N-l amic		v(C-H) aromatic	c	v(C=C carboxy	/	· · ·	=O) nide		v(C=C) aromatic	
1	3325	313	6	3062		1720		1643			1600	
Comp. No.	v(C-H) arom	atic	v(C=O) imide			v(C=C) aromatic			ν	v(C-N) imide		
2	3074		1735 1708			1593				1384		
Comp. No.	ν(C-H) aromatic	``	C=O) v(C=C) aromatic		v(SO ₂) asym.		v(SO ₂) sym.			v(C-N) imide		
3	3101	174: 172	1585		1365		11	88		1300		
Comp. No.	v(-NH-NH ₂) hydrazine	v(C-l aroma			v(C=C) v(S romatic asy		-/ 、		-/	v(C-N) imide		
4	3359 3265	309	7	1743 1718		1595	13	90	117	0	1338	

 Table (3): FTIR spectral data of compounds [1-4]

 Table (4): FTIR spectral data of the prepared Schiff bases [5-18]

Comp.			FT	IR spectr	al data c	m ⁻¹		
No.	v(N-H) amide	v(C=O) imide	ν(C=N)	v(C=C) aromatic	$\nu(SO_2)$ asym.	$v(SO_2)$ sym.	v(C-N) imide	others
5	3221	1739 1712	1627	1589	1373	1165	1338	-
6	3221	1739 1716	1608	1589	1373	1165	1338	v(O-H) phenolic 3440
7	3417	1743 1716	1651	1597	1377	1168	1315	v(C-O-C) 1234 1126
8	3221	1739 1716	1616	1589	1377	1165	1338	v(O-H) Phenolic 3479
9	3043	1716	1624	1573	1388	1157	1330	-
10	3030	1741 1706	1610	1595	1386	1166	1340	v(NO₂) 1498
11	3151	1735 1716	1654	1593	1377	1168	1319	-
12	3097	1739 1716	1627	1604	1377	1168	1342	v(O-H) Phenolic 3460

Comp. No.	FTIR spectral data cm- 1	Comp. No.						
13	3221	1739 1716	1651	1589	1373	1165	1338	v(NO₂) 1496
14	3377	1741 1716	1625	1595	1375	1170	1330	v(C-Cl) 1091
15	3221	1739 1716	1627	1589	1373	1165	1338	v(O-H) Phenolic 3429
16	3232	1740 1716	1658	1593	1373	1165	1342	v(NO₂) 1469 1300
17	3147	1741 1720	1625	1593	1375	1170	1338	-
18	3400	1741 1718	1620	1593	1380	1170	1348	v(C=O) Amide 1701

 Table (4): Continued

Table (5): Antibacterial activity for some of the prepared schiff bases

Comp.	Gram positive bacteria	Gram negative bacteria
No.	Staphylococcus aureus	Escherichia Coli
5	+++	++
6	++++	-
7	++++	++++
10	++	+++
11	_	++
12	++++	++
14	++	+++
16	++	+++
17	+++	++
18	+++	++++

Key to symbols = Inactive = (-) inhibition Zone < 6 mm Slightly active = (+) = inhibition Zone 6-9 mm Moderately active = (++) inhibition Zone 9-12 mm Highly active = (+++) inhibition Zone 13-17 mm Very high activity = (++++) inhibition Zone > 17 mm

References

- R. Jayakumar, R. Balaji and S. Nanjundan, Eur. Polym. J., 36, 1659, (2000).
- 2- M.A.V. Ribeiro da Silva, C.P.F. Santos, M.J.S. Monte and C.A.D. Sousa, J. Thermal. Anal. Cal., 83, 533, (2006).
- 3- F.A. Luzzio and De A.P. Zacherl, Tetahedron Lett., 40, 2087, (1999).
- 4- L.M. Lima, F.C.F. Brito, S.D. Souza, A.L.P. Miranda, C.R. Rodrigues, A.M. Fraga and E.J. Barreiro, Bioorg. Med. Chem. Lett., 12, 1533, (2002).
- 5- V.L.M. Sena, M. Srivastava, R.O. Silva and V.L.M. Luis, IL Farmaco, 58, 1283, (2003).
- 6- S. Barman, E.I. Newhouse and W.C. Neely, Polym. Eng. Sci., 34, 279, (2004).
- 7- T. Wang, Y.H. Zhang, H. Ji, Y.P. Chen and S.X. Peng, Chinese Chem. Lett., 19, 26, (2008).
- 8- V. Macho, M. Kralik, J. Hudec and J. Cingelova, J. Mol. Catal. A: Chem. 209, 69, (2004).
- 9- F. Shemirani, A.A. Mirroshandel, M.S. Niasari and R.R. Kozani, J. Anal. Chem., 59, 228, (2004).
- 10-J. Liu, B. Wu, B. Zhang and Y. Liu, Turk. J. Chem., 30, 41, (2006).

- 11-M.M. Ramla, A.M. Omar, H. Tokudo and I.H. El. Diwoni, Bioorg. Med. Chem., 15, 6489, (2007).
- 12-G.G. Mohamed, M.M. Omar and A.M. Hindy, Turk. J. Chem., 30, 361, (2006).
- 13-D.M. Johnson, S.E. Reubuck, R.G. Lawton and P.G. Ramussen, Macromolecules, 38, 3615, (2005).
- 14-P. Kamaria, N. Kawathekar and P. Chaturvedi, E-Journal of Chem., 8(1), 305, (2011).
- 15-M.A. Baseer, V.D. Jadhav, R.M. Phule, Y.V. Archana and Y.B. Vibhute, Orient. J. Chem., 16, 553, (2000).
- 16-S.B. Desai, P.B. Desai and K.R. Desai, Heterocycle commun., 7, 83, (2001).
- 17-P. Panneerselvam, R.R. Nair and G. Vijayalakshmi, Eur. J. Med. Chem., 40(12), 225(2005).
- 18- A.M. Al-Azzawi and M.S.Ali, J. of Al-Nahrain University Sci., 11(3), 15(2008).
- 19- A.M. Al-Azzawi and S.A. Mehdi, Baghdad Sci. J., 7(1), 641(2010).
- 20- M.N. Ibrahim and S.A. Sharif, E-Journal of Chem., 4(4), 531(2007).
- 21-R.M. Silverstein and G.C. Bassler, 4th edition, John and Sons, (1981).