Diyala Journal
 of Engineering Sciences

ISSN 1999-8716

Vol. 02 , No. , pp. 49-65, June 2009

SWITCHED CAPACITOR FILTER DESIGN SIMULATION

Abdul-jabbar K. Hummady
College Engineering , Diyala University , Iraq
(Received:22/6/2008; Accepted:24/1/2009)

Abstract

The filter is very important tool in electrical circuits, it is the maen part at communication devices. The design operation of any filter depends upon the frequency, bandwidth and gain. In this paper we will introduce a filter has specialist in design easy in change frequency and bandwidth, without need to change the elements of electrical circuit. It is "SC" filters which essentially depend upon the fabrication of (OP AMP) integrated circuit. Here we used (MALAB R2006b) software code to simulate the process of design.

1. INTRODUCTION

The characteristics of all active filters, regardless of architecture, depend on the accuracy of their RC time constants. Because the typical precision achieved for integrated resistors and capacitors is approximately $\pm 30 \%$, a designer is handicapped when attempting to use absolute values for the components in an integrated filter circuit. The ratio of capacitor values on a chip can be accurately controlled. Switched-capacitor filters use these capacitor ratios to achieve precision without the need for precise external components.

The switched-capacitor filter-is an active filter that uses electronic switching of a capacitor to imitate a high-order filter. Several manufacturers produce switched-capacitor filter chips. The filter's cut-off frequency is controlled by a clock frequency applied to the chip, which controls . Typically, the clock frequency is 50-100 times the cutoff frequency of electronic switch the filter ${ }^{(1,2)}$.

The major advantage of this setup is that the cutoff- frequency is easy to change. So, if the system requires a variable sample rate, the ant aliasing filter can follow along. The major disadvantage is that a switched-capacitor filter is also subject to aliasing [1,2]. Eliminating the aliasing in the switched-capacitor filter sometimes requires a profiler in front of the switched-
capacitor filter and a reconstruction filter behind it. Some switched-capacitor filter chips have an op-amp linear filter onboard the chip to provide pre- or post-filtering. Clock feed through, which is an extraneous signal that switched-capacitor filters create, can occur in the signal. (1.2)

This technique is widespread because it has a few advantages in comparison with other techniques ${ }^{(2.3 .4)}$, for instance:
a. The transfer of SC circuits depends not on capacitor values, but on the ratios of them. These ratios can be substantially more accurate than the capacitor values.
b. A clock frequency signal, which is needed for SC circuit operation, can be used for their tuning.
c. SC circuits do not require resistors, whose implementation is difficult in integrated form.

2. The MOS SWITCH

The circuit of MOS switch is shown in figure (1).

Fig. (1): MOS Transistor.
This transistor can be used as a switch, the voltage between source(S) and gate (G) is either zero, $\mathrm{V}_{\mathrm{GS}}=0$, so that the transistor is OFF and no current flows, or it is much larger than the threshold voltage V_{t}, and the transistor is ON so that current can flow. The path of interest is between source (S) and drain (D), having resistance R_{DS}. When the transistor is in OFF mode, R_{DS} is large $(100-1000) \mathrm{M}$. When the transistor is in ON mode, R_{DS} is much smaller (5-10) K depending on the transistor size; these facts are summarized in the table (1) ${ }^{(4)}$.

Table (1)

condition	state	Equivalent resistor	model
$\mathrm{V}_{\mathrm{GS}} \gg \mathrm{vt}$	ON	10 K	short
$\mathrm{V}_{\mathrm{GS}}<\mathrm{vt}$	OFF	100 M	open

The switch is open or closed depending on the value of VGS ,open when VGS is low, closed when VGS is high. The voltage waveform that is used to activate the switch can be represented as in the figure (2) below. ${ }^{(4)}$

Fig. (2): voltage waveform.
When two MOS switches that are controlled by φ_{1} and φ_{2} are connected in series as in figure (3).

Fig. (3): a capacitor with two MOS switches driven by a two -phase clock.
The capacitor C_{R} is connected to node 1 during φ_{1} (when φ_{1} is high) and to node 2 during φ_{2} (when φ_{2} is high), but at no time are node 1and 2 directly connected through the two switches because one of them is always open. This situation is represented symbolically in figure (4), ${ }^{(4)}$.

Fig. (4): symbolic representation.

3. THE EQUIVALENT RESISTOR (REQU.).

Consider the extension circuit in figure (5) below:

Fig. (5): circuit to form a voltage difference.
Where the capacitor C_{R} is connected to the voltage $\left(\mathrm{v}_{1}\right)$ during phase $\left(\varphi_{1}\right)$; it is stores the charge $\left(\mathrm{q}_{1}\right) .{ }^{(4.3)}$
$q_{1}=C_{R} v_{1}$

If the connect C_{R} there after in $\left(\varphi_{2}\right)$ to the voltage $\left(\mathrm{v}_{2}\right)$, the capacitor charge is.
$q_{2}=C_{R} v_{2}$

The charge transferred from $\left(\mathrm{v}_{1}\right)$ to $\left(\mathrm{v}_{2}\right)$ is therefore.
$\Delta q=q_{1}-q_{2}=C_{R}\left(v_{1}-v_{2}\right)$
Let the switch(S) be flipped periodically, with clock period (T).such that the clock frequency is:
$\mathrm{f}_{\mathrm{c}}=\frac{1}{\mathrm{~T}}$

Is so large compared to the signal frequency $(\omega=2 \pi f)$ of the two voltage "sources" $\left(\mathrm{v}_{1}\right)$ and $\left(\mathrm{v}_{2}\right)$.
$f_{c} \gg \omega=2 \pi f$

That these two signals can be assumed to be constant over the period (T).Since the charge packets get transferred between the two nodes during each clock interval, we can consider the average voltage of the transferred charge packets as a current. ${ }^{(4)}$
$\mathrm{i} \approx \frac{\Delta \mathrm{q}}{\mathrm{T}}=\Delta \mathrm{qf}_{\mathrm{c}}=\mathrm{f}_{\mathrm{c}} \mathrm{C}_{\mathrm{R}}\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)$.

The switched capacitor (SC), behaves approximately like the equivalent resistor.
$\mathrm{R}_{\text {equ. }} \approx \frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{\mathrm{i}}=\frac{1}{\mathrm{f}_{\mathrm{c}} \mathrm{C}_{\mathrm{R}}}$.

Fig. (6): equivalent Switched-Capacitor Filter circuit.

The "SC" method looks promising for the design of integrated filter at low frequencies, by developing suitable filter circuit. By following the simple equivalence of a resistor and a switched capacitor, take any resistor " R " in the active " RC " filter circuit and replace it by switched capacitor " C_{R} " and choose a clock frequency "fc" that must be much larger than the signal frequency "fo" ${ }^{(4)}$
$C_{R}=\frac{1}{R f_{c}}$

4. FUNDAMENTAL ACTIVE FILTER CIRCUIT.

Consider the integrating summer circuit in figure (7), which it is a fundamental active filter building block.

Fig. (7): fundamental active filter building block.

$$
\begin{equation*}
V_{\text {out }}=\frac{1}{s C_{f}}\left(G_{1} V_{1}+G_{2} V_{2}\right)-\frac{C_{3}}{C_{f}} V_{3} . \tag{9}
\end{equation*}
$$

Replace the resistor by a switched capacitor that will be.

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{1}{\mathrm{f}_{\mathrm{c}} \mathrm{C}_{1}} \equiv \mathrm{G}_{1}=\mathrm{f}_{\mathrm{c}} \mathrm{C}_{1} \\
& \mathrm{R}_{2}=\frac{1}{\mathrm{f}_{\mathrm{c}} \mathrm{C}_{2}} \equiv \mathrm{G}_{2}=\mathrm{f}_{\mathrm{c}} \mathrm{C}_{2}
\end{aligned}
$$

The circuit will be change to the following form in figure (8).

Fig. (8): equivalent circuit.
In this circuit there will be only capacitors. ${ }^{(4)}$

$$
\begin{equation*}
V_{o u t}=-\frac{f_{c}}{j \omega C_{F}}\left(C_{1} V_{1}-C_{2} V_{2}\right)-\frac{C_{3}}{C_{F}} V_{3} \tag{10}
\end{equation*}
$$

5. SIMULATION OF SC FILTERS CIRCUITE DESIGN.

Let us consider the solution of the following question; construct first order "SC" low pass filter to process the dieference of two voltages " V_{1} " and $" \mathrm{~V}_{2} " ; \mathrm{V}_{1}=2 \mathrm{~dB} ; \mathrm{V} 2=0 \mathrm{~dB} ; \mathrm{Fo}=4 \mathrm{KHZ} ; \mathrm{Fc}=128 \mathrm{KHZ} ; \mathrm{CF}=2 \mathrm{pF} .{ }^{(4)}$

Fig. (9): circuit diagram of above example($1^{\text {st }}$ order low pass filter).
The design based on " RC " and using equation (10) is.
$V_{\text {out }}=-\frac{1}{S C_{F}+G_{3}}\left(V_{1} G_{1}-V_{2} G_{2}\right)$
$R_{3}=\frac{1}{\omega_{O} C_{F}}=\frac{1}{2 \pi \times 3600 \times 2 \times 10^{-12}}$

$$
\mathrm{R}_{3}=22.10 \mathrm{M}
$$

$\frac{R_{3}}{R_{1}}=1.259(2 d B)$ and $\frac{R_{3}}{R_{2}}=\mathbf{1}(0 d B)$
$R_{1}=\frac{R_{3}}{1.259}=\frac{22.10 \times 10^{6}}{1.259}=17.55 \mathrm{M} \Omega$

$$
R_{2}=R_{3}=22.10 \mathrm{M} \Omega
$$

The prescribed clock frequency is 128 KHZ ; the Switched Capacitors values will be as:
$C_{i}=\frac{1}{f_{c} R_{i}} \ldots \ldots . i=1,2,3$

$$
\mathrm{C} 1=0.445 \mathrm{pF} \quad \mathrm{C} 2=0.354 \mathrm{pF} \quad \mathrm{C} 3=0.354 \mathrm{pF}
$$

By using MATLAB software(Appendix A) we find the bode and gain plots for transfer function for different cases of " F_{C} " and " Fo ", ${ }^{(4.3)}$

6. SIMULATIONS AND RESULTS:

In this section ,three tests are considered .
a. Simulation number one (EXP1).the input value for simulation program was as listed in table (2).

Table (2)

$\left(\mathrm{F}_{\mathrm{C}}\right)$	$\left(\mathrm{F}_{\mathrm{O}}\right)$	$\mathrm{R}_{1}=0.2 \mathrm{M}$	$\mathrm{R}_{2}=0.15 \mathrm{M}$	$\mathrm{R}_{3}=0.12 \mathrm{M}$
128 KHZ	4 KHZ	$\mathrm{C}_{1}=3.84 \mathrm{PF}$	$\mathrm{C}_{2}=5.12 \mathrm{PF}$	$\mathrm{C}_{3}=6.41 \mathrm{PF}$

The result of the bode and gain plots are shown in fig.(10).

Fig. (10): bode and gain plots for example 1 .
b. Simulation two (EXP2). The input value for simulation program was as listed in table (3).

Table (3)

(FC)	(FO)	$\mathrm{R} 1=17 \mathrm{M}$	$\mathrm{R} 2=13 \mathrm{M}$	$\mathrm{R} 3=2 \mathrm{M}$
120 KHZ	3 KHZ	$\mathrm{C} 1=4.5 \mathrm{e}-15 \mathrm{~F}$	$\mathrm{C} 2=5.9 \mathrm{e}-15 \mathrm{~F}$	$\mathrm{C} 3=3.8 \mathrm{e}-014 \mathrm{~F}$

The result of the bode and gain plots are illustrated in fig.(11).

Fig. (11): bode and gain plots for example (2).
c. Simulation three(EXP3).here we fixed the values of R's and C's the changing was only in F_{c} (clock frequency) and F_{o} (signal frequency),the result was as shown in the figures (12-16), all selected values was recorded on result figure.

Fig. (12): bode and gain plots for $\mathrm{f}_{\mathrm{c}}=100 \mathrm{khz}, \mathrm{f}_{\mathrm{o}}=2 \mathrm{khz}$.

Fig. (13): bode and gain plots for $\mathrm{f}_{\mathrm{c}}=300 \mathrm{khz}, \mathrm{f}_{\mathrm{o}}=3 \mathrm{khz}$

Fig. (14): bode and gain plots for $f_{c}=70 \mathrm{khz}, \mathrm{f}_{\mathrm{o}}=7 \mathrm{khz}$

Fig. (15): bode and gain plots for $\mathrm{f}_{\mathrm{c}}=10 \mathrm{khz}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{khz}$

Fig. (16): bode and gain plots for $f_{c}=3 \mathrm{khz}, f_{o}=10 \mathrm{khz}$

7. RESULTS AND DISCUSSION

a. Figure (10) represents the simulation of the solution of example; therefore output is ideal low-pass filter output, because the value choose correctively ,the cut-off frequency is clear and the phase curve fluctuation is at 4 KHZ .
b. By changing the values of resistors randomly, the result in figure (11) was seem as not good response for the filter and that well indictor to knowledge that filter need more carful.
c. By fixing the values of R's and C's, figure (12) represent the case when $F_{c}=50 F_{o}$, the result is good filter frequency response, we can note the phase fluctuation is exactly at cut-off frequency.
d. Figure (13) represent the case when $\mathrm{F}_{\mathrm{c}}=100 \mathrm{~F}_{\mathrm{o}}$, so the result is very good ,because the cut-off frequency is at the wanted point.
e. In case $\mathrm{F}_{\mathrm{c}} \neq(50-100) * \mathrm{~F}_{\mathrm{o}}$ figure (14) shows this, this condition is very necessary for operating ,therefore the result is not true and the cut-off frequency is less than 7 KHZ .
f. If $F_{C}=F_{0}$ the result was very bad as in figure (15), because the two frequencies must be not equal.
g. Finally when $\mathrm{F}_{\mathrm{C}}<\mathrm{F}_{\mathrm{o}}$ figure (16) shows the result and this is not true according to the condition.

8.CONCLUSION

a. The values of circuit elements depend upon clock frequency.
b. The cut-off frequency vary with the variation of clock frequency.
c. The value of clock frequency must be larger than signal frequency, $\mathrm{F}_{\mathrm{C}}=(50-100) * \mathrm{~F}_{\mathrm{O}}$, that is very clear in result of exp. 3
d. The changing of cutoff frequency did not need change any element in the electrical circuit. only clock frequency must change.
e. The design of such filter did not depending on past design tuning.
f. The value " C_{F} " is constant and depended upon "MOS" area,
g. This type of filters is like "RC" active filters.
h. SC circuits are the effect of the features of real operational amplifiers. Which are: finite input resistance, nonzero output resistance, finite slew rate, finite unity-gain bandwidth, and finite voltage gain.

9.REFERENCES

1. D. S. Won, P. D. Wolf, and J. C. Morizio"Design of a Switched Capacitor Filter for an Integrated Circuit Neurochip" presented at Biomedical Engineering Society Annual Conference, Durham, NC, 2001.
2. Ananda Mohan p. V., Ramachandran V., Swamy m. N. S. "Switched Capacitor Filters - Theory, Analysis and Design" Prentice Hall International, 1995.
3. Rechard C. Dorf \& James A. Svobodn "Introduction to electric circuit" fourth edition, John Wily \& Sons. 1999.
4. Rolf Schaumamn \& Mace Van,"Design of analog filter",Willy\&Sons, 2001.

APPENDIX (A)

MATLAB PROGRAM CODE

```
%INPUT DATA %%%%%%%%%%%%%%%%%%
1-fc=input(' ');%clock frequency
2-fo=input(' ');%signal frequency
3-R1=2*10e6;
4-R2=2.5*10e6;
5-R3=20*10e6;
6-V1=2;
7-V2=1;
%CALAULATION OF CAPACITORS VALUE%%%%%%%%%%%%%%
8-C1=1/(fc*R1)
9-C2=1/(fc*R2)
10-C3=1/(fc*R3)
11-Cf=2*10e-9;
12-wm=100;
13-we=fo;
%TRANSFER FUNCTION CALCULATION%%%%%%%%%%%%%%
14-w=logspace (log10(wm), log10(we));
15-M1=fc*C1*V1;
16-M2=fc*C2*V2;
for n=1:length(w)
    H(n)=-fc/(j*W(n))*fc* (M1 +M2) - (C3/Cf) * 5* cos(w (n));
    mag(n)=abs(H(n));
    phase(n)=angle(H(n));
end
% PLOT BODE AND GAIN DIAGRAM %%%%%%%%%%%%
17-subplot (2,1,1);
semilogx(w/(2*pi), 20*log10(mag))
```

```
xlabel('Frequency,Hz'),grid on,ylabel('gain,dB'),grid
on,title('Bodeplot,EXP3');
19-subplot (2,1,2),semilogx(w/ (2*pi),phase)
xlabel('Frequency,Hz'),grid on,ylabel('phase,deg'),grid on;
```


محاكاة تصميم مرشحة مفتاح سعوي

> عبد الجبار كاظم حمادي

مدرس مساعد

كلية الهندسة - جامعة ديالى

يعتبر المرشح من الدوائر الالكترونية المهمة جدا ، ويلعب دورا رئيسيا في تركيب أجهزة الاتصالات خصوصا.أن مسألة تصميم المرشح تعتمد على حسابات التزدد وعرض الحزمة وكذلك الربح ،وهنا في هذا البحث سوف نقدم مرشح لـه خصوصية بالتصميم من ناحية سهولة تغيير نطاق الحزمة العاملة دون الحاجة إلى تغيير عناصر الدائرة الالكترونية . انه مرشتح) الذي يعتمد بالارجـة الأساسية على صناعة مضخم العميات نوع (MOS)،وهنا تم تقديم محاكاة باستخدام برنامج (MATLAB-R2006b)،

