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Abstract 

 In chemical technology and power engineering, equipment containing heat exchanging pipes 

and various cylindrical links immersed into moving fluid was often used. The estimation of the 

hydrodynamic action on these elements is based on the solution of the plane problem on the flow 

past a cylinder. In the hydrodynamics of inviscid flow past a body of nonzero thickness, it was 

assumed that there are regions near the body in which the flow accelerates from the front stagnation 

point to the midsection and decelerates behind the midsection. According to the Bernoulli theorem, 

a pressure counter-gradient arises in the deceleration region, which acts both in the outer flow and 

in the boundary layer. For the inviscid flow, the fluid particles store sufficiently much kinetic 

energy in the acceleration region to overcome this barrier, but in the frictional flow, the fluid 

particles that remain in the boundary layer cannot reach the region of higher pressure. They are 

pushed away from the wall, and an opposite flow arises downstream. This phenomenon is known as 

the boundary layer separation. A CFD models were simulated for the viscous flow past bodies 

changed from a circular cylinder to flat plate. FLUENT 6.3.26 package was used for solving the 

model preprocessed in GAMBIT 2.3.16 for flow past a body. Fluent solvers were based on the 

finite volume method and general conservation (transport) equation for momentum was discretized 

into algebraic equations. The pressure and velocity gradients for viscous flow past bodies changed 

from a circular cylinder to flat plate was predicted and plotted and the effect of eccentricity on the 

pressure and velocity gradients was studied. 
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Introduction 

 

The flow around circular cylinders has been studied with experimental, analytical and 

numerical techniques (Coutanceau and Bouard, 1977). However, there is a paucity of experimental 

and computational data for flow around ellipses at low Reynolds numbers that is due, at least in 

part, to the economic imperatives for studying higher Reynolds number flows that are common for 

vehicles and machinery. However, microfluidics research is now becoming recognized as a field in 

its own right (D. Li, 2004). When using inviscid models, the flow pattern is symmetrical not only 

above and below the cylinder, but also upstream and downstream. However, for viscous flows 

above Reynolds numbers of approximately one, dynamic forces override the fore and aft symmetry. 

As the flow rate increases, a separation appear on the downstream side that contains two 

recirculating eddies that grow laterally as the Reynolds number increases. In the mid 19th century, 

Stokes developed an analytical description of flow past a motionless sphere at Reynolds numbers 

less than 1. Oseen extended Stokes’s work to cylinders using an analysis based upon slight 

deviations from a known flow (Streeter,1961). Schlichting reported on the work by Blasius and 

others in the early 1900s to develop exact solutions for flow around simple shapes 

(Schlichting,1979). The velocity of the potential flow and the velocity profile of the boundary layer 

were expressed as power series in x, the distance from the stagnation point measured along the 

object’s contour. Lack of sufficient computational resources to include an adequate number of terms 

limited the accuracy of the calculations, especially for slender body shapes such as streamlined 

ellipses. Taneda experimented with circular cylinders and flat plates aligned parallel to the flow for 

Reynolds numbers in the range 1–2000 (Taneda, 1956). He observed the formation of twin rear 
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vortices behind a circular cylinder at a Reynolds number of 7. He later extended his work by taking 

detailed measurements of the recirculating eddies behind flat plates oriented normal to the flow 

(Taneda,1968). He found measurable eddies at a Reynolds number of 0.92. He also measured the 

relationship between the eddy size and Reynolds number. Dennis and Chang presented finite 

difference solutions of the equations of motion for steady, incompressible flow around a circular 

cylinder for Reynolds numbers in the range 5–100 (Dennis and Chang, 1970). Like Taneda 

(Taneda, 1956) they found a linear growth in eddy length with increasing Reynolds number behind 

a circular cylinder. They calculated that flow separation begins at a critical Reynolds number of 6.2. 

Nieuwstadt and Keller modeled viscous flow around a circular cylinder for Reynolds numbers in 

the range 1–40 using the semi-analytical method of series truncation to express the stream function 

and vorticity in a Fourier series that was substituted into the Navier–Stokes equation to yield a finite 

system of nonlinear ordinary differential equations (Nieuwstadt and Keller, 1973). Their results 

compared favorably with Dennis and Chang (Dennis and Chang,1970) for Reynolds numbers less 

than 40, and were computationally more efficient. 

Coutanceau and Bouard photographed features of wakes behind circular cylinders for 

Reynolds numbers in the range of 5–40 (Coutanceau and Bouard,1977). They noted that the 

maximum recirculating velocity on the axis between the eddies increased linearly with Reynolds 

number. Van Dyke published experimental visualizations of flow around circular cylinders at 

Reynolds numbers of 0.16 and 1.54 (Van Dyke,1983). In the former case, the flow was almost 

completely symmetrical upstream and downstream of the object. In the latter case, the streamlines 

downstream of the cylinder were elongated, but the flow was not separated. He also published 

Taneda’s photograph (Taneda,1968) of flow past a flat plate normal to the flow at a Reynolds 

number of 0.334. Although Taneda did not claim flow separation for this case, Van Dyke 

entertained the possibility. Shintani, Umemura and Takano asymptotically matched the Stokes and 

Oseen solutions of the Navier–Stokes equations for two overlapping regions near elliptic cylinders 

at a Reynolds number of 0.1 (Shintani et al , 1983). For a flat plate, two symmetrical recirculating 

vortices formed on the downstream side. They reported qualitative agreement with Taneda’s 

illustration (S. Taneda, 1968) of flow at a Reynolds number of 0.44. Nakayama et al. presented 

visualizations of flows around a circular cylinder at Reynolds numbers of 0.038 and 1.1 (Nakayama 

et al, 1988). In both cases the flow was attached but did not exhibit fore and aft symmetry. Wu and 

Lee presented experimental data and mathematical calculations using the FIDAP computational 

fluid dynamics software program for the free settling of solid and porous ellipsoids of revolution for 

Reynolds numbers in the range 0.1–40 (R.M. Wu, Lee, 2001). For a solid ellipsoid of revolution of 

aspect ratio 0.7 with the major axis aligned parallel to the flow, the upstream and downstream 

streamlines were symmetrical at a Reynolds number of 0.1. At a Reynolds number of 40, 

recirculating eddies were visible on the downstream side.  

The flow around elliptic cylinders is more general geometrical configurations than the 

canonical circular cylinder and provides a richer flow behavior characteristic of typical engineering 

flow configurations. For these cylinders, changes in eccentricity allow for shapes ranging from that 
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of a circular cylinder to a flat plate. There have been a few numerical simulations of flows over 

elliptic cylinders. Notable among these are those by Lugt and Haussling (Lugt and Haussling,1972, 

1974) and Blodgett (Blodgett,1989). Lugt and Haussling have studied the flow over thin ellipses at 

various angles-of-attack for low Reynolds numbers (Lugt and Haussling,1972) and also the details 

of start-up over elliptic cylinders at 45º angle-of-attack (Lugt and Haussling,1974). Blodgett 

(Blodgett,1989) has performed a systematic study of two-dimensional (2D) flow over cylinders 

with various eccentricities and angles-of attack at Reynolds number ranging up to 1000. The above 

studies are limited to 2D simulations and are based on the vorticity-streamfunction formulation of 

the Navier–Stokes equations. In the past decade, direct numerical simulation of 3D flows at low to 

moderate Reynolds number have become possible and have primarily utilized spectral methods for 

spatial discretization. Spectral methods provide exponential accuracy through their global 

approximation (Canuto et al,1988) but their application has been generally limited to simple 

geometries. Spectral element (Patera,1984) and spectral multidomain (Street, and Macaraeg,1989) 

methods have been developed to handle problems in complex geometries and have become quite 

popular in recent years. These methods provide great flexibility in handling a broad range of 

geometric configurations but are computationally expensive and relatively difficult to implement. 

For the relatively simpler class of geometries like elliptic cylinders, prolate/oblate spheroids, and 

Juo-kowski airfoils, more specialized spectral methods based on a single domain and body-fitted 

orthogonal grid would be expected to perform efficiently and are the method of choice. The  

justification for developing efficient but specialized methods for these shapes come from 

recognizing the fact that these shapes encompass a wide range of configurations which are of 

practical as well as fundamental importance. 

 

Characteristic regimes of flow past a circular cylinder 

 Recently Zdravkovich (Zdravkovich,1997), in an excellent monograph, has compiled almost 

all the experimental, analytical and numerical simulation data on flow past cylinders, available 

since 1938 and systematically classified this challenging flow phenomenon into five different flow 

regimes based on the Reynolds number. the first few regimes designated by Zdravkovich as (1) 

creeping laminar state (L1) of flow (0 < Re < 4), (2) laminar flow (L2) with steady separation (4 < 

Re < 48) forming a symmetric contra-rotating pair of vortices in the near wake, (3) laminar flow 

(L3) with periodic vortex shedding (48 < Re < 180) and finally (4) part of the transition-in-wake 

(TrW) regime (180 < Re < 400) when the three-dimensional instabilities lead to the formation of 

streamwise vortex structure. The wake of a fixed circular cylinder exhibits a large variety of 

complex phenomena stemming from the diverse instabilities growing in the near wake. The 

classification of these phenomena was primarily based on experimental measurements and therefore 

the limits describing the transition between the different regimes were sometimes not exactly 

established. However a rather clear classification relying either on the evolution of the Strouhal 

number (Chen,1987) or on the base pressure coefficient curve (Zdravkovich,1997) is nowadays 

available.According to these classifications, the following regimes can be highlighted: for Re ≤49, 
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two stationary recirculation zones attached to the cylinder wall can be observed; then for 49 ≤ 

Re≤190, the wake is still laminar and consists of two periodic staggered rows of vortices forming 

the well-known Von Ka´rma´n streets, the vortices of each row being shed alternately from either 

side of the cylinder. For greater Reynolds numbers, the wake becomes three-dimensional (for 190 ≤  

Re  ≤  260) and progressively turbulent. This regime is followed by the shear-layer transition (Re 

≥1200) where the separating shear layers become unstable and finally by the boundary-layer 

transition (Re of order 10
5
) which is associated to the drag crisis, i.e. a dramatic decrease of the drag 

coefficient. Over all these regimes, the flow exhibits a certain periodicity which is known as the 

Strouhal frequency, denoted by fS. When a periodic vortex street is well established, this frequency 

corresponds to that of the vortex shedding frequency; in other cases where the Von Ka´rma´n streets 

are not clearly visible, the frequency can be defined as the one of the fluctuations of the streamwise 

velocity component for example. 

 

The latest studies on the numerical simulation of flow past a circular cylinder 

Rajani et al (Rajani et al, 2009) worked on the analysis of two- and three-dimensional flow 

past a circular cylinder in different laminar flow regimes. In this simulation, an implicit pressure-

based finite volume method was used for time-accurate computation of incompressible flow using 

second order accurate convective flux discretisation schemes. The complex three dimensional flow 

structure of the cylinder wake is also reasonably captured by the present prediction procedure. 

David and Hector (David and Hector, 2009) investigated flow separation behind two-

dimensional ellipses with aspect ratios ranging from 0, a flat plate, to 1, a circular cylinder for 

Reynolds numbers less than 10 using both a cellular automata model and a commercial 

computational fluid dynamics software program. Fluctuations in the values of the stream function 

for laminar flow behind the ellipses were found at combinations of Reynolds number and aspect 

ratio near the critical values for separation. 

Antoine et al (Antoine et al, 2009) presented numerical simulation for the flow past a 

circular cylinder which is able to oscillate transversely to the incident stream for a fixed Reynolds 

number equal to 100. The 2D Navier–Stokes equations were solved by a finite volume method with 

an industrial CFD code in which a coupling procedure has been implemented in order to obtain the 

cylinder displacement. 

Numerical simulation of the governing equation 

The flow field was governed by the Navier–Stokes equations, which read for a Newtonian 

incompressible fluid: 

upuudiv
t

u
divu

∆+∇






−=⊗+
∂

∂
=

ν
ρ

1
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0

                                                                                              … (1) 

where u = (u v)
T
 is the velocity vector with u and v being respectively the streamwise and 

transverse velocity components, p is the pressure, ρ and ν are the fluid density and kinematic 

viscosity. As the Reynolds number does not rise above 190, the flow is assumed to be laminar and 
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two-dimensional according to the description of the flow regimes given by Williamson 

(Williamson, 1997) for this range of Reynolds numbers. The Navier–Stokes equations were 

discretized using the finite volume technique, i.e. integral form of the conservation equations were 

solved on control volumes which form a partition of the computational domain (Ferziger and Peric, 

1996). Surface and volume integral approximations require the values of variables at locations other 

than the computational nodes. Indeed, the integrand involves the product of several variables 

(convective fluxes) or variable gradients at those locations (diffusive fluxes). The pressure field was 

first predicted, and then corrected by several iterations so that the Poisson equation for pressure and 

the momentum conservation equations for velocity were satisfied. Once Eq. (1) had been 

discretized and the pressure–velocity decoupling had been realized, the problem was represented by 

a matrix system composed of the cell-centered unknowns which has to be inverted. The resolution 

is performed with the pre-conditioned conjugate gradient method and provides the velocity 

components u and v, and the pressure p.  

 

Fluent Model 

Because of the paucity of relevant experimental and analytical data, the FLUENT (FLUENT 

Flow Modeling Software, 2007) computational fluid dynamics software was employed as a tool to 

complement the model and improve the understanding of the flows. Visual examination of the 

contours of stream function computed by the steady state FLUENT model provided an 

unambiguous indication of whether or not the flow was attached. All the computations use an 

implicit pressure-based finite volume Navier–Stokes algorithm (RANS3D). A CFD models were 

simulated for the viscous flow past bodies changed from a circular cylinder to flat plate. The 

engineering system in this research consist of rectangular region of (50x40) cm as apart of the flow 

past cylinder of (1cm) radius in the center of the rectangular region. Figure (1) showed the grid of 

the engineering system. The assumptions for this model for flow of air were: 

1. Constant viscosity of (1 Kg/m.s).  

2. Constant pressure of (1 atm). 

3. Constant density of ( 1 kg/m
3
 )  

 

Results And Discussion 

The implicit finite volume solver RANS3D developed for general unstructured grid preprocessed in 

GAMBIT 2.3.16 had been used in this work for two- dimensional computation of the problem. In 

case of L1, L2 and L3 regime, where the flow is steady, the present computations are limited to 

two-dimensional flow only. The wake of a fixed cylinder of unit diameter   was investigated for 

three Reynolds numbers in the regimes (0.1 ≤ Re ≤ 190). Simulations are carried out until the 

convergence residual becomes smaller than 10
-7

. The Reynolds numbers investigated are 10, 40 and 

150, all below the Hopf bifurcation between the permanent and the periodic regime, and the wake 

was thus characterized by two recirculation zones attached to the rear cylinder wall.  
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Figures (3) and (4) showed for the present computation with no blockage flow separation 

and formation of a closed wake was observed to take place only beyond Re = 6.1. Measurement 

data show that for flow Reynolds number beyond approximately 5, the flow separates on the 

cylinder surface and the wake behind the cylinder consists of a pair of symmetric contra-rotating 

vortices on either side of the wake centre line. Further it was observed that as the flow Reynolds 

number increases, Figures (3) and (4)  show that beyond a critical Reynolds number of about 49, 

the steady closed near wake becomes unstable and a transverse oscillation starts near the end of the 

wake. As the Re is increased further, the vortices are shed alternately from the upper and lower 

cylinder surface at a definite frequency depending on the Reynolds number. Zdravkovich 

(Zdravkovich,1997) had mentioned about the wide scatter of the reported values of this critical 

Reynolds number at which the near wake instability initiates even when the blockage is negligible. 

As for the circular cylinder there was only a single separation point on each side of the bluff body, 

although it was fixed in position. At low Reynolds numbers the wake resembles the typical 

Ka´rma´n wake of a circular cylinder. As the Reynolds number was increased the wake rapidly 

evolved spatially downstream to two sets of positive and negative vortices distributed on either side 

of the wake centre line. The two dimensional wake was stated for a sequence of elliptical bodies 

with the circular cylinder and flat plate as limiting cases. Interestingly, the characteristic Ka´rma´n 

wake was displaced downstream by a wake consisting of two sets of vortices offset from the wake 

centre line, even at quite low Reynolds numbers, as the body geometry tends towards that of a 

normal flat plate. 

Figure (3) showed the effect of eccentricity (aspect ratio) and Reynolds number on the static 

pressure contours. Figure (3) showed that the flow separates more largely on the cylinder surface 

and the wake behind the cylinder which consists of a pair of symmetric contra-rotating vortices on 

either side of the wake centre line will be larger when the aspect ratio increased from (0-1.3), this 

means that the geometry of the body effect positively on the flow separation and back flow in the 

wake region. The region of the lowest pressure decreases with increasing of Reynolds number until 

(Re=150) the flow will be separated.         

Figure (4) showed the effect of eccentricity (aspect ratio) and Reynolds number on the contours of 

velocity magnitude. Figure (4) showed that the wake region and the back flow increased with 

increasing aspect ratio and will be more separated with increasing Reynolds number.       

Figure (5) showed the effect of eccentricity (aspect ratio) and Reynolds number on the streamlines 

of the static pressure. Figure (5) showed that the curve of the pressure gradient with distance 

stretched horizontally with increasing aspect ratio. This means that the region of the back flow will 

be increased. At (Re≥150) the pressure gradient will be unstable behind the body.     

Figure (6) showed the effect of eccentricity (aspect ratio) and Reynolds number on the streamlines 

of the velocity. Figure (6) showed that the velocity gradient curve for (aspect ratio≥0) will be 

oscillated behind the body with increasing Reynolds number because of the maximizing the 

oscillation of the back flow region.       
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 This study confirms that two possible flow structures exist and shows that small changes in 

ellipticity (aspect ratio) can cause a sudden switch in state. 

    

Comparing model results to other models 

Comparisons with the published references show excellent agreement in detecting the drag, 

the lift, Strouhal number of the unbounded cylinder for different Reynolds numbers considered in 

this study. Some of the important variables of engineering interest for flow past cylinder with vortex 

shedding are the mean drag coefficient, and the Strouhal frequency of the lift coefficient. Figure (2) 

shows the variation of mean drag coefficient – its pressure and friction components and the Strouhal 

number with varying flow Reynolds number. For the mean drag coefficient, kink is observed in the 

present computation result at critical Reynolds number of about (49) when vortex shedding starts. 

However, the overall agreement between the present computation and the compiled data of 

Zdravkovich (Zdravkovich, 1997) is reasonably good. In case of Strouhal frequency of the lift 

coefficient, the present computation agrees reasonably well with measurement data of Norberg 

(Norberg,1993) only up to about Re=150 beyond which the two-dimensional flow computation over 

predicts the Strouhal number. 

Conclusions 

The wake structure behind a circular cylinder has been computed for two-dimensional flow, 

using second order accurate implicit finite volume Navier–Stokes solver RANS3D. Computations 

have been carried out for Reynolds numbers between 0.1 and 190 covering three different 

characteristic regimes classified by Zdravkovich (Zdravkovich, 1997) creeping flow (L1), steady 

closed near wake (L2) and the laminar vortex shedding regime(L3). Major physical features of the 

flow in different regimes are captured by the present computation procedure reasonably well. In the 

L1 and L2 regimes, reasonably good agreement is obtained between the two-dimensional 

computation results and the corresponding measurement data for the shape and strength of the 

steady wake recirculation zone including the separation location. 

FLUENT models clearly demonstrate that the overall agreement between the present 

computation and the compiled data of Zdravkovich (Zdravkovich, 1997) is reasonably good. In case 

of Strouhal frequency of the lift coefficient, the present computation agrees reasonably well with 

measurement data of Norberg (Norberg, 1993) only up to about Re=150 beyond which the two-

dimensional flow computation over predicts the Strouhal number. The computed critical Reynolds 

numbers for separation behind a flat plate and a cylinder are in close agreement with extrapolations 

made from experimental observations. It may provide valuable insight into how flow at such low 

Reynolds numbers occurs in the natural world. Steady state mathematical models of laminar flow 

are even more idealized. 
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(a) Mean Drag                                                 (b) Strouhal number 
      

Figure (2): Variation of mean drag coefficient (comparison with data of Zdravkovich) , Strouhal 

number with Re(comparison with measurement data of Norberg, Williamson) . 

 

 

Figure (1): The grid of the engineering system. 
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 Figure (3): Details of the static pressure contours (Pascal) at Re = 10, 40, 150, (left) for Aspect Ratio=0 and 

(right) for Aspect Ratio=0.4. 
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 Figure (3): Details of the static pressure contours (Pascal) at Re = 10, 40, 150, (left) for Aspect Ratio=1and 

(right) for Aspect Ratio=1.3(continued). 
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 Figure (3): Contours of velocity magnitude (m/s) at Re = 10, 40, 150, (left) for Aspect Ratio=0 and (right) 

for Aspect Ratio=0.4. 
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 Figure (4): Contours of velocity magnitude (m/s) at Re = 10, 40, 150, (left) for Aspect Ratio=1 and (right) 

for Aspect Ratio=1.3(continued). 
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Figure (5): Streamlines of the static pressure versus the downstream distance after the cylinder wall at Re = 

10, 40, 150, (left) for Aspect Ratio=0 and (right) for Aspect Ratio=0.4. 
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Figure (5): Streamlines of the static pressure versus the downstream distance after the cylinder wall at Re = 

10, 40, 150, (left) for Aspect Ratio=0 and (right) for Aspect Ratio=0.4. 
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Figure (6): streamlines of the velocity versus the downstream distance after the cylinder wall at Re = 10, 40, 

and 150, (left) for Aspect Ratio=1 and (right) for Aspect Ratio=1.3. 
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Figure (6): streamlines of the velocity versus the downstream distance after the cylinder wall at Re = 10, 40, 

150, (left) for Aspect Ratio=1 and (right) for Aspect Ratio=1.3(continued). 
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 IMPROVING TRANSIENT STABILITY IN CASE OF FAULTS IN 

 HADITHA - QAIM LINE 
 

Dr. Samir S. Mustafa 

Technical Institute / Kirkuk 
 

 

Abstract 

 

Iraqi National Super Grid suffers from out of synchronism of the system due to short circuit in the lines. 

The main goal of this work is to study the effect of optimum generation and reconfiguration of some 

transmission paths on transient stability improvement for Iraqi Network in case of short circuit in 

Haditha-Qaim line because it is one of the wrest lines. A programmable package build under Matlab5.3 

was used to determine synchronous machines rotor angles as an indicator of transient stability. Sad Al-

Mosul, Haditha and Nasiriya power plant were chosen to notice the situation of stability.  

Keywords- Power Losses, Transient Stability, Stability,  Reconfiguration. 
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Introduction  
 

Power System Stability 

The importance of power system stability is increasingly becoming one of the most limiting factors for 

system performance. By the stability of a power systems we mean the ability of the system to remain in 

operating equilibrium, or synchronism, while disturbances occur on the system(Kundur2004). There are 

three types of stability namely, steady-stat, dynamic, and transient stability. 

1) Steady-State stability: refer to the stability of a power system subject to small and gradual changes in 

load and the system remains stable with conventional excitation and governor controls. 


