Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

Dr.Hosham Salim * & Luay.T.Hussein**

Received on: 6/4/2011 Accepted on: 21/7/2011

Abstract

Cellular Digital fixed Relay networks are new wireless system architecture based on integrating Digital Relay technique in the cellular networks to provide high data rate coverage. Therefore, interest has focused on solving the interference and multipath fading problems which introduce in system because of increasing the resources of signal in cell (Base station, Relays). This paper proposes Dynamic frequency hopping (DFH) as an interference avoidance technique for cellular Digital fixed Relay networks. The simulation of system contains applying Digital Relay and DFH techniques and focuses on the handoff process between Base station and Digital Relay. The simulation results compare the performance of system for two cases; with Relay-without DFH, and with Relay-with DFH. The results indicate that DFH can significantly improve the performance of system. The results show when the cluster size of system consists of seven cells the enhancement ratio is 83% in the blocking probability with high number of calls per hour and increase 15.38% in the number of users. When the cluster size of system consists of thirteen cells, the enhancement ratio is 85% in the blocking probability with high number of calls per hour and increase 15.38 % in the number of users.

محاكاة تجنب تأثير التداخل في شبكات الانظمة الخلوية ذات المقوى الرقمي باعتماد تقنية ديناميكية القفز الترددي

الخلاصة

ان الشبكات الخلوية ذات مُرَّحلُ الأشارة الرقمي هي انظمة لأسليكة حديثة تحقق تغطية معدل بيانات عالية، و بسبب تعدد مصادر الأشارة ضمن الخلية الواحدة (برج الأرسال والاستقبال ، مقويات الأشارة الرقمية) تم تركيز الاهتمام على حل مشكلة التداخل ومشكلة خفوت الأشارة واللتان تتولدان ضمن هذه الانظمة الحديثة. ان هذا البحث يقترح استخدام تقنية ديناميكية القفز الترددي كتقنية لتجنب التداخل ضمن الشبكات الخلوية ذات مقوي الأشارة الرقمي اما المحاكاة المقترحة ضمن هذا البحث فقد تضمنت تطبيق كل من تقنيتي مقوي الأشارة الرقمي وديناميكية القفز الترددي وتم التركيز فيها على عملية المناولة ما بين برج الأرسال والاستقبال ومقوي الأشارة الرقمي ، لقد تمت مقارنة نتائج المحاكاة على ضوء حالتين الأولى نتضمن تطبيق تقنية مقوي الأشارة الرقمي الرقمي ، لقد تمت مقارنة نتائج المحاكاة على ضوء حالتين الأولى نتضمن تطبيق تقنية مقوي الأشارة الرقمي الدومي القفز الترددي وتم التركيز فيها على عملية المناولة ما بين برج الأرسال والاستقبال ومقوي الأشارة الرقمي الدقم تقنية ديناميكية التقنيتين مقوي الأشارة الرقمي وديناميكية القفز الترددي . أظهرت النائرة الرقمي مقور الترددي وتم التركيز فيها على عملية المناولة ما بين برج الأرسال والاستقبال ومقوي الأسارة الرقمي الدمن تطبيق كلا التقنيتين مقوي الأشارة الرقمي وديناميكية القفز الترددي . أظهرت النتائج بان اداء النظام قد تحسن بشكل ملحوظ حيث كانت نسب التحسين لحجم العنقود ذو السبعة خلايا هي 83% في احتمال قطع المكالمات وعند نسبة زيادة عدد مكالمات المستخدمين المرامات وعند نسبة زيادة عمر هذا المستخدمين 15,38 مي .

1- Introduction

Recently there has increase in the concept of augmenting the infrastructure-based networks with multihop communications capability in order to provide high data rate coverage in large areas in a cost efficient manner. Multihop Communications can be facilitated through low-complexity fixed relays (wireless router) deployed by the service providers [1]. With the introduction of relays, the distance that the signal has to travel from/to a

https://doi.org/10.30684/etj.29.13.11

2412-0758/University of Technology-Iraq, Baghdad, Iraq This is an open access article under the CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0</u>

^{*} Electromechanical Engineering Department, University of Technology/Baghdad **Ministry of Industry / Baghdad

user decreases and therefore capacity and coverage of the cell increases [2,3]. Relays are very simple devices compared to base stations, which make system considerably cheaper than base stations. Another striking feature of relays is their low transmission power. Therefore, power amplifiers used are much cheaper than those of Base stations. This fact also decreases the cost of the system [4].

However, using Digital Relay in cellular networks leads to increase the interference since the Digital Relay is considered as new source of interference. The amount of this interference depends on the number of Digital Relays employed in one cell. A number of techniques are used to solve the interference in cellular systems. Some of these are channel coding and interleaving, adaptive modulation, transmitter/receiver antenna diversity, spectrum spreading and dynamic channel allocation [5].

In this paper DFH technique is proposed to solve this problem. The main idea of DFH incorporates a nontraditional Dynamic Channel Allocation (DCA) scheme with Slow frequency hopping (FH). Integrating relaying concept with DFH increases data rate coverage. This enhancement consists of increasing the S/I ratio to acceptable levels. Since the P_B is defined as the probability that the signal to interference ratio (S/I) is less than a specified threshold i.e., $P_B \triangleq$ $P[S/I \le \eta]$ this results in decreasing the Blocking probability $(\mathbf{P}_{\mathbf{B}})$ to acceptable level [5]. Therefore in this paper the performance of the system is analyzed depending on the P_B which is determined by using Erlang B formula as follows [6].

Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

$$P_{B}=\frac{\binom{u-1}{c}(\ell h)^{c}}{\sum_{t=0}^{c}\binom{u-1}{t}(\ell h)} \qquad (1)$$

Where u *and* c are the number of users and channels, respectively. ℓ and h are the number of calls per hour and average calling time, respectively.

In this paper the proposed system architecture of cellular Digital fixed Relay network is shown in Figures (1), (2). Where three Digital Relays are put in the areas that are not covered by Base station, these areas are known as coverage holes (dead spots), with distance between of the Relay location and the edge of cell equal to fifth of cell radius.

2. Radio Propagation Model

Wireless waveforms propagating through free space are subject to a distance-dependent loss of power, called path loss. The received power at distance (d) ($d \ge d_0$ m) from a transmitter is described by the Friis free-space equation [7].

$$P_{revd}(d) = \frac{P_{tx} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d^2 \cdot L} = \frac{P_{tx} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d_0^2 \cdot L} \cdot \left(\frac{d_0}{d}\right)^2$$
$$= P_{revd}(d_0) \cdot \left(\frac{d_0}{d}\right)^2 \tag{2}$$

where P_{tx} is the transmission power, G_t and G_r are the antenna gains of transmitter and receiver, d_0 is the socalled far-field distance, which is a reference distance depending on the antenna technology, $d \ge d_0$ is the distance between transmitter and receiver, λ is the wavelength and $L \ge 1$ summarizes losses through transmit/receive circuitry. Note that this equation is only valid for $d \ge d_0$. A

$$P_{revd}(d) == P_{revd}(d_0) \cdot \left(\frac{d_0}{d}\right)^{\gamma}$$

....(3)

generalized model which is valid also for other environment is [7]:

Where γ is the path-loss exponent, which typically varies between 2 (free-space path loss) and 5.5 (shadowed areas and obstructed inbuilding scenarios). However, values γ < 2 are possible in case of constructive interference. The path loss is defined as the ratio of the radiated power to the received power and can be expressed in decibel as [7]:

$$PL(d)[dBm] = PL(d_0)[dBm] + 10\gamma$$
$$\log_{10} \left(\frac{d}{d_0}\right) \qquad \dots (4)$$

This is the so-called log-distance path loss model. $PL(d_0)[dBm]$ is known as path loss at the reference distance d. The variation in the received signal power, when measured in a log scale (in dBm), has a Normal distribution. The depth of this fade variation is measured by the standard deviation and represented by σ . Thus, in order to account for the effect of shadow fading, equation (2) can be further written as [8,9]:

$$P_{revd}(d) = \frac{P_{tx} \cdot G \cdot \lambda^2}{(4\pi)^2 \cdot d^2 \cdot L} X_{\sigma}$$
(5)

Where $G = G_t \cdot G_r$ is combined antenna gain of the transmitter and the receiver, $X\sigma$ is Log-normally distributed random variable with (0dBm) mean, σ (dBm) standard deviation. Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

3. Dynamic frequency hopping

Dynamic frequency hopping is a of dynamic channel combination assignment (DCA) and the traditional frequency hopping, where a channel is one frequency in a frequency hop pattern, [4,10]. An ideal DFH method works in the following way .At each hopping instant, instead of hopping randomly or according to some predetermined repetitive pattern, the BS or mobiles measure the quality of frequency, filters the each measurement, and thereafter sends the data using the best frequencies chosen according to some criterion [5]. The main objective from DFH is to provide capacity improvements through the addition of interference avoidance, which are higher than those provided by conventional FH, while preserving interference characteristics averaging of conventional FH in order to provide robustness to changes in interference [4].

3.1 Methods of dynamic frequency hopping

There are four methods as follow.

1) Full-replacement method

All frequencies used in one frame are replaced with better frequencies in the next frame. This guarantees that during an entire transmission, frequencies with the best quality are used. FH pattern modifications are done in a centralized fashion at each base station for all of the base station's mobiles. This method gives the best possible performance of all dynamic frequency-hopping methods. Rapid measurements of interference, SIR, or other qualityvariables are required for all available system frequencies. This method creates heavy messaging overhead the air for over

exchanging the data about new frequency-hop patterns [5].

2) Worst dwell method

To achieve a satisfactory system performance, it is enough to periodically change only one of the used frequencies the one with the worst quality (highest interference, lowest SIR, etc.) in the frequency hop pattern [5].

3) SIR threshold-based method

In this method, the pattern change is done sparingly. In each frame, SIR is measured on the used frame frequencies and the current hopping pattern is changed if the measured SIR does not achieve the required threshold on at least one of them. Only the frequencies in poor conditions are changed. Any frequency that meets the threshold can be used as a replacement, and there is thus no need to scan all possible frequencies [5].

4) The received power threshold Method

In this method the calculated received power for frequencies in frame is compare with a threshold value, and blocking any frequency, which generates the weak received power, then replace this frequency by new frequency from the next frame [11].

4. Proposed Simulation Model

In this paper, the proposed simulation model for cellular fixed Digital Relay networks using DFH is arranged in steps below as shown in flowchart of figure 3

4.1 Arrangement the pattern of random frequency

The program generates the random frequencies, the center frequency is (900 MHz) at channel spacing (50 MHz). The frequencies arrangements as frames, each frame consist of six slots (six random frequencies). Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

4.2 Random user generation

In this section allocation random frame is defined for subscriber in cell, for communication with another subscriber.

4.3Determining of subscriber location

Determining of subscriber location will be done to find out the location of subscriber that is if the user is in the coverage area of BS or in the one of coverage areas of Relay in cell. Accordingly a channel would be allocated to communicate with BS or Relay.

4.4 The communication with BS or Relay:When the subscriber is found in the coverage area of BS, the communication is between subscriber and BS. On the other hand, when the subscriber is found in the coverage area of Relay, the communication is between subscriber and Relay. This communication contains some steps as follows:

4.4.1 Determining of communication channel

communication Allocate any channel which is not in use in cell for executing the communication between subscriber and BS or Relay. In the present work this paper does not depend on mechanism of allocating channels to each Relav as we have in seen other studies [12-15]. However, here all channels are under control of the BS, which determines the suitable communication channel for communication between BS and User or Relay and User.

4.4.2Calculating the received signal power for frequencies in the frame

Depending on equation (5), the program calculates received powers for six frequencies of one frame. The values of received powers are stored in

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. &Tech. Journal, Vol.29, No.13, 2011

matrix (M1). This continues until the end of communication process.

4.4.3 Applying the DFH technique

After transmitting the matrix (M1) for communication we apply the DFH technique to guarantee the best values of received power for any transmit frame. This technique consists of the following steps: -

- 1- Recall the calculated received power for six frequencies in one frame and compare it with the threshold value of -76 dBm. Block any frequency, which generates power which is less than (-76 dBm)[11].
- 2- Replace this frequency by new frequency from any unused frame.
- 3- Calculate the received power for the new frequency and compare it with the threshold value (-76) again.

The calculated value of received power is recalled and compared with threshold value. If the calculated value of Pr is greater or equal to the threshold value (-76 dBm) (for example -70,-60) then this value is stored in new matrix (M2) for handoff process and at the same time this value is sent to continue the communication process. When Pr is less than the threshold (-76 dBm) (for example -80,-100) which is caused by multipath fading and interference problems, the system blocks this frequency and replaces it with new frequency from unused frame and recalculates the Pr and compares with the threshold value (-76) again. The DFH process is repeated until the communication process ends.

4.5 The handover between BS and Relay

At the end of comparing all frequencies of frame and store them in

Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

matrix (M2) the systems recalls these frequencies again to compare them with new threshold value (-71) which is used to determine keeping the communication with BS or transition to the closer Relay of subscriber or inversion. If the value of Pr is greater than threshold value (-71) then it is stored in matrix (M3) but if the value of Pr is less than threshold value (-71) then it is stored in matrix (M4). After ending the comparison process of the Pr values stored in matrix (M2), the system compares the number of values in matrix M3 with on M4. Now there are two cases to handover, the first is when the subscriber moving from BS to Relay. secondly when the subscriber moving from Relay to BS.

In the first case (BS to Relay)($M_3 <$ M₄) if the number of values stored in matrix (M4) is larger than the number of values stored in matrix (M3), then the communication is transformed from BS-subscriber Relayto subscriber with allocating suitable communication channel. However. $(M_3 > M_4)$ when the number of values in matrix (M4) is less than the number of values in matrix (M3), then the communication is continued between BS and subscriber.

In second case (Relay to BS)($M_3 >$ M₄) if the number of values in matrix (M3) is larger than the number of values in matrix (M4), then the communication is transformed from Relay-subscriber to **BS**-subscriber with allocating suitable communication channel. However. $(M_3 < M_4)$ when the number of values in matrix (M3) is less than the number of values in matrix (M4), then the communication continued between Relay and subscriber. This process continued until ending the communication process.

5. Simulation Results

This paper presents the simulation results for all suggestions in previous sections. The objectives of this simulation are to improve the performance of cellular fixed Relay networks by using DFH technique. These are presented in accordance with the comparison between two proposed cases as follows:-

1-With Relay -Without DFH.2-With Relay -With DFH.

5.1 Blocking Probability

This section aims to study the changes in P_B through two main parts:-

1-Blocking probability with load traffic.

2-Blocking probability with user.

For the first part there are two factors influence the load traffic (number of calls per hour (ℓ) and average calling time (h) to observe how the P_B is changing. In the second part depends on the number of users only and shows the effect of increasing the number of user on P_B.

5.1.1 Blocking Probability with Load Traffic

This section includes Figures (4) and (5) for K=7, 13 respectively, when the number of calls is equal to 15 per hour and average calling time equals 2 minute. In Figure (4) P_B in first case (with Relay-without DFH) equal to 0.0024 in load traffic equal to 50, and then increase to 0.0606 in load traffic equal to 65. The best values of $P_{\rm B}$ found in second case (with Relay with DFH) is equal to 1.243×10^{-3} in load traffic equal to 50, and 0.0188 in load traffic equal to 65. Approximately the same behavior when K= 13 in Figure (5) but with

good enhancement ratio for P_B . In first case (with Relay-without DFH) P_B equals 0.0018 in load traffic equal to 50 and 0.0538 in load traffic equal to 65. In the second case (with Relay-with DFH) P_B equals 8×10^{-5} in load traffic equal to 50, and 0.0156 in load traffic equal to 65.

Figures (6) and (7) for K=7, 13 respectively, when the number of calls is equal to 25 per hour and average calling time equals 2 minute. In Figure

(6) the P_B equal to 4.511×10^{-4} for first case (with Relay-without DFH) and 1.154×10^{-5} in second case (with Relay-with DFH) when load traffic equals 45.83(number of users are 55). When load traffic increase to 62.5 (number of user are 75) P_B equals 0.0482 in first case (with Relaywithout DFH) and 0.012 for second case (with Relay-with DFH). Figure (7) gives the same behavior when the K= 13. When the load traffic equals 45.83 P_B equals 2.99×10⁻⁴ in first case (with Relay - without DFH) and 6.872×10^{-6} for second case (with Relay-with DFH). When load traffic increase to $62.5 P_B$ equals 0.0418 in first case and 0.0097 for second case. Then it is increase the number of calls to 35 per hour with 1 minute for average calling time in Figures (8) and (9). In Figure (8) When load traffic equal to 46.667(number of users are 80) P_B for first case equal to 6.416 $\times 10^{-4}$, 1.89×10^{-5} in the second case. The same case in Figure (9) when the K= 13, the $P_{\rm B}$ in the load traffic 46.6667 is equal to 4.337×10^{-4} in first case (with Relay-without DFH) and 1.149×10^{-5} for second case (with Relay -with DFH). When increase the load traffic to 64.1667 (number of users are 110) in both figures the values of P_B in the second case (with

Relay-with DFH) remains less than criteria value 0.02.

From these results, the enhancement range is observed in P_B when it uses DFH techniques in this network. Especially in the second case (With Relay- with DFH) where the values of P_B still good and less than criteria value (0.02) comparing with first case, in spite of the load traffic increased. That means it can be increase the number of users in any cellular network when applying DFH technique. This enhancement in P_B leads high reliability to in communication operation through call period, in addition it transmits high data rates.

5.1.2 Blocking Probability with User Figure (10)presents good enhancement when we apply DFH. We can see in the first case (With Relay- Without DFH) when the number of users is equal to 65, P_B equals 0.0096 and increases to 0.0245 when the number of users increases to 70. In the second case (With Relay-With DFH) when the number of user equals 75, P_B equals 0.012, and increases to 0.0272 when number of users increases to 80, which means any cellular network can be increase the number of users by applying DFH technique. In Figure (11), it can be seen the same behavior approximately. 6. Conclusions

Our results show that the DFH technique can be improve the system performance. Therefore, based on our simulation results, the following conclusions are drawn:-

1-The results show a good enhancement in the P_B when applying DFH technique to solve the interference problem as follows:- Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

- A- When ℓ =15, h=2 and K=7 the enhancement ratio between first case (with Relay-without DFH) and second case (with Relay-with DFH) is equal to 68.9% approximately .when K=13 this ratio increases to 71%.
- B- When ℓ =25, h=2 and K=7 the enhancement ratio between first case (without Relay-without DFH) and second case (without Relaywith DFH) is equal to 75% approximately .when K=13 this ratio increases to 76.77%.
- C- When ℓ =35, h=1 and K=7 the enhancement ratio between first case (without Relay-without DFH) and second case (without Relaywith DFH) is equal to 71% approximately .when K=13 this ratio increases to 73%.
- 2-The results of P_B with respect to number of user indicate two important points, they are:-

-The enhancement ratio in number of user between the first and second cases is 15.38% for K=7 and K=13, which means any cellular fixed relay networks can increase the number of user by applying DFH technique.

-The enhancement ratio in P_B between the first and second cases is 30% for K= 7 and 35.6% for K=13, that means increase in the system capacity when applying DFH technique.

7-References

- [1]P.Balasubramanie, "Resource Estimation and Reservation for Handoff Calls in Wireless Mobile Networks", IJCSIS, Vol.9, No.1, 2011.
- [2] V. Sreng, H.Yanikomeroglu and D.Falconer, "Relayer Selection Strategies in cellular Networks with Peer-to-Peer Relaying", IEEE

2729

Vehicular Technology Conf. Fall 2003 (VTC'FO3), Orlando, Florida, USA, 4-9 October, 2003.

- [3]A.Florea and H.Yanikomeroglu, "On the optimal number of hops in infrastructure-based fixed relay networks", in Proc. Of IEEE Globecom, St. Louis, MO, USA, Nov. 2005.
- [4]O.Mubarek, H.Yanikomeroglu and S.Periyal- war, "Dynamic Frequency Hopping in Cellular Fixed Relay Networks" Vehicular Technology Conf., spring 2005, Vol. 5, PP. 3112-3116, May 2005.
- [5]Z.Kostic, I.Maric and X Wang "Fundamentals of Dynamic Frequency Hopping in Cellular Systems" IEEE Journal on Selected Area in Communications, vol.19, NO, 11, November 2001.
- [6]Steven LI Chen, "Dynamic Channel signment with Flexible Reuse Partitioning" Wireless Personal Communications, 2010
- [7]H.Karl and A. Willing, "Protocols and Architectures for wireless sensor network", John Wiley & Sons, Ltd, 2005.
- [8]T.Rapparb,"Wireless
- Communications Systems", Prentice Hall PTR, 1996.
- [9] V.Sreng, "Coverage Enhancement Through Two-hop Relaying in cellular Radio Systems", M.sc. Thesis, Carleton University, 2002.
- [10]Z. Kostic and N. Sollenberger, "Performance and Implementation of Dynamic Frequency Hopping in Limited-bandwidth Cellular Systems" IEEE Transactions on Wireless Communications, Vol. 1, no. 1, PP. 26. 38, January 2002.

[11]Hosham salim, and H.Bli,"Performance Enhancement of GSM cellular Phone Network using Dynamic Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

> Frequency Hopping "Engineering and Technology journal Vol.26, No.3, 2008.

- [12]H.Wu, "iCAR: an Integrated cellular and Ad-hoc Relaying system", Ph.D.Thesis, University of New York at Buffalo, 2002.
- [13]H.Hu,"Performance Analysis of cellular Networks with Digital Fixed Relays", M.sc. Thesis, Carleton University, 2003.
- [14]H.Hu, H.Yanikomoroglu, D.Falconer and S.Periyalwar, "Range Extension without capacity Penalty in cellular Networks with Digital Fixed Relays", Nertel Networks, Ottawa, Canada,2004.
- [15]C.Qiao and H.Wu, "iCAR: An integrated cellular and Ad-hoc Relay System", IEEE Int. Conf. Computer communication Network, Oct. 2000, PP. 154-161.

Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

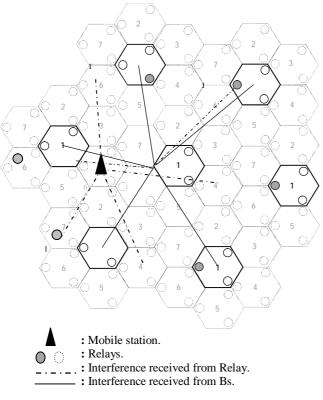
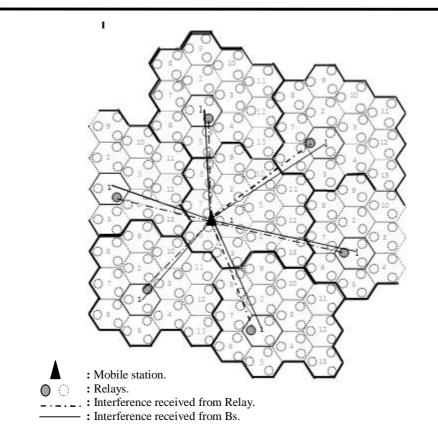
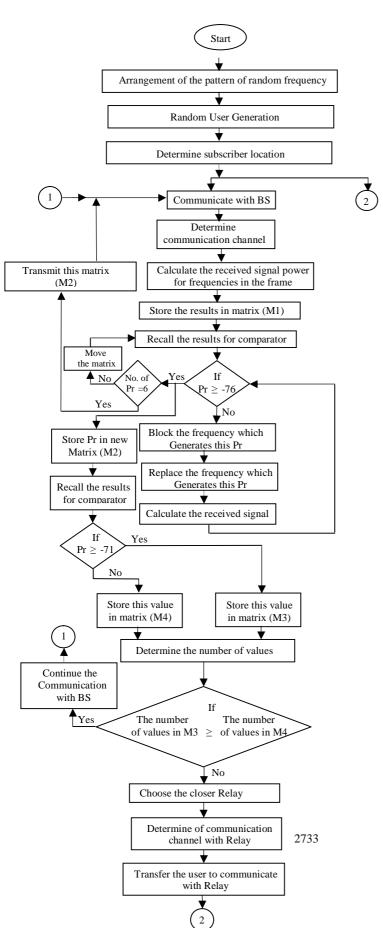
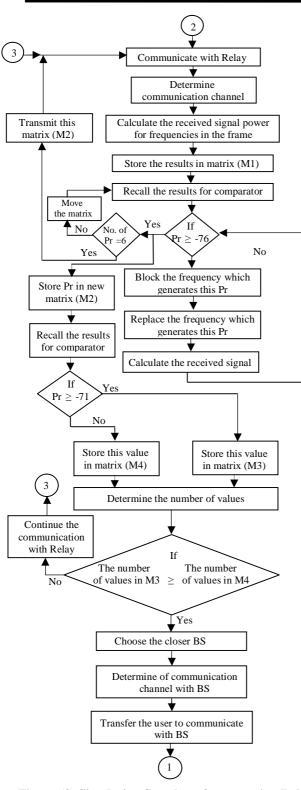


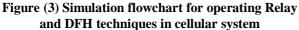
Figure (1) The interference sources (BS ,Relays) when the cluster size is equal to7

2731

Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping


Figure (2) The interference sources (BS, Relays) when the cluster size is equal to 13.


Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

Simulation of Interference Avoidance in Cellular Digital Relay Networks using Dynamic Frequency Hopping

2734

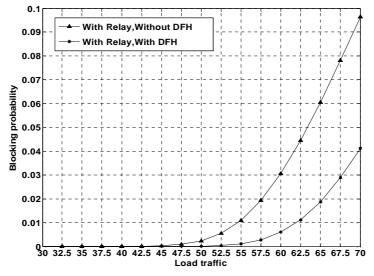


Figure (4) The relationship P_B and load traffic when K = 7, number of calls = 15 per hour, average calling time = 2 minute

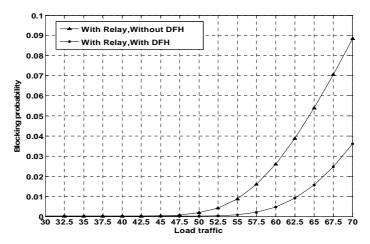
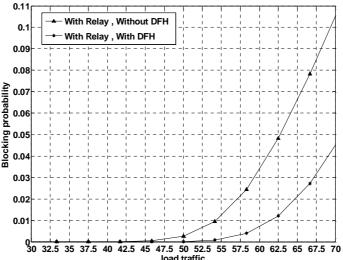
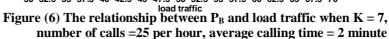




Figure (5) The relationship between P_B and load traffic when K = 13, number of calls = 15 per hour, average calling time = 2 minute

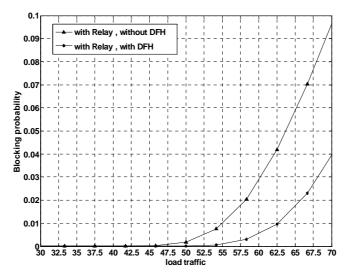


Figure (7) The relationship between P_B and load traffic when K = 13, number of calls =25 per hour, average calling time = 2 minute

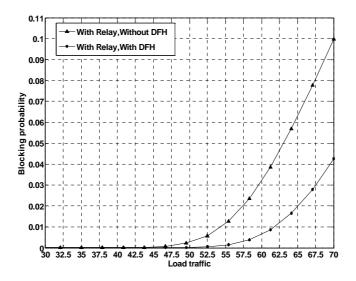


Figure (8) The relationship between P_B and load traffic when K = 7, number of calls =35 per hour, average calling time = 1 minute

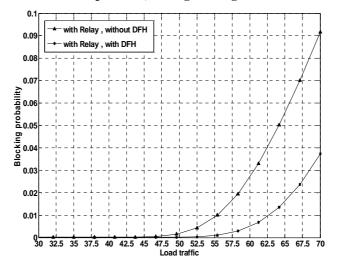


Figure (9) the relationship between P_B and load traffic when K = 13, number of calls =35 per hour, average calling time = 1 minute



Figure (10) The relationship between P_B and users when

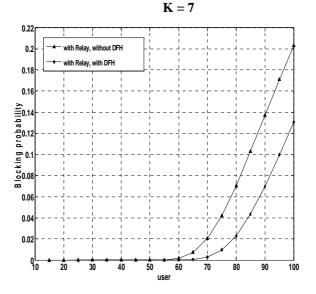


Figure (11) The relationship between blocking probability and users when K = 13