Statistical Models for Predicting the Optimum Gypsum Content in Cement Mortar

Dr. R. S. Al-Rawi*, Dr. A. H. Al-Neaime * & Dr. Zena K.Al-Anbori*

Received on: 3 /4 /2011 Accepted on:20/6/2011

Abstract

One of the most important problems in concrete industry in Iraq is deterioration due to internal sulfate attack that causes damage of concrete and hence reduces its compressive strength, increases its expansion and may be lead to its cracking and destruction. Linear regression analysis is used to predict the optimum SO₃ content (O.G.C) on the basis of cement chemical composition, Blaine fineness and age. Three models are presented, the first one is an early age model (less than or equal to 7days). Then a late age (greater than 7-days) model was developed based on the predicted optimum SO₃ content of early age and late age. The third model was an all ages model and it is a general model specially for OPC. The important results obtained are the positive effect of C_3S , C_3A and C_4AF on optimum SO₃ content in cement mortar. The effect of C_3A on optimum SO₃ content is about twice that of C_4AF . The study also showed a trend of positive and important effect of the fineness of cement.

Keywords: optimum SO₃ content (O.G.C), total effective SO₃ content, early age model, late age model, all age model

نماذج أحصائية لتوقع نسبة الجبس المثلى في مونة السمنت

الخلاصة

1. Introduction

Solution with calcium aluminates and water, to form calcium sulfates react with Calcium sulfa

Sulfates which react with calcium aluminate hydrate and water.One of the main sources of sulfate that causes damage of concrete structures is the sand used. In the central and southern regions of Iraq, most sands are

*College Engineering, University of Baghdad/Baghdad

https://doi.org/10.30684/etj.29.13.9

2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

contaminated with sulfates mainly in the form of gypsum. About 95% of the sulfates in sand are in the form of calcium sulfates [Al-Rawi (1977)]⁽¹⁾. Al-Rawi (2002)⁽²⁾ found that the allowable sulfate content in sand could be increased without a significant loss in strength provided that sulfate content in cement is reduced. They presented the theory of effective sulfate content in concrete ingredients and developed the following formula which is based on this theory:

SO₃(effective) = $0.9 - 0.25 \sqrt{F.M}$...(1)

Where F= fineness modules of sand Determination of the Statistical Model Variables

2.1 Collecting Data

In order to build a regression predictive model, there should be sets of data that cover a wide range of variation of the independent variable. A survey was carried out of the literature to obtain the required data that covers internationally and locally published literature from (1946 to 2002) as presented in **Table 1**.

2.2 The Independent Variables

Following the selection of the independent variables, the data were processed to obtain the information presented in **Table 2** that include:

1. Main compounds of cement.

2. Total alkalis as equivalent Na_2O ($Na_2Oequ. = 0.658K_2O + Na_2O$.

3. Cement surface area (Blaine fineness).

2.3 The Dependent Variables

The value of optimum SO_3 content has to be predicted from the relationship between compressive strength and different SO_3 content as presented in **Table 3**. The decision was based on the observed variation of SO_3 content with maximum compressive strength and the change of SO_3 content with age of the same mix.

3. Preliminary Statistical Analysis

The analysis focused on the calculation of the following measures of central tendency and dispersion of data .The number of data was 178. 1. Mean, median and mode (central tendency)

2. Minimum and maximum, range

and standard deviation (dispersion).

The calculated measures of central tendency and dispersion are presented in **Table 4**

3.1 Correlation Analysis

Two types of correlation coefficient obtained which were Person and Spearman [SPSS manual] between dependent and independent variables are presented in Table 5 and 6 respectively. The first one is used for linear relationship and the second coefficient for non linear relationships. Following the calculation of the correlation coefficient, the value obtained should be examined to determine its significance .This is achieved by comparison between calculated (r_c) and the critical correlation coefficient (\mathbf{r}_{c}) at а specified level of significance. The critical correlation coefficient (r_c) can be calculated using the equation given below [Draper and Smith (1982)] ⁽³⁾and [Bland (1985)]⁽⁴⁾.

$$r_{c} = \frac{t_{a/2}}{\sqrt{t_{a/2}^{2} + n - 2}}$$

Where: a = the level of significance. t = the standard t variable.

n = number of sample data pairs.

4. Development of a Model for Optimum So₃ Content in Cement

The Predictive developments first models (early –late ages) are made in two stages based on age of the product. The first stage focused on

data for the age in the range (1-7) days and the second stage for ages higher than this range .Overall ages is predicted in the second model.

4.1 Early- Age Model

Following the separation of the data for early ages (less than 7-days), Partial correlation of cement model (early ages) between optimum SO_3 % and other compounds presented in Table 7.

Examination of the presented data provides clear evidence that for all variables the coefficients of correlation for linear relationship are substantially higher than that for nonlinear relationships. Furthermore all coefficients of correlation of the linear relationships are higher than the critical coefficient of correlation of (0.3419). Based on this result it was decided to use linear multiple regression technique for the development of the required statistical model.

Results of the performed regression analysis are presented in **Table 8**. These results, however, are not consistent with the adopted idea that the presented independent variables are the only variables which affect the optimum $SO_3\%$ content. The reason for this conclusion is the number of rejected decisions about independent variables at the 5% level of significance.

This model is presented in **Table 9** below together with other statistical parameters by using SPSS version 12 program⁽¹⁴⁾.

Therefore the regression equation can be written as follows:

 $04 \times \text{Blaine}(\text{cm}^2/\text{gm}) + 9.0768\text{E-}$ $03 \times \text{Time}(\text{Early ages}) - \text{days} \dots (2)$

Table 10 shows the coefficient of determination (\mathbb{R}^2) is (0.976) .This has the implication that 97.6% of the observed scatter in the data is explained by the adopted model. This conclusion is consistent with result of comparison of the calculated F (136.521) with the tabulated critical F value of (2.315) at the 95% level of confidence.

Moreover, the calculated Durbin-Watson value is (2.237) which are within the accepted range of (1.5-2.5) and hence, a minimal random error would be expected.

A proof of the conclusion that the developed model results in minimal random error can found bv examination of Fig. 1 which shows scatter plot of observed and calculated optimum SO₃%. The data shows no trend that is to say random variation since the data is distributed approximately equally above and below the 45° line.

Figures 2 to 5 show scatter plots of optimum predicted SO_3 and other independent variables values versus the residual. The data presented suggest the existence of random variation between variable values and their residual values. The data presented provide further confirmation to the conclusion that the developed model can be considered as the best selected model. The value of T-statistics should always be zero to confirm that the built model fits the data well [Draper and Smith (1982)].

$$T = \sum_{i=1}^{n}$$
 Residuals ×Predicted value

of optimumSO₃%

T- value of the developed model = -0.02, which is reasonably low value.

The distribution of residuals is shown in Fig 6. From this figure it is clear tat the residuals are almost normally distributed.

4.2 Late- Age Model (Higher Than 7-days)

The collected data of age greater than 7- days is analyzed statistically in a procedure similar to that presented for the age of 7-days and less. The results of the descriptive statistical analysis are shown in **Table 11**. Examination of the data presented indicates the existence of reasonable variation of the age and the optimum SO₃% content. This property is necessary for regression analysis.

The multiple linear regression method is used for the developed model for late ages. The regression coefficients obtained are presented in **Table 12.**

Optimum SO₃ %(late ages) = $1.08 \times SO_3$ %(predicted for early ages) - 2.136E- $04 \times Time$ of late age (days)... (3)

Table 13 shows that the calculated coefficient of determination (\mathbb{R}^2) is (0.965). This has the implication that 96.5% of the observed scatter in the data is explained by the adopted model. This conclusion is consistent with the result of comparison of the calculated value of F (872.951) with the tabulated critical F value of (3.07) at the 95% level of confidence.

Moreover, the calculated Durbin-Watson value is (1.868) .This value is within the accepted range of (1.5-2.5) and hence, a minimal random error would be expected.

A proof to the conclusion that the developed model results in a minimal random error can be found by examination of Fig. 7 which shows a scatter plot of observed and calculated optimum $SO_3\%$. Examination of the presented data indicates that the data

distributed equally above and below the 45° line.

Examination of **Figs. 8** to **11** show scatter plots of predicted variables values versus the residual of each variable. The data presented suggest the existence of a random variation between the variable values and their residual values. The data presented provide further confirmation to the conclusion that the developed model can be considered as the best selected model. The value of T-statistics should always be zero to confirm that the developed model fits the data well [Draper and Smith (1982)]⁽³⁾.

T-value of the developed model = -0.53, which is a reasonably low value. The distribution of residuals is shown in **Fig. 12** from this figure it is clear tat the residuals are almost normally distributed.

4.3 All- Age Cement Model

It may be argued why developing two models depending on age of mortar specimens. The answer is that combining data in one model will result in less accurate model for the reason that the chemical composition and Blaine fineness remain constant while age and optimum $SO_3\%$ will vary.

The results of linear and non linear (Pearson and Spearman) correlation analysis are presented above .The data presented suggest that the linear model provides better fit for the data. More reliable evidence to this conclusion can be found using partial correlation analysis. From the partial correlation presented in Table 14, all coefficient of correlation of the linear relationship are higher than the critical coefficient of correlation of (0.137)except for the relation with time, which is lower than the critical value

and in general it is higher than the nonlinear relationship .

This result was expected prior to the analysis as explained at the beginning of this section. The multiple linear regression analysis is used for model development.

The regression equation coefficient, standard error, t- value and the decision are presented in **Table 15**. The sample size of this model is 143.

Optimum SO₃%(All ages) = $0.281 \times MgO\% + 0.901 \times Total Alk.\%$ + $1.963E-03 \times C_3S\% - 2.924E-03 \times C_2S\% + 4.015E-02 \times C_3A\% + 2.993E-04 \times C_4AF\% + 2.993E-04 \times Blaine(cm^2/gm)+ 2.862E-04 \times Time(All ages)-days.....(4)$

Although the developed model for cement mortar is general for all ages, it has the problem of rejected MgO and Blaine. These rejections are in contrast with the currently available knowledge. To conclude the performance of this model, further statistical analysis was made as presented herein the following sections. Table 16 shows that the coefficient of determination (\mathbf{R}^2) is (0.967). This has the implication that 96.7% of the observed scatter in the data is explained by the adopted model. This conclusion is consistent with the result of comparison of the calculated F (500.292) with the tabulated critical F value of (1.94) at the 95% level of confidence.

Moreover, the calculated Durbin-Watson value is (1.398) which is not within the range of (1.5-2.5). This is attributed for the autocorrelation between the selected independent variables. The consequence of the existed autocorrelation is that the model will result in an error of estimate may be larger than would be acceptable. Figures **13** to **16** shows scatter plots of optimum predicted SO₃, C₃S, C₃A and fineness Blaine variables values versus the residual of each variable. The presented data suggest the existence of non random variation between variable values and their residual values. Based on the presented statistical analysis, it is concluded that the model is not capable of producing reliable estimates of the optimum SO₃ content. Therefore, the two developed models explained earlier in this section can be used with 95% confidence except for SRPC which can be used as the alternative model.

5. Conclousions

Regression models for predicting the O.G.C (as total effective SO₃) in cement mortar were developed. These models were built using regression analysis. The choice of the best model was according to the following considerations:

- Statistical analysis.

- The best model is that best fits the factors considered (positive and negative trends and the values of the regression coefficients.

- Validation of the models was by testing and checking the data collection.

According to the results obtained in this study for the models of cement mortar, the following could be concluded:

5.1 Development of Models for Cement (Early, Late Age and All age Model)

1. The examination of the data presented for all variables indicates that the coefficients of correlation for linear relationship are substantially higher than that for nonlinear relationship.

2. In general, statistically, it was found that the MgO content of cement positively affects the optimum SO₃

content and this due to the low amount of MgO in cement.

3. It was proved statistically that the effect of C_3S on optimum SO_3 content is positive.

4. The positive effect of C_3S is about double the negative effect of C_2S in the early age model of cement mortar.

5. The main shortcoming of all the ages model is the high value of regression coefficient for C_2S compared with C_3S and this may be due to the effect of age.

6. The effects of C_3A and C_4AF on optimum SO₃ content are positive.

7. The effects of C_3A and C_4AF compounds are higher than C_3S and C_2S in early age cement mortar model.

9. The effect of Blaine fineness is positive.

10. Blaine fineness and C_3A were found as the main factors affecting the optimum SO_3 content in both early age and all ages development models for cement mortar.

11. The positive effect of age is to increase the optimum SO_3 content with increase of age in all ages model. 12. It is proved statistically that the optimum SO_3 content increases with increase of age in the late age model.

Refrences

- Al-Rawi, R.S. (1977), "Gypsum content of cement used in concrete cured by accelerated method ", ASTM Journal of Testing and Evaluation, Vol.5, No. 3, pp.231-237.
- [2]Al-Rawi,R.S., Al-Salihi, R.A. and Ali, N.H. (2002)-A " Effective sulfate content in concrete ingredient ", Challenges of concrete construction Symposium , University of Dundee , Scotland , U.K.
- [3] Drapper, N. R. and Smith, H. (1981), "Applied regression analysis ", John Wiley, New York, pp. 709.

- [4] Bland, J.A., (1985)," Statistics for construction students ", Published in USA by Longman Inc., New York, pp.138-146.
- [5] Lerch, W. (1946), "The influence of gypsum on the hydration and properties of Portland cement paste ", ASTM Proceedings, Vol.46, pp.1252-1292.
- [6] Meissner , H.S. , Cook, H.K. , Gonnerman , H.F. , Hansen , W.C. , McCoy , W.J. , Tremper ,B. and
- [7] Frigione, G. and Marra, S. (1976),
 "Relation between particle size distribution and compressive strength of Portland cement ", Cement and Concrete Research, Vol. 6, pp.43-121.
- [8] Jelenic, I., panovic, A., Halle, R., and Gacesa, T. (1977), "Effect of gypsum on the hydration and strength development of commercial Portland cement containing alkali sulfate ", Cement and Concrete Research, Vol.1, No.3, pp.239-245
- [9] Ali, N.H. (1981) "Effect of sulfates content on concrete with different gypsum content cements ", Ms.C Thesis, College of Engineering, University of Baghdad, pp.145-149,128,137.
- [10] Zari , A.S. (1981) , "Role of aggregate in sulfate effect on cement mixes" , Ms.C Thesis , College of Engineering , University of Baghdad ,pp.151-155,137.
- [11]Soroka, I.and Abaynech, M. (1986),
- "Effect of gypsum on properties and internal structure of PC paste", Cement and Concrete Research, Vol.16, No.4, pp.495-504.
- [12] Abdul-Latif, A.M. (2001), "Optimum gypsum content in cement mortar and concrete ", Ph.D. Thesis, College of Engineering, University of Baghdad.

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar

[13] Al-Rawi , R.S. and Abdul-Latif ,A.M. ,(2002)-B," Mathematical model for the optimum gypsum content in cement and concrete" ,Proceedings; the sixth international conference on concrete technology for developing countries ,Amman ,Jordan.

[14]SPSS manual, (1992), Statistical package for social science, version 12, electronic help file.

Author	Year	No. data	work	Type of cement
Lerch ⁽⁵⁾	1946	12	mortar	12-commercial clinkers : (2-high C_3A and low Alkali), (5-high or moderately high C_3A and high or moderately high alkali), (3-low C_3A and low alkali) and (2-low C_3A and high alkali)
Meissner ⁽⁶)	1950	8	mortar	Type I,II,III,IV for high and low alkalies
Frigione (7)	1975	1	mortar	Chemical composition
Jelenic ⁽⁸⁾	1976	2	mortar	Approximately the same chemical composition and different in alkalis.
Ali ⁽⁹⁾	1981	6	mortar	Same chemical composition with 1:2.75 (mix) and different SO_3 level as shown in Table(3,3)
Zari ⁽¹⁰⁾	1981	8	mortar	(4-OPC with 1:2, 1:3, 1:4, 1:5 mix) and (4-SRPC with 1:1:2, 1:1.33:2.68, 1:2:4 and 1:3:6 mix).
Soroka ⁽¹¹⁾	1986	3	Cement paste	The same chemical composition with different in Blaine.
Abdul- Latif ^{(12),(13)}	2001	3	mortar	Different chemical composition

Table 1: The collected data

Author	Serial			С	alculated		
		Total Alk. %	C ₃ S%	C ₂ S%	C ₃ A%	C ₄ AF%	Surface area (Blaine)gm/cm ²
Lerch ⁽⁵⁾	1	0.27	45.5	28.4	14.3	6.7	3780
	2	0.21	70.00	8	12.5	7.6	3970
	3	0.69	41.4	32.2	13.1	7.3	4050
	4	0.59	62.5	13	11.2	7.7	3810
	5	1.07	48.2	27.8	11	7.8	4280
	6	1.47	47.9	29	10.1	7.6	4400
Lerch	7	0.94	46.00	30.6	8.1	9.3	4070

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar

Lerch ⁽⁵⁾	1	0.27	45.5	28.4	14.3	6.7	3780
	2	0.21	70.00	8	12.5	7.6	3970
	3	0.69	41.4	32.2	13.1	7.3	4050
	4	0.59	62.5	13	11.2	7.7	3810
	5	1.07	48.2	27.8	11	7.8	4280
	6	1.47	47.9	29	10.1	7.6	4400
Lauah	7	0.94	46.00	30.6	8.1	9.3	4070
Lerch	8	0.33	28.00	53.5	5.1	9.6	3190
	9	0.17	47.60	30.9	4.8	13.2	3410
	10	0.20	37.40	51.9	2.4	5.7	3220
	11	1.10	26.00	49.1	6.2	14	4250
	12	0.95	46.00	26.3	5.7	14.7	4040
Meissner ⁽⁶⁾	1	0.67	42.1	31.7	9.1	8.3	4025
	2	0.23	44.4	26.7	12.5	6.5	3520
	3	0.66	45.6	27.6	6	11.2	3770
	4	0.40	39.1	38.1	4.3	10.1	3610
	5	0.76	49.3	19.2	13.8	7.4	4530
	6	0.21	53.7	15.3	9.5	10.3	5120
	7	1.17	27.7	50.2	5.2	9.2	4000
	8	0.32	21.8	59.2	3.8	8.3	4025
Soroka ⁽¹¹⁾	1	0.51	46.5	27.5	11	9.1	2300
	2	0.51	46.5	27.5	11	9.1	3000
	3	0.51	46.5	27.5	11	9.1	4200
Jelenic ⁽⁸⁾	1	0.76	69.00	5	8	9	4900
	2	0.48	64.00	13	10	8	4900
Frigione ⁽⁷⁾	1	1.44	50.40	26.4	5.6	12.6	3200
Ali ⁽⁹⁾	1-6	0.94	41.10	34.8	8.8	8.5	3000
Zari ⁽¹⁰⁾	1-8	0.53	49.53	20.12	8.76	10.16	3278
	9-16	0.35	61.96	13.7	1.1	15.1	3124
Abdul-	1	0.6	52.13	23.63	1.87	14.8	2900
Latif (12),(13)	2	1.04	37.7	30.5	9.63	10.43	3360
	3	1.17	33.41	39.01	7.88	10.28	3360
a	mial maaama th	a number of data f					

Serial means the number of data for each author.

					Optimum S	,		
					Fime in day	•		
Author	Serial	1-day	3-days	7-days	28-days	56-days	90-days	365-
		i uuj	5 augs	, augs	20 aujs	20 a ays	yo aayo	days
Lerch ⁽⁵⁾	1	2.40	3.50	3.00	3.00		3.00	2.40
	2	3.00	3.00	3.00	2.40		2.40	3.00
	3	3.50	3.50	3.50	5.00		5.00	5.00
	4	3.00	3.00	3.00	3.00		3.00	2.40
	5	4.00	4.00	4.00	4.50		4.50	4.50
	6	5.00	5.00	5.00	5.00		5.00	5.00
	7	3.50	3.50	3.50	4.00		3.00	3.50
	8	1.90	2.40	3.00	1.90		1.90	1.00
	9	2.40	1.90	2.40	2.40		2.40	2.40
	10	1.50	1.50	1.90	1.90		1.50	1.90
	11	4.00	4.50	4.50	3.50		4.50	3.00
	12	3.00	1.90	3.50	3.00		4.00	4.00
Meissner ⁽⁶⁾	1		3.21	3.55	3.97			
	2		2.49	2.49	1.96			
	3		2.70	2.70	4.90			
	4		2.10	2.10	1.02			
	5	3.79	4.90	4.90				
	6	2.91	3.44	2.16				
	7		3.11	3.39	2.66			
	8		1.72	2.03	2.82			
Frigion ⁽⁷⁾	1	2.80	2.80	2.80				
Jelenic ⁽⁸⁾	1	2.00	2.70	3.00	3.00			
	2	4.00	3.60	3.60	3.00			
Ali ⁽⁹⁾	1		2.38	3.06	3.06			
	2		2.88	2.88	2.88			
	3		3.38	3.38	3.38			
	4		3.63	2.94	3.63			
	5		3.19	3.19	3.88			
	6		3.35	3.35	4.18			
Zari ⁽¹⁰⁾	1			3.22	3.22	3.22	3.22	
	2			3.22	3.47	3.22	3.47	
	3			3.22	3.47	3.22	3.22	
	4			3.47	3.47	3.47	3.47	
	5			3.22	3.22	3.47	3.22	
	6			3.22	3.22	3.22	3.22	
	7			3.47	3.47	3.22	3.22	

Table 3: Optimum SO₃% of cement paste and mortar at different ages (by weight of cement)

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar

	8			3.22	3.47	3.22	3.22	
Soroka ⁽¹¹⁾	1	2.00	2.00	3.00	3.00		3.00	
	2	3.00	3.00	2.00	2.00		3.00	
	3	3.00	3.00	4.00	3.00		3.00	
Abdul-	1			2.37	1.87			
Latif (12),(13)	2			3.12	3.12			
	3			3.10	3.10			

Table 4: Descriptive statistics analysis for cement mortar (all data)

	Centr	al tendenc	У	Dispersion				
Variable	Mean	Median	Mode	Std. deviation	Range	Minimum	Maximum	
MgO%	2.48	2.63	3.4	1.026	3.79	0.75	4.54	
Total Alk. %	0.64	0.53	0.94	0.348	1.3	0.17	1.47	
C ₃ S%	47.19	46.50	41.1	11.071	48.2	21.8	70.0	
$C_2S\%$	28.12	27.60	34.8	12.545	54.2	5.0	59.2	
C ₃ A%	8.02	8.76	11.0	3.637	13.2	1.1	14.3	
C ₄ AF%	9.84	9.10	8.5	2.685	9.4	5.7	15.1	
Blaine gm/cm ²	3643.7	3520	3000	611.12	2820	2300	5120	
Total eff. SO ₃ %	3.14	3.12	3.00	0.832	4.0	1.0	5.0	

 Table 5: Correlation matrix for dependent and independent variables (Person correlation)

Compound	MgO	Total Alk.	C ₃ S	C_2S	C ₃ A	C ₄ AF	Blaine	Ages	SO ₃ %
MgO	1.00	.192*	008	153*	.038	.092	203**	031	.381**
Total Alk.	.192*	1.00	268**	.183*	.151*	014	.206**	025	.548**
C ₃ S	008	268**	1.00	951**	.069	.146	.133	003	.087
C_2S	153*	.183*	951**	1.00	195**	188*	156*	.037	192*
C ₃ A	.038	.151*	.069	195**	1.00	692**	.312**	.010	.290**
C ₄ AF	.092	014	.146	188*	692**	1.00	201**	001	.011
Blaine	203**	.206**	.133	156*	.312**	201**	1.00	.051	.348**
Ages	031	025	003	.037	.010	001	.051	1.00	.039
SO ₃ %	.381**	.548**	.087	192*	.290**	.011	.348**	.039	1.00

 r_c

	variables (Spearman correlation)								
Compound	MgO	Total Alk.	C ₃ S	C ₂ S	C ₃ A	C ₄ AF	Blaine	Ages	SO ₃ %
MgO	1.00	.306**	064	.006	.007	.078	126	.152*	.485**
Total Alk.	.306**	1.00	206	.194**	.126	.041	.224**	07	.523**
C ₃ S	064	206	1.00	944**	.100	.155*	.129	.073	.127
C_2S	.006	.194**	944**	1.00	158*	180*	128	064	117
C ₃ A	.007	.126	.100	158*	1.00	699**	.303**	126	.211**
C ₄ AF	.078	.041	.155*	180*	699**	1.00	255**	.137	.016
Blaine	126	.224**	.129	128	.303**	255**	1.00	104	.324**
Ages	.152*	07	.073	064	126	.137	104	1.00	.084
SO ₃ %	.485**	.523**	.127	117	.211**	.016	.324**	.084	1.00

Table 6: Correlation matrix for dependent and independent variables (Spearman correlation)

*, Correlation is significant at the 0.05 level (2-tailed) **, Correlation is significant at the 0.01 level (2tailed) = 0.1227 for N= 178

 Table (7): Partial correlation for cement model (ea

Table (7): Partial correlation for cement model (early a	ages) between optimum
SO ₃ % and other compounds	

Variables	Person correlation	Spearman correlation
MgO	0.5265	0.2155
Total alkalies	0.5310	0.28445
C ₃ S	0.5788	0.3337
C_2S	0.5222	0.2722
C ₃ A	0.5213	0.1869
C ₄ AF	0.3871	0.3445
Blaine	0.5385	0.3304
Time (early ages)	0.4196	0.1555

No.of data = 35

Table (8): Regression equation section for early age (removing C₂S and C₃A

compounds)	

Independent variable	Regression coefficient	Standard error	t- vale (Ho:B=0)	Decision (5%)
MgO%	0.2386	0.1087	2.1938	Reject Ho
Total Alk%	0.8485	0.2731	3.1063	Reject Ho
C ₃ S%	1.1934E-02	8.7088E-03	1.3704	Accept Ho
C ₄ AF%	2.0615E-02	3.9039E-02	0.5281	Accept Ho
Blaine gm/cm ²	2.9247E-04	1.1896E-04	2.4585	Reject Ho
Time (early ages)-days	-5.14283E-03	0.0567	-0.0906	Accept Ho

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar

Table (9): Regression equation section for cement mortar (Early age)

Independent variable	Regression coefficient	Standard error	t- vale (Ho:B=0)	Decision (5%)
MgO%	0.1997	0.1328	1.503	Accept Ho
Total Alk%	0.8380	0.2938	2.852	Reject Ho
C ₃ S%	6.4244E-03	1.4925E-02	0.430	Accept Ho
C ₂ S%	-3.8936E-03	1.1479E-02	-0.339	Accept Ho
C ₃ A%	2.7705E-02	0.0480	0.577	Accept Ho
C ₄ AF%	4.3430E-02	5.8683E-02	0.740	Accept Ho
Blaine cm ² /gm	2.8828E-04	1.5674E-04	1.839	Accept Ho
Time (early ages)-days	9.0768E-03	6.3560E-02	0.123	Accept Ho

Table 10: General statistical concept for mortar models (Early ages)

ANOVA					\mathbf{R}^2	Root mean square of
Source	D.F.	Sum of squares	Mean square	F value	K	error
Model(Reg.)	8	320.94	40.12	136.521	0.97875	0.5421
Error(Res.)	27	7.93	0.294			
Total	35	328.87	9.396			

Table 11: Descriptive statistics analysis for cement mortar (Late ages)

Variables	Mean	Stan. deviation	Minimum	Maximum
Opt. SO ₃ % predicted(early ages)- days	2.9941	0.4579	1.99	4.00
Opt. SO ₃ %(late ages)	3.2179	0.8899	1.00	5.00
Time(late ages)-days	93.409	111.8822	28.00	365

No. of data =66

Table 12: Regression equation section for cement mortar (Late age)

Independent variable	Regression coefficient	Standard error	
Time (late ages)-days	-2.136E-04	0.001	
Opt. SO ₃ (predicted of early ages)%	1.089	0.988	

Table 13: Calculated statistics for Mortar models (late ages)

ANOVA					\mathbf{R}^2	Root mean square of
Source	D.F.	Sum of squares	Mean square	F value	K	error
Model(Reg.)	2	708.901	354.451	872.951	0.965	0.6372
Error(Res.)	64	25.986	0.405			
Total	66	734.888				

Table 14: Partial correlation for cement model (all ages) between optimum
SO ₃ % and other compounds

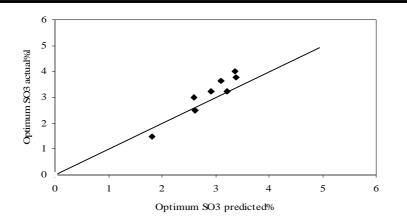
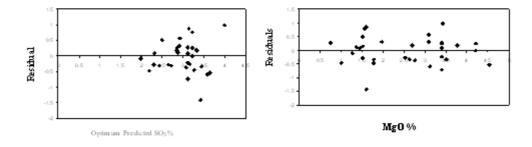
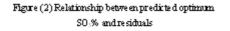
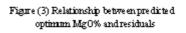
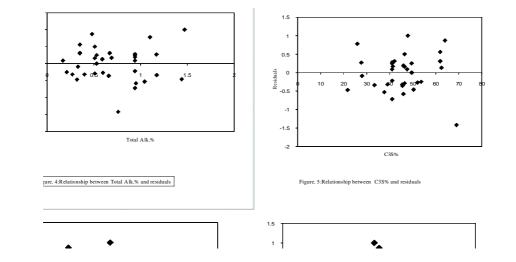
Variables	SO ₃ %(Person	SO ₃ %(Spearman
	correlation)	correlation)
MgO	0.4624	0.4934
Total alkalies	0.4686	0.3653
C_3S	0.2734	0.2478
C_2S	0.2512	0.1947
C ₃ A	0.3421	0.2132
C ₄ AF	0.3171	0.1742
Blaine	0.3731	0.3405
Time (all ages)	0.0009	0.0896

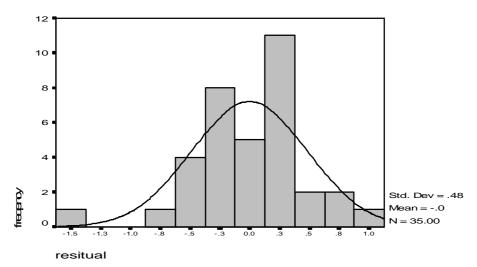
Table 15: Regression equation coefficients and other statistical measures (all age)

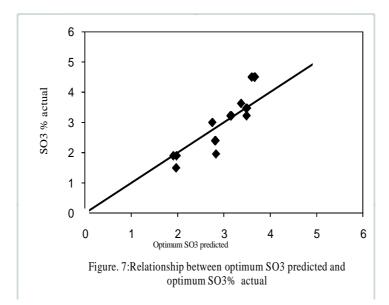
		-		
Independent variable	Regression coefficient	Standard error	t- vale (Ho:B=0)	Decision (5%)
MgO%	0.281	0.052	5.428	Reject Ho
Total Alk%	0.901	0.160	1.452	Accept Ho
C ₃ S%	1.963E-03	0.008	0.258	Accept Ho
C ₂ S%	-2.924E-03	0.006	-0.472	Accept Ho
C ₃ A%	4.015E-02	0.023	1.622	Accept Ho
C ₄ AF%	3.917E-02	0.030	1.292	Accept Ho
Blaine cm ² /gm	2.993E-04	0.000	3.533	Reject Ho
Time (All ages)-days	2.862E-04	0.001	0.44	Accept Ho

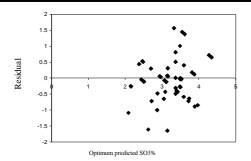
Table 16: General statistical concept for Mortar models (All ages)

ANOVA					R^2	Root mean square of
Source	D.F.	Sum of squares	Mean square	F value	К	error
Model(Reg.)	8	1449.39	181.174	500.292	0.967	0.6018
Error(Res.)	135	48.889	0.362			
Total	143	1498.28				

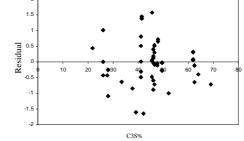
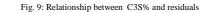

Figure (1): Relationship between optimumSO₃- predicted and optimum SO₃

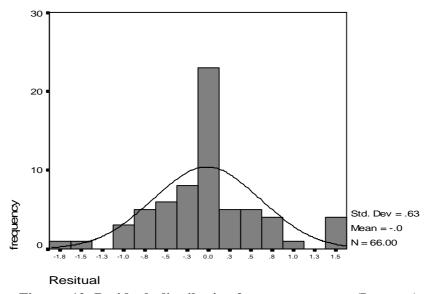




Figurer 6: Residuals distribution for cement mortar (early age)

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar


Fig. 8: Relationship between optimum SO3-predicted % and residuals

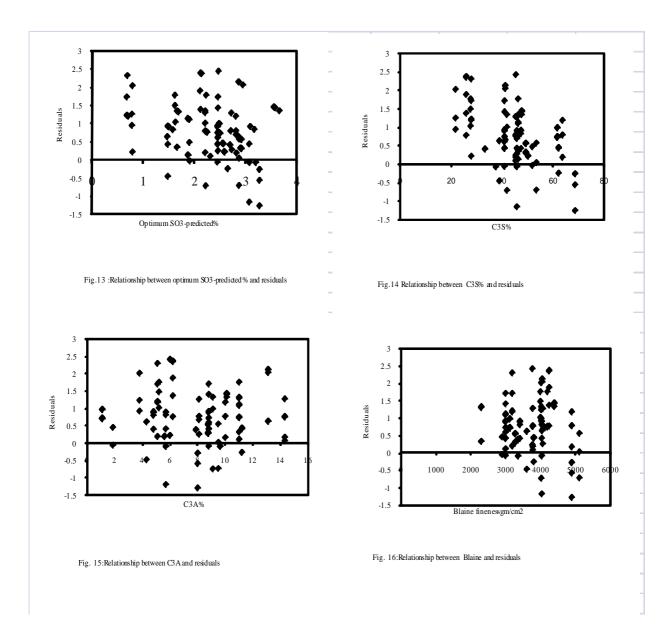

Fig,10: Relationship between C3A% and residuals

Fig. 11: Relationship between Blaine cm2/gm and residuals

Figurer 12: Residuals distribution for cement mortar (Late age)

Statistical Models For Predicting The Optimum Gypsum Content In Cement Mortar

