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Two New Approaches for PARTAN Method 
 

Ban A. Metras* Khary B. Rasheed** 
ABSTRACT 
 In This paper, we suggest two approaches for the parallel 
tangent (PARTAN) method. First is to combine PARTAN 
method with Perry algorithm and second is to combine PARTAN 
method with Al-Bayati-Ahmed, 1996 algorithm. The new 
suggested methods are tested to solve unconstrained optimization 
problems by using statistical tests and the results of the new 
suggested methods are better than the original PARTAN method 
with respect to time and the accuracy. 
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1. Introduction: 
 This paper is concerned with the unconstrained 
minimization problem  
 Min f(x): RR n → , (1) 
where f is a reasonably smooth function. Some of the best 
methods for solving eq.(1) are the quasi-Newton methods (QN), 
since they rely on matrix computations difficulties with computer 
storage arise when the dimension of the problem becomes large. 
A number of attempts has been made to overcome  this situation 
either by modifying the QN- methods themselves or by 
improving conjugate gradient methods. 
 The advantage of conjugate gradient methods is of course, 
that they depend on vector computations only (see Khoda and 
Storey, 1992). 
 CG-algorithms are iterative techniques with generating a 
sequence of approximations to the minimizer x* (of a scalar 
function f(x)) of the vector variable x. The sequence xk is defined 
by  
 kkkk dxx λ+=+1 (2) 
 kkkk dgd β+−= ++ 11 (3) 
where gk is the gradient of f(x), kλ is a positive scalar chosen to 
minimize f(x) along the search direction dk and kβ is a 
coefficient, given by one of the following expressions.    
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2. Conjugate Gradient Algorithms as a Memoryless QN-
Algorithms: 
 This type of CG-algorithm was suggested for the first time 
by Perry (1978) and further analyzed by Shanno (1978a). These 
algorithms are generating descent directions even if ILS are used 
since: 
 kkk gHd −= (9) 
Multiplying eq.(9) by gk

T yields  
 0<−= kk

T
kk

T
k gHggd

Since Hk is positive definite and the second term is positive 
implies that kd is a descent direction. Hk is updated through the 
formula of BFGS update. (see Bazarra et al, 2000). 
 Given some approximation Hk to the inverse Hessian 
matrix, we compute the search direction kkk gHd −= , and we 
define kkk xxv −= +1 and 

kkkkkk GvxxGggy =−=−= ++ )( 11 .
We now want to construct a matrix  
 )2()1(

1 kkk HHH +=+ (10) 
 
where )2(

kH is some symmetric correction matrix that ensures that 
v1,v2,…,vk are eigenvectors of Hk+1G with unit eigenvalues. 
Hence          
 kkk vyH =+1

This condition translates to the requirement that  
 kkkkk yHvyH −=+1

This therefore leads to the rank-two DFP ( Dividon; Fletcher and 
Reeves, 1964) update via the correction term 
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DFP
k

kk
T
k

k
T
kkk

k
T
k

T
kk

k HyHy
HyyH

yv
vvH ≡−= (11) 

The Broyden updates suggest the use of the correction matrix 
B
kk HH = given by  
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where kk
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kk yHvp )1(τ−= and where kτ is chosen so that the quasi-

Newton condition holds by virtue of k
T
k yp being zero. Then  
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 Also this type of algorithms does not need to update the 
matrix H explicitly (i.e. this matrix reduces a vector of order n). 
 
3. Perry’s Conjugate Gradient Algorithm: 
 Among the most efficient CG-algorithms was the Perry-
CG algorithm. In eq.(3) the scalar kβ was chosen to make dk and 
dk+1 conjugate using an exact line search. In general, line 
searches are not exact, Perry relaxed this requirement and he 
rewrote eq.(3) where kβ is defined by eq.(4), but assuming 
inexact line search; thus he obtained  
 11 ][ ++ −−= k

k
T
k

T
kk

k gdy
ydId (14) 

But this matrix is not of full rank; hence he modified eq.(14) as 
 11 ][ ++ +−−= k
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T
kk

k gyv
vv

yv
yvId (15)   

 11 ++−= kk gQ (16) 
the matrix Qk+1 satisfies the form  
 kk

T
k vyQ =+1
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Algorithm (Perry): 
 An algorithm based on the search direction given in 
eq.(14) is as follows: 
Step 1: Let x(1) be an estimate of a minimizer x* of f. and let ε be 
a tolerance Number. 
Step 2: Set k=1 and compute kkk ggd /−= .
Step 3: Line search :Compute kkkk dxx α+=+1 , where kα is a 
scalar chosen  in such away that fk+1<fk .
Step 4: If ε<+1kg take xk+1 as x*,  and stop.  
Step 5: If k=n or 111 2.0 +++ ≥ k

T
kk

T
k gggg . Then compute the new 

search direction defined by 
 )(

11
11

++
++ −=

k
T
k

k
T
kk

kk gg
ddgd λ . Set k=1 and go to step 3. Else k=k+1 

Step 6: Compute the new search direction defined by  
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4. Single-Step Variable- Storage Conjugate Gradient 
Algorithm: 
 Al-Bayati and Ahmed in 1996, developed a variable –
storage CG-algorithm as follows: 
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the above formula generates positive definite matrices. Now 
since 
 dk+1=-Hk+1gk+1             (18) 
hence  
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It is clear that if 01 =+k
T
k gv and by using exact line search, then eq. 

(19a) becomes  
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which is the standard HS-CG-algorithm and therefore has n-step 
convergence to the minimum of a quadratic function. Thus this 
CG-algorithm as defined precisely by the new VM-update eq.(3), 
where the approximate of inverse Hessian is reset to the identity 
matrix at every step. 
 
Algorithm (Al-Bayati-Ahmed, 1996): 
Step 1: Let initial point x1 .
Step 2: Set k=1, kkk ggd /−=

Step 3: Set kkkk dxx α+=+1 where kα is a scalar chosen in such a 
way that  
 fk+1<fk .
Step 4: Check for convergence i.e. if ε<+1kg where ε is small 
positive tolerance, stop. 
Step 5: Otherwise. If k=n or 111 2.0 +++ ≥ k

T
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T
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new search direction defined by 
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k=k+1.
Step 6: Compute the new search direction defined by 
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and go to step (2). 
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5. The Parallel Tangent Method (PARTAN): 
 This procedure proceeds to the minimum of differentiable 
objective function f on successive straight lines. The path 
directions are alternately determined by positions of points 
already reached or by certain gradient directions. This method 
does not involve the explicit construction of mutually conjugate 
direction vectors although vectors can be constructed from the 
direction vectors that are mutually conjugate. This property 
underlies the convergence of the (PARTAN) method.  
 

6. A General Outlines of the PARTAN Algorithm: 
Starting procedure: For the first step, 
Let, d0=-g0 (20) 

So that  
0001 dxx λ+= (21) 

Next, choose 
d2=-g2 (22) 
Then, the fourth point is generated by moving in direction 

that is collinear with (x3-x1) so that  
d3=-(x3-x0) (23) 

This is referred to as an acceleration step. Continuing the 
procedure: 

After determining x4, the procedure is continued by 
successively alternating gradient and acceleration steps. 
Thus  
 di=-gi for  i=0,2,…,2n-2 (24) 
 di=-(xi-xi-2) for  i=3,5,…,2n-1 (25) 
This method will reach the minimum of an n dimensional 
quadratic surface in no more than 2n steps. The di that are 
generated are not mutually conjugate but the following properties 
are true: 

1- The search direction are descent i.e. di
Tgi<0.

2- The vectors (x2-x0), (x4-x2), …, (x2n-x2n-2) are mutually 
conjugate. 
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3- The points x4,x6,…,x2n are the minimum for the space 
spanned respectively by; d1 and d2, g2 and g4; …(d1,d2,…,d2n-2)

4- The gradient vectors g0,g2,…,g2n are orthogonal.  
 (Wilde, 1967). 
 

PARTAN Algorithm stops when 1+kg is sufficiently 
small and in perfect arithmetic should terminate in at most n 
iterations, whatever the choice of x0. In particular, the algorithm 
will converge in k (<n) iterations if the Hessian matrix of the 
function f has only k distinct eigenvalues. These properies follow 
because the recurrence relation of di is designed to ensure that the 
search directions are conjugate with respect to the Hessian matrix 
of f. Scalar products appear in the expressions for di and the step 
length q.

The behavior of PARTAN algorithm in finite precision 
arithmetic will depend on how accurately these scalar products 
are computed. 
 
7. The Outlines of the Modified (PARTAN) Algorithm (1): 
Step (1): Set the initial point x0
Step (2): Let  000 / ggd −−−−====
Step (3): Compute 0001 dxx λ+= , next, choose  
 d2=-g2

Then, the fourth point   d3=-(x3-x0)
Step (4): Check if ε<+1kg , then stop. Otherwise go to step (5) 
 
Step (5): Compute:  
 kk gd −= if   k is even 
 )( 3−−−= kkk xxd if   k is odd, 
 kkkk dgd β+−= ++ 11 , where kβ is the conjugancy coefficient. 
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Step 6: If k=n or 111 2.0 +++ ≥ k
T
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Ahmad 1996) Set k=1 and go to step 2. Else k=k+1 
Step 7: Compute the new search direction defined by  
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Computational cost appears at each iteration of the new 
algorithm with accurate scalar products is approximately ten 
times as expensive as one without, i.e. if the cost of a “normal” 
iteration is sn2 the cost of one with accurate scalar products is 
about 10sn2. This penalty should be set against the fact that 
accurate scalar products will sometimes allow less iteration to be 
taken.  
 
8. The Outlines of the Modified (PARTAN) Algorithm (2): 
Step (1): Set the initial point x0
Step (2): Let  000 / ggd −−−−====
Step (3): Compute 0001 dxx λ+= , next, choose  
 d2=-g2

Then, the fourth point   d3=-(x3-x0)
Step (4): Check if ε<+1kg , then stops. Otherwise go to step (5) 
 
Step (5): Compute: 
 kk gd −= if   k is even 
 )( 3−−−= kkk xxd if   k is odd, 
 kkkk dgd β+−= ++ 11 , where kβ is the conjugancy coefficient. 
Step 6:  If k=n or 111 2.0 +++ ≥ k

T
kk

T
k gggg compute the new search  

 direction defined by 
 )(

11
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+ ×−=

k
T
k

k
T
kk

kk gg
ddgd λ (AL-Bayati & Ahmad 1996), set k=1 and 

go to step (2).  
 Else set k=k+1.
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Step 7: Compute the new search direction defined by 
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and go to step (3). 
 
9. Duncan Test: 
We used Duncan test to compare the difference between the 
means and depending on the value of Least Significant Range 
(L.S.R.) (Ronald , 1971), by: 

1. Estimate the scalar error value for any coefficient i.e.: 

 r
MseS

iy
=−

.
where: 
 Mse: is the mean of square error. 
 r: is the number of iterations. 
2.Findout SSR from Duncan’s table under significant level {o.o5 
or o.o1}. 
3. Compute L.S.R by: 
 SSRSRSL

iy
∗= −

.
..

4. Arrangement efficient means decreasing or increasing.  
5. Compared differences means with L.S.R value to discaste it is 
significant or not. If the difference is less than L.S.R, we say it is 
significant and the reverse is true. 
 
10. Results and Conclusions: 
 

In order to asses the performance of the new proposed 
algorithm NEW, three algorithms are tested over 8 generalized 
selected well-known test functions with different dimensions 
where 1000100 ≤≤ n
1-CG- algorithm 
2-  PARTAN algorithm. 
3- New algorithm (1). 
4- New algorithm (2). 
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All the algorithms in this paper  use the same exact line 
search strategy which is the cubic fitting technique directly 
adapted from Bunday (1984). 
Also all the algorithms have convergence when ε<+1kg where 

5101 −×=ε .
The numerical results are presented in the following two 

tables. In table (1), we have compared all our CG-algorithms by 
using eight well-known test functions and for dimensions n=100. 
In table (2) we have compared all our CG-algorithms by using 
eight well-known test functions and for dimensions n=1000. 
 

Table (1) 
Comparisons of all CG-algorithms for test functions with 

n=100. 
Test function CG 

algorithm 
NOI  (NOF) 

PARTAN 
algorithm  
NOI   (NOF) 

New (1) 
 
NOI (NOF)

New (2) 
 
NOI (NOF)

Himmel 24 (104) 22 (100) 22 (98) 19 (88) 
Powell 93 (201) 87 (122) 83 (130) 77 (110) 
Shallow 25 (43) 25 (39) 21 (35) 21 (28) 

Tri-diagonal 37 (50) 32 (45) 30 (39) 28 (32) 
Dixon 24 (83) 20 (71) 20 (67) 16 (55) 
Wood 88 (176) 79 (168) 72 (157) 68 (110) 
Rosen 32 (78) 28 (77) 27 (69) 22 (57) 
Sum 22 (65) 19 (57) 19 (55) 17 (49) 
Total 345(800) 312(679) 294(650) 268(529) 
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Table (2) 
Comparisons of all CG- algorithm for test functions with 

n=1000. 
 

Test function CG 
algorithm 
NOI  
(NOF) 

PARTAN 
algorithm  
NOI   (NOF) 

New (1) 

NOI 
(NOF) 

New (2) 

NOI (NOF)

Himmel 26 (112) 24 (100) 23 (98) 19 (92) 
Powell 90 (197) 86 (138) 84 (141) 72 (99) 
Shallow 24 (45) 21 (33) 21 (31) 18 (24) 

Tri-diagonal 45 (58) 39 (53) 38 (53) 30 (47) 
Dixon 27 (99) 25 (78) 21 (66) 18 (57) 
Wood 92 (178) 79 (169) 74 (159) 69 (114) 
Rosen 32 (82) 30 (78) 30 (69) 25 (60) 
Sum 26 (71) 24 (69) 21 (66) 18 (61) 
Total 362(842) 328(718) 312(683) 287(554) 

Table (3) represents Duncan test to NOI for Table (1) 
Subset for alfa=0.5 

T Sample size=8  1
(d) 8 69.2500 
(c) 8 85.3750 
(b) 8 89.7500 
(a) 8 105.2500 

Duncan* 

Significant 0.149 
Where: 

(a) NOI for NEW(2) algorithm when n=100 
(b)    NOI for NEW(1) algorithm when n=100 
(c)    NOI for PARTAN algorithm when n=100 
(d)    NOI for CG algorithm when n=100 
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Table (4) represents Duncan test to NOF for Table (1) 
Subset for alfa=0.05 

T Sample size=8  1
(d) 8 33.6250 
(c) 8 39.0000 
(b) 8 41.0000 
(a) 8 45.2500 

Duncan* 

Significant 0.424 

Where: 
(a) NOF for NEW(2) algorithm when n=100 

(b)    NOF for NEW(1) algorithm when n=100 
(c)    NOF for PARTAN algorithm when n=100 
(d)    NOF for CG algorithm when n=100 

 
Table (5) represents Duncan test to NOI for Table (2) 

Subset for alfa=0.05 
T Sample size=8  1
(d) 8 66.1250 
(c) 8 81.2500 
(b) 8 84.8750 
(a) 8 100.000 

Duncan* 

Signif
icant  

 .184 

Where: 
(One) NOI for NEW(2) algorithm when n=1000 

(b)    NOI for NEW(1) algorithm when n=1000 
(c)    NOI for PARTAN algorithm when n=1000 
(d)    NOI for CG algorithm when n=1000 
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Table (6) represents Duncan test to NOF for Table (2) 
Subset for alfa=0.05

T Sample size=8  1
(d) 8 33.5000 
(c) 8 36.7500 
(b) 8 39.0000 
(a) 8 43.1250 

Duncan* 

Significant .521 
Where: 

(One) NOF for NEW(2) algorithm when n=1000 
(b)    NOF for NEW(1) algorithm when n=1000 
(c)    NOF for PARTAN algorithm when n=1000 
(d)    NOF for CG algorithm when n=1000 

 

Figure (1) represents Table (3) 
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Figure (2) represents Table (4) 

Figure (3) represents Table (5) 
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Figure (4) represent Table (6) 
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11. Appendix: 
 The unconstrained problems used are the following: 
1- Generalized Edgar of Himmel function: 
 ∑
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3- Generalized Shallow function: 
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4- Generalized Tri-diagonal function: 
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5- Generalized Wood function: 
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6- Generalized Dixon function: 
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7- Generalized Rosenbrock function: 
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8- Sum of quartics function: 
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