
Iraqi Journal of Statistical Science (10) 2006
P.P. [38-53]

The Active Movie
 (DirectShow Programming)

Aseel Waleed Al-Niamey * Jamaal Salah Aldeen** Hanan Hamed Ali***

ABSTRACT

The idea of this project depends on programming the functions of
DirectX under the environment of the windows, which will give a very large
possibility to facilitate and speed up the films, games, animations, and
manage the messages.

In general, the graphics and the pictures need a lot of computation
power, and the Windows suffered from the low speed as a result of dealing
with the buffers of the memory of data to be displayed instead of dealing
with the data itself, for this reasons DirectX being the solution for this
problem, because DirectX directly deal with the buffers which contain data.
For the above reasons it is necessary to develop programs that can work as
an interface between DirectX and the windows.

The work focuses on programming the DirectShow function (formally
called ActiveMovie), DirectShow enables the applications play files and
streams from various sources, including local files and remote files on
network. DirectShow has native compressors and decompresses for some
file formats.

To achieve the throughput necessary for streaming video and audio,
DirectShow uses DirectDraw and DirectSound to render data efficiently to
the system’s sound and graphic cards. Synchronization is achieved by
encapsulating the multimedia data in Time-Stamped media samples.

This work shows the idea of displaying the image in a speed-up and
sorted way, which will be considered as a basic form for the animation,
display films and playing games by cutting a part from the memory and put
the image in it, then change the pointer for it, without needing to transform
the image itself. Also DirectShow, shows the displaying of the sounds
which is necessary for displaying the films. The Visual C++ language is
used to make this work.

*Ass. Lecturer/Computer Science Department/College of Computers and Mathematics

Science
** Lecturer/ Computer Science Department/College of Computers and Mathematics Science
*** Ass. Lecturer/ Computer Science Department/College of Computers and Mathematics
Science

Received: 13/ 9 /2005 ____________________Accepted: 13/ 6 / 2006

The Active Movie … ______________________________]39[

������� 	�
�� ����

�����

������ �	
� ���

� ����� ��� ���
� ����
�	�	Microsoft DirectX ��	
������ ���� ���!	� ��"!	 �� #�
� ����� ���$���% ���	 �	
�� &�
$�� ��'$ �(��

�(�!�
� ��!�%� ��)
� *���	� +��
���.
��-�
� ��� ��.� ������ ��)
�� ����!�
� +�/		 �"���
 ���!�
�
"�
� 0�

 �� 1��
��
� ���!
� +�/		 �	
�� /�
� 0� �$��� &�
$�� ��'$ 0� �� �� ����	
� ���	$ 2
13���.��� ���$���
� � 4�
� ���	 5�! �	
� ��$���
� 6��	 �	
� ����7
� 0� /�8�

 0���DirectX 9 ���.�
� :7"
 ��
� �� ;$	
� /�8�
��
�	�
� � ��.��� ����	� 6��	 �
��$���
� ./�� �/	!	 <���� ��� 6���=
� 0� 0�� +��!�� :7"
DirectX ��'$ �
&�
$��.

�.���
� ���
� �
�
 ����� ��� ���
� &�	�� Direct Show)���!	 #�
��
 �� .(ActiveMovie �
� DitectShow ��?�	@�
� ��?��
� ��A.	 0� ��8��/	
� 0��	

���� ��.� �
����
� #�2��!
��� ��.� ��)�����.
� ���� �
����
� ��?��
�� (0���
 �
�)�
� 5�	@� .���?��
� 0�� �?�	@� C��$� 4��
� *� �� 4�� ��� �=�D �����8
� ;
�

 ����/ ��.� .�.���
� ���
� <��$�� �/	!� ��
�(DirectShow) ;���"� &���$%
��!�
� <���$�� 0�� ��� ��
@	!�� ��8� ;$�� �����=
�DirectDraw) (<���$���

��)
�(DirectSound) ���'$D 0�� �� �
� 2�?� ��.� ��$���
� ���!	 �/	!� ��

�!�
� �E�/�� ��)
�.�	�� ��E�� �

�	�
� /�!�F
 ��$���
�
��8	 �/!��� ;�� 0��&	
�

 /!��

��
� G7��$
�Time-Stamped.
4��!�� ��� ��		�� ��! ��.� ��)
� ��� ���� ���
� H=�� ������

 ����7�
� 0�� /��8� &�� I��/ 0� +��
�� *
7�� ����� ���� ��)
� *���	
 �"	�7 ���)
� �8$� 4�
� ���
�� J�@
� �.K�
� ���A	 �- ���)
� =�� .�
�8� ����

����� ��� �� #�����= 0��� 67
� ��)�
 #�=�� �=�D .
��
� �7� �-� ��
L	
 �2�?� ������ �A
 5�'�	 0�
�9 0��� ���(��
� ��! �A
 �$��� �

Visual C++)(+!$�� �� .

Iraqi Journal of Statistical Science (10) 2006 _______________________]40[

1- Introduction
DirectX are considered as an architecture developed by Microsoft

specifically for multimedia. DirectShow is currently included with
Windows98, Windows Me, Windows XP, Windows 2000 and the Internet
Explorer.

The Microsoft DirectShow (SDK) provides a hardware independent

method for software developers to access services for the rendering, storing
and manipulation of video and audio streams originating from local or
network based sources. DirectShow allows for compressed and
uncompressed input, and a variety of formats (MPEG, AVI, and WAV).
Hardware sources should use either VFW (Video for Windows) or WDM
(Windows Driver Model) drivers. The DirectShow system is itself very
modular, components (which we refer to as filters) are linked together into a
“filter graph” (see figure-1). Filter graph is used to modify the video stream
[12].
 There are three basic kinds of filters: Sources (e.g. device drivers or
files), Transform Filters and Renderers.

Applications control the activities of the filter graph by communicating with
the filter graph manager (see figure-2). This can be achieved through the use
of ActiveMovie controls or by directly calling a set of COM (Component
Object Mod) interfaces. The basic classes of the C/C++ library create the
COM interfaces needed for the filters and provide the basic filter frames.
The DirectShow SDK is based on various Microsoft services. Microsoft
DirectX services are used for video rendering and manipulation if possible.
The knowledge required to work with DirectShow depends on the type of
filter itself [5].

Figure 1: Example of filter graph

Source
filter output pin Input

i
Transform

filter Renderer
filter output

i
Input pin

The Active Movie … ______________________________]41[

Media source Media
destination

1.1 An overview on DirectX
 Microsoft DirectX is a set of low-level application programming
interfaces (APIs) for creating games and other high-performance
multimedia applications. It includes support for two-dimensional (2-D) and
three-dimensional (3-D) graphics, sound effects and music, input devices,
and networked applications such as multi-player games. Microsoft DirectX
9.0 (the newest version) is a major release primarily for graphics. It includes
new tools, new features for graphics and Microsoft DirectShow, and
enhancements for Microsoft DirectInput and Microsoft DirectPlay [4].

1.2 DirectX major components
 One of the main purposes of DirectX is to provide a standard way of
accessing many different proprietary hardware devices. The major
components of DirectX is as follows (see figure-3) [3]:

DirectX

DirectMusiDirectSoun DirectPlay DirectInput DirectShow Direct3D

Figure 2: Filter Graph Manager

Application

DirectShow
Filter graph manager

Source
filter

Transform
filter

Renderer
filter

DirectX

Figure 3: Major component of DirectX

Iraqi Journal of Statistical Science (10) 2006 _______________________]42[

2- DirectShow
 DirectShow is one of DirectX components that divide the processing
of multimedia tasks such as video playback into a set of steps known as
filters. Filters have a number of input and output pins, which connect them
together. The generic design of the connection mechanism means that filters
can be connected in many different tasks and developers can add their own
effects or other filters at any stage in the graph. DirectShow filter graphs are
widely used in video playback as well as being used for video and audio
recording and editing. Interactive tasks such as DVD navigation are also
successfully based on DirectShow [7].

2.1 Component Object Model (COM)
 Microsoft DirectShow is based on the Component Object Model
(COM). If writing own filter, implement it as a COM object. The
DirectShow base classes provide a framework from which to do this. Using
the base classes is not required, but it can simplify the development process.
COM defined the rules that a component must follow, putting those rules
into effect is left for the developer. In DirectShow, all objects drive from a
set of C++ base classes. The base class constructors and methods do most of
the COM bookkeeping work such as keeping a consistent reference count.
Most applications did not need to implement the COM objects, DirectShow
provides the components needed [13].

2.2 Filters and Filter Graphs
 The building block of Direct Show is a software called a filter. A
filter is a software component that performs some operations on multimedia
stream; for example, Direct Show filters can do the following:
 - Read files.
 - Get video from a video captures device.
 - Decode various stream formats, such as MPEG-1 video.
 - Pass data to the graphics or sound card.

In DirectShow an application performs any task by connecting chains of
filters together, so that the output from one filter becomes the input for
another. A set of connected filters is called a filter graph [8].
For example, (see figure-4) shows a filter graph for playing AVI file.

The Active Movie … ______________________________]43[

File
Source

AVI
Splitter

AVI
Decompressor

Video
Renderer

Default
DirectSound

Hard drive

The file source filter reads the AVI file from the hard disk. The AVI splitter
filter parses the file into two streams, a compressed video stream and an
audio stream. The AVI decompressor filter decodes the video frames. The
video renderer filter draws the frames to the display using DirectShow or
GDI. The default DirectSound device filters play the audio stream, using
DirectSound [14].
The application does not have to manage all of this data flow. Instead, the
filters are controlled by high-level component called the Filter Graph
Manager. The application makes high-level API calls such as “Run” (to
move data through the graph) or “Stop” (to stop the flow of data). If they
require more control over the stream operations, they can access the filters
directly through COM interface. The filter graph manager also passes event
notifications to the application.
The filter graph manager serves another purpose as well; it provides
methods for the application to build the filter graph by connecting the filters
together.

2.3 Filter Graph Manager
 The filter graph manager is a COM object controls the filters in a
filter graph. It performs many functions including the following [2]:

- Coordinating state changes among the filters:
 State changes within filters must occur in a particular order. Therefore,
the application does not issue state-change commands directly to the filters.
Instead it gives a single command to the filter graph manager, which
distributes the command to each of the filters. Seeking works in similar
fashion, the application gives a seek command to the filter graph manager,
which distributes it to the filters [10].
- Establishing a reference clock:

Figure 4 Filter graph for playing AVI

Iraqi Journal of Statistical Science (10) 2006 _______________________]44[

All of the filters in the graph use the same clock, called a reference
clock. The reference clock ensures that all the streams are synchronized. The
time at which a video frame or audio sample should be renderered is called
the presentation time. The presentation time is measured relative to the
reference clock. The filter graph manager chooses a reference clock, usually
either the clock on the sound card or the system clock [9].

3- DirectShow programming

 The application needed to display a dialog box on a start-up therefore
the programmer should open a file, then the selected file automatically
begins playing.
If the media contains video, the player should be able to resize its client area
to the video’s preferred size. If the media contains no video, only audio then
the player will display a small default window.

3.1 Design steps:
 At first any DirectShow application always performs the same basic
steps or tasks:

1- Creates an instance of the Filter Graph Manager (see figure-5).
2- Uses the Filter Graph Manager to build a filter graph (see figure-6).
3- Runs the graph, which causes data to move through the filters (see

figure-7).

The Active Movie … ______________________________]45[

End

Start

Yes
 hr?failed

No

Initialize the COM library by calling Coinitalize

Create the component interface in which it will
initialize all other objects and eventually play the file

hr = CoCreatInstance(…)

Error

hr = Coinitialize(Null)

Build the filter graph

Figure 5: Create the Filter Graph Manager

Iraqi Journal of Statistical Science (10) 2006 _______________________]46[

Start

Yes hr?faild

No

End

Figure 6: Filter Graph building

Start the graph by calling the ImediaControl

hr=pGraph ->QureyInterface(…)

hr = pGraph->QueryInterface(…)

Error

Stopped the graph using Imedia
control also

Initialize the component interface (get the
events from the filter graph manager)

Build the filter graph which is to play
the specified file

hr= pGraph->RenderFile(filename,Null)

The Active Movie … ______________________________]47[

Start

No Specified time No File playing Yes
 Finished? Done?

Yes

End

Running the graph using ImediaControl::run

Waiting (to complete the playback
using ImediaEvent)

hr = pControl-.run()

Release the applications & close
the COM library

Now the data is moved through the filter &
rendered as audio & video

pEvent->WaitForCompletion(…)

Figure 7: Running the graph

Iraqi Journal of Statistical Science (10) 2006 _______________________]48[

Some definitions of the program due to DirectShow:

HRESULT

Used to return the result of a function to know if it
is accepted or rejected and also return the kind of
the error if it is found.

hr A variable of kind HRESULT.
:: The first two points mean output the current class,

while the second two points means inside the
current class.

IgraphBuilder An interface that contains methods for building the
filter.

*pGraph Variable used as a pointer to IgraphBuilder.
ImediaControl Contains methods for stopping & starting the graph
*pControl Variable used as a pointer to ImediaControl.
ImediaEvent Contains methods for getting events from the filter

graph manager.
*pEvent Variable used as a pointer to ImediaEvent.
CoInitialize A function used to initialize the COM library.
CoCreatInstance A function used to creat the filter graph manager.
pGragh -
>RenderFile(file
name,reserved)

Method to build a filter graph which can play the
specified file

The first step is calling Colnitialize to initialize the COM library:

HRESULT hr = CoInitialize(Null);
 If (FAILED(hr))
 {

// error-handling code.
 }
where HRESULT is a function that returns a value of accept or reject, hr is
any variable of kind HRESULT.

The Active Movie … ______________________________]49[

To keep things simple, we will ignore the return value, but we should
always check the HERESULT value from any method call.
Next, we will call CoCreatInstance to create the filter graph manager:

IgraphBuilder *pGraph;
 HERSULT hr=CocreatInstance (CLSID_FilterGraph, NULL,
 CLSCTX_INPROC_SERVER,
IID_IgraphBuilder,
 (void **) &pGraph);

As shown, the class identifier (CLSID) is CLSID_FilterGraph. The filter
graph manager is provided by an in-process DLL, so the execution context
is CLSCTX_INPROC_SERVER. DirectShow supports the free-threading
model, so we can also call ColnitializeEx with the
COINIT_MULTITHREADED flag.

The call to CoCreateInstance returns the IgraphBuilder interface, which
mostly contains methods for building the filter graph. Another interfaces are
needed:

- ImediaControl controls streaming. It contains methods for stopping
and starting the graph.

- ImediaEvent has methods for getting events from the filter graph
manager. In this example, the interface is used to wait for playback to
complete.

Both of these interfaces are exposed by the filter graph manager. Use the
returned IgraphBuilder pointer to query for them:

IMediaControl *pControl;
 ImediaEvent *pEvent;
 hr=pGraph->QueryInterface(IID_ImediaControl,(void**)&pControl);
 hr=pGraph -> QueryInterface (IID_ImediaEvent, (void **) &pEvent);

Now we can build the filter graph. For file playback, this is done by a single
method call:

hr = pGraph ->RenderFile (L”C:\\Example.avi”, NULL);

The IgraphBuilder::RenderFile method builds a filter graph that can play
the specified file. The first parameter is the file name, represented as a wide
character (2-byte) string. The second parameter is reserved and must equal
NULL.

Iraqi Journal of Statistical Science (10) 2006 _______________________]50[

This method can fail if the specified file does not exist, or the file format is
not recognized. Assuming that the method succeeds, however, the filter
graph is now ready for playback. To run the graph, we will call the
ImediaControl::Run method:

hr= pControl ->Run();

When the filter graph runs, data move through the filters and rendered as
video and audio. Playback occurs on a separate thread. We can wait for
playback to complete by calling the IMediaEvent::WaitForCompletion
method:

long evCode = 0;
 pEvent -> WaitForCompletion (INFINITE, &evCode);
This method blocks until the file is done playing, or until the specified time-
out interval elapses. The value INFINITE means the application blocks
indefinitely until the file is done playing.
When we finished our application, we should release the interface pointers
and close the COM library:

pControl ->Relealse ();
 pEvent -> Relealse ();
 pGraph -> Relealse ();
 CoUninitialize ();

These are the basics that we use in building our DirectShow application that
we talk about its requirements earlier.

4- Testing and Execution
Before anything it is notable that for testing our program, DirectX-9

must be installed on the system.

When testing the quality of the sound we found that it is very good,
especially by using the best code from ones available on the system. The
following table lists the supported codecs, the bandwidth per second (Kbps),
and the compression globally unique identifier (GUID) used to select them.
The compression GUIDs are defined in Dvoice.h.

The Active Movie … ______________________________]51[

Codec Bandwidth GUID
Voxware VR12 Variable (1.2

Kbps,avg.)
DPVCTGUID_VR12

Voxware SC03 3.2 Kbps DPVCTGUID_SC03
Voxware SC06 6.4 Kbps DPVCTGUID_SC06
TrueSpeech 8 Kbps DPVCTGUID_TRUE SPEECH
Global System for Mobile
Communication (GSM)

13 Kbps DPVCTGUID_GSM

Microsoft Adaptive Delta
Pulse Code Modulation (MS-
ADPCM)

32 Kbps DPVCTGUID_ADPCM

Pulse Code Modulation
(PCM)

64 Kbps DPVCTGUID_NONE

The first three codecs provide a high level of compression and have
approximately the same resource demands. On 500 MHz Pentium III class
computer, these codecs use approximately 1.5 percent of CPU capacity. The
VR12 codec sounds tinny and robotic, but the SC03 and SC06 codecs
provide reasonable fidelity. The PCM codec provides the highest sound
quality and is essentially uncompressed 8 kHz 16-bit mono-format audio
data.

Note that the GSM, ADPCM, and PCM codecs are included with the
Microsoft Windows installation but might not have been installed by the
user.

The speed of the program was very good, especially after we had processed
a heavy graphics on our program.

By using this program the programmer can view the *.avi, *.qt,

*.mov, *.mpeg video file, view image files and also play audio files.

In this program the programmer can increase or decrease the speed of
playing video file, doubling the size screen, mute the sound of playing file
by clicking on the Control.

Iraqi Journal of Statistical Science (10) 2006 _______________________]52[

Also we can change the rate of playing video files or audio files by clicking
on the Rate.

The Active Movie … ______________________________]53[

5- Conclusion
 We can use DirectX capabilities to build powerful and fast program
especially about Drawing, 3D-animations, … etc.
The visual C++, MFC and API of the C++ itself can help for writing all the
absent features explicitly.

Another point is about using DirectX_SDK for developing the work. SDK
adds a wizard to visual C++ that can build the backbone of the program and
then we can expand it.

DirectShow simplifies media playback, format conversion, and
capture tasks. At the same time, it provides access to the underlying stream
control architecture for applications that require custom solutions.
As an example of the types of applications we can write with DirectShow
include the DVD players, Video editing applications, AVI to ASF
converters, MP3 players and Digital video capture applications.

7- References
1- C++ Standards Committee. Boost library. http://www.boost.org/,

2004-01-15.website.
2- DirectX programming by Alireza A. Nezhad
3- Microsoft DirectX SDK, January-2000.
4- MSDN (Microsoft Developer Network)-January 2000.
5- Microsoft. DirectShow http://www.microsoft.com/directX/, 2004-

01-15. Website.
6- Teach yourself VC++ in 21 days, by Nathan Gurewich & Ori Gurewich.
7-www.codeproject.com http://codeproject.sourceforge.net/, 2004-01-

12. Website.
8- www.d-silence.com http://www.d-silence.com/, 2004-01-15. Website.
9- www.ews64.com.
10-www.gcdl.co.uk.
11-WWW.Microsoft.Com/DirectX.
12- www.montivision.com/products/directshow
13-www.programmersheaven.com.
14-WWW.Yaho.Com_Yaho Search DirectX Books_inside DirectX by

Bradley Bargain and peter Donnelley.

