
       Al-Qadisiya Journal For Engineering Sciences                                     Vol. 2      No.4               Year 2009           
 

 

 ٦٧٩

 
 
Figure 13. The phenomenon observe where about 30-cm thick scum  is accumulated 

at  tank 
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Abstract 

A nonlinear finite element method is adopted for the large displacement elastic-plastic dynamic 
analysis of anisotropic plates under in-plane compressive loads.  The analysis is based on the two-
dimensional layered approach with classical and higher order shear deformation theory with five, 
seven, and nine degrees of freedom per node, nine-node Lagrangian isoparametric quadrilateral 
elements are used for the discretization of the laminated plates.  Both consistent and lumped mass 
matrices are used in the present study.  Damping property is considered by using Rayleigh type 
damping which is linearly related to the mass and the stiffness matrices.  Newmark integration method 
is used for solving the dynamic equilibrium equations.  The effects of initial imperfection, orthotropy 
of individual layers, fiber’s orientation angle, type of loading, damping factor, and fiber waviness on 
the large displacement elastic-plastic dynamic analysis are considered. The conclusion it is shown that 
the antisymmetric cross-ply laminated plate has a damping rate faster than the symmetric cross-ply 
laminated plate and if damping is considered and if the response of the plate shows no oscillation about 
the static deflection position, it means that the damping factor is below the critical damping factor. 
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للصفائح غیر متماثلة الخواص تحت حمل ضغط في  الدینامیكي اللاخطيلیل حتال
 المستوي

 
  حیدر كاظم عماش.د

القادسیة جامعة/مدرس  
نمیر عبد الأمیر علوش. د  

جامعة بابل/أستاذ مساعد  
حسین محمد حسین .د  

جامعة تكریت/أستاذ  
 

  الخلاصة
اللnدن الاسnتاتیكي للصnفائح غیnر متماثلnة -المرن هلكبیرا لازاحةتم تقدیم طریقة العناصر المحددة اللاخطیة لتحلیل ا

 two-dimensional(الطبقnة ثنnائي البعnد الدراسnة طریقnة هتبنnت ھnذ.  الخواص تحت حمل ضغط فnي المسnتوي
layered approach ( اnة العلیnیكیة وذات المرتبnیة الكلاسnوھات القصnة التشnدت نظریnواعتم)classical and 

higher order shear deformation theory (،ومع خمسnع درجnبع وتسnف اسnم توظیnدة، تnل عقnة لكnت حری
تم اسnتعمال مصnفوفة الكتلnة المتوافقnة .  ةیذي العقد التسع لتمثیل الصفائح الطبق  )Lagrangian( لاكرانج عنصر

 Rayleigh type damping( كnذلك، تnم اسnتخدام مصnفوفة إخمnاد رایلnي.  والكتلnة المتكومnة فnي ھnذه الدراسnة
matrix (ادnnواص الاخمnnnن خnnر عnnریق.  للتعبیnnnتخدام طnnم اسnnnتینت )Newmark integration method( 

  وقد . لحل معادلة التوازن الدینامیكي )harmonic acceleration method(و
  
  
  
منفردة وتعامد الخواص للطبقات ال ظروف الاسنادو خطوة الوقتو خذ بنظر الاعتبار تأثیر التقوس الابتدائيأُ 

 همعامل التخمید وتموج الالیاف على تحلیل الازاحة الكبیرو قیمة الحملو نوع الحملو زاویة تدویر الالیافو

ئج المستحصلة، یمكن ملاحظة من النتاا  .اللدن الدینامیكي- المرن المتعامدة غیر  ةیلصفائح الطبقانا 

(تناظریاً  antisymmetric cross-ply المتعامدة  ةیطبقالالصفائح  معدل تخمید نتمتلك معدل تخمید اعلى م) 

( تناظریاً  symmetric cross-ply اي تذبذب  اظھر عدماذا اخذ التخمید بنظر الاعتبار وتصرف الصفیحة و‘)

.معامل التخمید الحرجمعامل التخمید تحت  یعني أن ھذافع الھطول الاستاتیكي، ضحول مو  

           Notations 

Symbol Description 

a, b Plate dimensions in x and y-directions, respectively.  

[B] Strain-nodal displacement matrix. 

D Flexural rigidity = ( )23 112 vEt - . 

{ }d  Displacement vector. 

{ }d&  Velocity vector. 

{ }d&&  Acceleration vector. 

Ei Modulus of elasticity in i-direction. 

Ef Modulus of elasticity of fiber. 

Em Modulus of elasticity of matrix. 

{F} External load vector. 

F Yield function. 
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{ })(tF  Dynamic external force vector. 

G Shear modulus. 

hL-hL-1 Distance from plate middle surface to the upper and lower surface of Lth lamina. 

h Plate thickness. 

[ ]oK  Constant linear elastic stiffness matrix 

[ ]LK   Initial or large displacement matrix 

[ ]sK   Initial stress stiffness matrix 

[ ]0TK  Tangent stiffness matrix.  

xyyx MMM ,,  Bending and twisting moments (per unit width) (on yz, xz, and both yz and xz-
sections). 

*** ,, xyyx MMM  Higher order bending and twisting moments (per unit width) (on yz, xz, and both yz 
and xz-sections). 

xyyx NNN ,,  In-plane stress resultants (per unit width) (on yz, xz, and both yz and xz-sections). 

*** ,, xyyx NNN  Higher order in-plane stress resultants (per unit width) (on yz, xz, and both yz and 
xz-sections). 

Px In-plane applied load in x-direction. 

Qij Element of elasticity matrix with respect to Cartesian coordinate system  

Qx, Qy Transverse shearing forces (per unit width) (on yz and xz-sections). 

Q Uniformly distributed load (per unit area). 

{DR} Residual load vector. 
[T] Transformation matrix. 
u,v,w Displacement components in x,y and z direction, respectively. 
wo Amplitude of initial imperfection. 
x,y,z Coordinates. 

o
ijg  Shear strain in ij-plane at middle surface. 

*o
ijg  Higher order shear strain in ij-plane at middle surface. 

{ }e
 

Strain vector. 

{ }oe
 Middle surface strain vector. 

ie
 Normal strain in i-direction. 

o
ie  Normal strain in i-direction at middle surface. 

*o
ie  Higher order normal strain in i-direction at middle surface. 

hx ,  Curvilinear coordinates system. 

q  Fiber’s orientation angle. 
qx,qy Rotations of transverse normals in the (xz) and (yz) planes.  

** , yx qq  Higher order rotations of transverse normals in the (xz) and (yz) planes. 

o
ik  Bending curvature in i-plane at middle surface. 

o
ijk  Bending curvature in ij-plane at middle surface. 

*o
ik  Higher order bending curvature in i-plane at middle surface. 

*o
ijk  Higher order bending curvature in ij-plane at middle surface. 

vi Poisson’s ratio in i-direction. 
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{ }s  Stress vector at sampling point. 

os  Yield stress of steel 

  
Introduction 

Certain civil engineering structures are designed to carry their own dead load plus 
superimposed loads which are immovable and unvarying with time, that is, 
superimposed static loads. In such cases, the stress analysis involves only principles 
of statics. More often the design of a civil engineering structure involves not only 
static loads but also superimposed loads which are either moving or movable and may 
vary with time as in superimposed dynamic loads. In such cases, the stress analysis 
properly should involve principles of dynamics to determine the effect of dynamic 
loading. 

However, in many of these cases, experience has shown that the dynamic 
effect makes a minor contribution to the total load which must be provided for the 
design and therefore the dynamic effect need not be evaluated precisely. In such 
cases, the dynamic effect may be handled by the use of an equivalent static load, or by 
an impact factor or by a modification of the factor of safety. 

There have been a number of developments which have led to growing interest 
in a more precise evaluation of the effects produced by the dynamic portion of the 
loading. Among these are the imposition of more severe live load conditions (that is, 
machinery and vehicles moving at high speeds), the construction of high towers and 
long bridges involving more severe and important wind-loading conditions, the 
necessity of developing blast resistant constructions, and the desire to improve 
earthquake resistance of constructions. These are some aspects where it may be 
necessary to consider more precisely the response produced by dynamic loading. 

The ability of thin-walled structures to absorb the energy of dynamic transient loading 
has led to its utilization for several classes of important structures, such as 
aerodynamic structures, power plant structure, bridge structures, etc.  These types of 
structures are designed under these loads to maintain the overall structural integrity 
with irreversible deformation analysis.  Weller, et al. [1989] (21) used the ADINA 
computer code for determining the dynamic load amplification factor (DLF) for 
beams and plates under in-plane impact loads.  Good agreement was found in 
comparisons with self-developed finite difference computer codes and available 
experimental results.  Though the problem that had been studied was of a wave 
propagation nature, a relatively small number of time steps were found to be enough 
to describe the phenomenon quite accurately.  This can be attributed to the relatively 
short time duration of the applied loading (around the natural period of the structure).  
They observed that the DLF was usually larger than unity, both for beams and plates.  
In the presence of certain values of relatively large initial geometric imperfections and 
combined with periods of the applied load which were close to the first period of 
natural lateral vibrations of either the beam or the plate, DLF would be smaller than 
unity.  In [1993](14), Kommineni and Kant presented a Co-continuous finite element 
formulation of a higher order displacement theory for predicting linear and 
geometrically nonlinear behavior in the sense of von-Karman transient response of 
composite and sandwich plates.  The displacement model accounts for nonlinear cubic 
variation of the tangential displacement components through the thickness of the 
laminated plate and the theory requires no shear correction coefficients.  The 
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parametric effects of the time step, finite element mesh, lamination scheme, and 
orthotropy on the linear and geometrically nonlinear responses were investigated.  
Their numerical results for central transverse deflection, stress, and stress resultant 
were presented for rectangular composite and sandwich plates under various boundary 
conditions and loadings.  The conclusion of their study was that the refined shear 
deformation theory is essential for predicting accurate responses of layered composite 
and sandwich laminates. Tao, et al. [2004](19) presented a simple solution of the 
dynamic buckling of stiffened plates under impact loading.  Based on large deflection 
theory, a discretely stiffened plate model had been used.  The tangential stresses of 
stiffeners and their in-plane displacements were neglected.  The motion equations of 
stiffened plates were obtained by using Lagrange-Hamilton's principle.  The 
deflection of the plate was expressed as Fourier series, and by using Galerkin method 
the discrete equations were solved by Runge-Kutta method.  Their results were in 
excellent agreement with the 
 
 
 
 
 
 
 
 
 
 
 finite element method.  They observed that the Budiansky-Roth criterion was 
partially applicable for detecting the dynamic buckling of a stiffened plate.  The 
conclusion of their study was that an appropriate shape of initial imperfection would 
avoid local buckling of the structure under impact load. From the preceding review of 
literature, it is clear that there is no study which considers the nonlinear dynamic 
analysis of isolated laminated plate under axial compression load by taking into 
account the effect of damping, type of loading, and type of fiber (straight or wavy).  
There is also a little amount of literature that takes into account the higher order 
displacement model of nine degrees of freedom per node with different types of 
lamination. 
 
Laminated Plate Theories 

A laminated plate is a series of laminas bonded together to act as an integral structural 
element.  Thus, a laminate is not a material but instead a structural element with 
essential features of both material properties and geometry.  The stiffness and strength 
of such a composite material with structural configuration are obtained from the 
properties of the constituent laminas, and thus the macromechanical behavior of a 
laminate is the main topic of this section.  The lamination so described can be 
considered as a single layer with "rule of mixtures" representation of the interaction 
between the multiple laminas in a plate or shell [Jones, 1999](10). 

There are two categories of theories, equivalent single layer and three 
dimensional elasticity theories.  In the first category, the material properties of the 
constituent layer are smeared to form a hypothetical single layer whose properties are 
equivalent to through thickness integrated sum of its constituents, and this category 
contains classical lamination theory, first order shear deformation theory, and higher 
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order shear deformation theory. The higher order shear deformation theories are more 
efficient to represent the transverse shear deformation, through-thickness 
displacement and strains.  The assumption of a higher order plate theory can also be 
used within the equivalent layer formulation [Jones, 1999](10). The strain expressions 
derived from the displacement field were considered by [Ali, 2004](3) with nine 
degrees of freedom per node as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )tyxwtzyxw
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in which the parameters (u, v, w, qx, qy, 
*
xq , and *

yq ) are defined previously, *
ou , and 

*
ov are the corresponding higher order terms in Taylor's series expression and they are 

also defined at the middle plane.  The strain-displacement relations after 
differentiating Equation (1) are: 
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(3) 

 
Also, all the strains above are defined in the middle-plane of the laminate.  By 

substitution from Equation (3) into the stress-strain relations given by the following 
Equation: 
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After complete integration, the stress-resultant/strain relations of the laminate 
are as follows: 
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and, 
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All coefficients in A, B, D, E, F, G, and H groups are defined as follows: 
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i, j = 1, 2, 6 or i, j= 4, 5 (7 a) 

i, j = 1, 2, 6 or i, j= 4, 5 (7 b) 

i, j = 1, 2, 6 or i, j= 4, 5 (7 c) 

i, j = 1, 2, 6 or i, j= 4, 5 (7 d) 

i, j = 1, 2, 6 or i, j= 4, 5 (7 e) 

i, j = 1, 2, 6  (7 f) 

i, j = 1, 2, 6  (7 g) 
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The present study explores the idea of tailoring the profile of reinforcing fibers 
to improve the buckling strength of composite plates.  This study investigates the 
effect of waviness of fibers on the dynamic buckling curves, as shown in Figure (4), 
and this waviness is of the form: 

 
 
 

( ) ÷
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a=
a

xk
xy sin  (8) 

such that the angle of fiber orientation q varies along the longitudinal x-axis as: 

( ) ( )xkk
a

xk
a
k

dx
dy

ppD=÷
ø
ö

ç
è
æ ppa

==q cos.cos.tan  (9) 

where a = plate length; k= number of half sine waves; and a= wave amplitude.  Two 
normalized variables, D=a/a and axx /= , are introduced. 
 The main objective is to study the effect of fiber waviness, characterized by k 
and D, on the static and dynamic buckling behavior of composite laminates.  The fiber 
can also be rotated in any direction with the x-axis, as shown in Figure (3), by using 
the following expression: 

( ) ( )b+b= sincos yxxn  (10) 
where xn represent the x-coordinate for a rotated fiber, and b  is the angle of the 
waviness fiber. 
 The angle of fiber orientation in Equation (9) is variable with x-coordinate and 
instead of the constant angle used for straight fibers.  

Figure (4) shows the principal material directions aligned with the lamina axes 
by angle (b ). 
 

Dynamic Equilibrium Equation 

The dynamic equilibrium Equations are obtained by using the principle of virtual 
work which states that for any arbitrary kinematically consistent set of displacements, 
the internal virtual work done by stresses through virtual strains must be equal to that 
done by the external forces irrespective of the material behavior as [Cook, 1995](8): 

( ) ( ) ( ) ( )ò òò -r-+=se
v v

b
T

t
T

s

T dvuCuPdudsPdudvd
t

&&&  (11) 

where du  is a vector of virtual displacements, ed  is the vector of associated virtual 
strains and s  is the vector of actual stresses. The term tP  is a vector of surface 

tractions acting on the portion ts of the boundary S . Vectors uPb &&r,  and uC & are the 
body, inertial and damping forces respectively. The symbol (.) denotes differentiation 
with respect to time. r  is the mass density and C  is the damping parameter.  

For the finite element representation, the displacements, velocities and 
accelerations uu &, and u&&  can be defined in terms of the nodal variables dd &, and d&& by 
the expressions 
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where å
=

==
m

i
ii NddNu

1
),( hx  , Ni is the shape functions for i node, and m is the 

number of nodes. 
  With standard strain-nodal displacement matrix [ ]B , the virtual strain vector 
can be related to the nodal displacements as: 

[ ] [ ] dBdBd
m

i
ii d=d=e å

=1
 (15) 

Upon substitution of Equations (12-15) into Equation (11) then: 
[ ] [ ] [ ][ ] { })(tfddKdCdMd e

TT dd =++ &&&  (16) 

in which the mass matrix [ ]M , the damping matrix [ ]C , the stiffness matrix [ ]K  and 
the external applied vector { })(tfe  have the following element contributions: 

[ ] ò=
Ve

T
e dVNNM r  (17) 
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Ve

T
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[ ] [ ] [ ][ ]ò=
Ve

T
e dVBDBK  (19) 

ò ò+=
se Ve

bt
T

e dVNPdsPNtf )(  (20) 

where es and eV denote the surface and volume of the element under consideration. As 
Tdd is arbitrary, then Equation (16) may be written as: 

[ ]{ } [ ]{ } [ ]{ } { })(tfdKdCdM e=++ &&&  (21) 

Equation (21) is the dynamic equilibrium Equation for a single or multi-degree of 
freedom system. 



       Al-Qadisiya Journal For Engineering Sciences                                     Vol. 2      No.4               Year 2009           
 

 

 ٦٨٨

 

Tangent Stiffness Matrix 

The tangent stiffness matrix can be written as: 
[ ] [ ] [ ] [ ]s++= KKKK LoT  (22) 
where [ ]oK  is the constant linear elastic stiffness matrix and can be written as: 

[ ] [ ] [ ][ ]dABDBK o

T

A
oo ò=  (23) 

[ ]LK  is the initial or large displacement matrix which is quadratically dependent upon 
displacement u, and can be written as: 

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]dABDBdABDBdABDBK
A

o
A

T
LL

A

T
LL

T
oL ò òò ++=  (24) 

Finally [ ]sK  is the initial stress stiffness matrix and then: 
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However, using the mathematical properties of the matrix [A], this matrix can be 
written as: 
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and finally one can obtain 
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Thus, 
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Formulation of Element Mass Matrix  

 
The kinetic energy of the element (e) can be expressed as follows: 
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{ } [ ]{ }dAdmdTI
A

Te &&ò=
2
1

 (30) 

  
The velocity vector within an element is discretized such that: 
 

{ } { }dNd
NN

i
i
&& å

=
=

1
, NN: number of nodes. (31) 

  
By substituting Equation (31) into Equation (30), one gets: 
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i
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Thus, 
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The mass matrix for nine degrees of freedom per node is: 
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For layered plates, the element mass matrix can be written as follows: 
 

[ ] [ ]å
=

=
NL

L

eMM
1

 (35) 

where in the above Equation (34), I1, I2, I3, and I4 are translation inertia, rotary inertia, 
and respectively higher order inertia terms, and these are given by: 
 

( ) dzzzzIIII L
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L

h

h

L

L

r= å ò
= -1

642
4321

1

1 ),,,(,,,  (36) 

where Lr  is material density of L-th layer. 
 
Formulation of Damping Properties 

The most common form for the representation of the damping matrix [C] is the so-
called Rayleigh-type damping [Timoshenko and Gere, 1961](20) which was given as; 
 
[ ] [ ] [ ]KaMaC o 1+=  (37) 

J  
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in which (ao and a1) are arbitrary proportionality factors, which make the damping 
matrix satisfy the orthogonality condition with respect to the modal matrix [Φ] in the 
same way of the orthogonality conditions for the mass and stiffness matrices that is 
[Bathe, 1996](17): 

{ } [ ]{ } [ ]
{ } [ ]{ } [ ]
{ } [ ]{ } [ ][ ] 212 /Lg=FF

L=FF

=FF

C

K

IM

T

T

T

 (38) 

where 
 
{ } :F  The modal matrix whose columns represent the natural modal shapes and the 
superscript ( T ) denotes transpose.  

[ ] :I  Identity matrix. 

[ ] :L  Spectral matrix, which is a diagonal matrix with elements representing the 

squares of the natural frequencies ( 2
iw ).  

[ ] :g  Modal damping matrix which is also a diagonal matrix with elements 
representing the damping ratios for the system modes ( ig ) 

Premultiplying Equation (37) by { }TF  and postmultiplying it by { }F  yields 
: 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }FF+FF=FF KaMaC TT
o

T
1  (39) 

Substituting Equations (38) into Equation (39) gives; 
 

[ ][ ] [ ] [ ]L+=Lg 1
212 aIao

/  (40) 

  
The two factors, ao and a1 can be determined by specifying the damping ratios for two 
modes for example 1 and 2, and substituting into Equation (40) as [Pytet, 1990](18): 
 

2
11112 w+=wg aao  (41) 

2
21222 w+=wg aao  (42) 

where ω1 and ω2 are the natural frequencies for modes 1 and 2 respectively.  By 
solving the above two Equations one can get: 
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Then, the values of ao and a1 are substituted into Equation (37) to get the required 
damping matrix. 
 
Failure criteria for laminated plate structure 

The stresses in an individual lamina are fundamental to control the failure initiation 
and progression in the laminate.  The strength of each individual lamina is assessed 
separately by considering the stresses acting on it along the material axes.  The initial 
failure of a lamina is governed by exceeding the maximum limit prescribed by a 
failure criterion.  The determination of failure load is very essential in understanding 
the failure process as well as the reliability and safety of structures.  The ultimate load 
that makes the plate fail is calculated based on Tsai-Wu criterion for general 
composite materials and on Hashin criterion for fiber composite materials as follows 
[Jones, 1999](10) 

: 
611 ,......,,; ==ss+s jiFF jiijii    (45) 

where Fi and Fij are strength tensors of the second and fourth order respectively and 
the usual contracted tensor notation is used except that 

235134 tsts == , ,and 126 ts = .  Equation (45) is obviously very complicated thus it 
will restrict the above attention to the reduction of above equation for an orthotropic 
lamina under plane stress conditions: 
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The terms that are linear in the stresses are useful in representing different strengths in 
tension and in compression.  The terms that are quadratic in the stresses are the more 
or less usual terms to represent an ellipsoid in stress space, where 03 =F  indicates 
that to the shear strength of a material in compression and in tension is similar, and 

03 =s  in z-direction.  Also, the shear strength of a material is equal in three 
dimensions and equal to S.  Thus, the terms of Fi is: 
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where, 
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=tc XX ,  The axial or longitudinal strength in compression and tension. 

=tc YY ,  The transverse strength in compression and tension. 

=tc ZZ ,  The transverse strength in compression and tension. 

=STR ,,  Shear strength of the material. 
Equation (46) becomes as: 
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Equation (48) is suitable for the elastic-plastic analysis of anisotropic materials.  
For matrix cracking failure, two different failure criteria are used depending on 
whether the transverse normal stress, 22s , is in tension or in compression.  The 

failure index, 2
me , is defined in terms of transverse tensile strength, Yt , transverse 

compressive strength, Yc, and in-plane shear strength, R, and is expressed as: 
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and, 
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where (em) is the failure index for matrix cracking.  Matrix cracking is assumed to 
occur when the failure index (em) exceeds unity. 
 Fiber-matrix shear failure is assumed to be dependent on a combination of 
axial stress, 11s , and shear stress,t12, and is expressed as follows: 
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where (es) is the failure index for fiber-matrix shearing, Xt is the tensile strength along 
the fiber direction and Xc is the compressive strength along the fiber direction.  
Equations (51) and (52) predict that when the failure (es) exceeds unity, fiber-matrix 
shearing dominated failure occurs.  
 Fiber breakage failure occurs in tension due to the combination of axial stress 
and shear stress while the failure in compression is governed by buckling as expressed 
in terms of only axial stress.  The criterion for breakage failure is expressed as 
follows: 
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and, 
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  for 011 <s   (54) 

where (es) is the failure index for fiber breakage.  The fiber breakage failure occurs 
when (es) exceeds unity. 
 

Forced vibration analysis 

The calculation of the nonlinear dynamic response of structure of structures including 
instability or buckling phenomena has received considerable attention and a good 
amount of literature has appeared on this subject. The nonlinear dynamic analysis 
depends largely on solving the following Equations: 
 
[ ] { } [ ] { } [ ] { } { })()()()( tFtdKtdCtdM T =++ &&&  (55) 

in which [ ]TK  is the tangent stiffness matrix of the plate (or structure) and depends 
on the current displacements and stresses. The most conventional implicit time 
integration procedures is Newmark method.   After solving Equation (55) at time 
(t+∆t) for displacements, velocities, and accelerations, the following equation as: 
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For convenience, the following is used: 
 
 [ ] [ ] [ ] [ ]CaMaKK oTeffT 1++=  (57) 

and, 
{ } { } [ ] { } { }( ) [ ] { } { }( )tttttteff dadaCdadaMtFtF &&&&&&

5432 ++++= D+)()(  (58) 

 
So, Equation (5.66) may be written in the form: 
 
[ ] { } { }efftteffT tFdK )(=D+  (59) 

 
For a linear system, [ ]effTK will be constant during the analysis at any time, while in 

the nonlinear analysis, [ ]effTK  is a function of current displacement vector { }d .  

Therefore, an iterative procedure must be used to define [ ]effTK .  In the nonlinear 
analysis, it is more useful to put Equation (59) in increment form.  For such purpose, 
Equation (59) may be rewritten as: 
 

[ ]{ } { })(ˆˆ tFdKT D=D  (60) 

in which [ ]TK̂  is the effective stiffness matrix and { })(ˆ tFD  is the effective load 
vector.  Equation (60) is solved by an iterative procedure like Equation (56).  It may 
be noted that Equation (56) may be used for solving linear problems, while for 
nonlinear problems, Equation (60) should be used. 
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 Solving Equation (60) for { }dD , approximate values for accelerations, 
velocities and displacements may be given as: 
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Applications and Discussions 

Several plates are analyzed to study the different effects on the large displacement 
elastic-plastic dynamic behavior of plates with some comparison with other 
researchers.  

Comparison with available theoretical investigation of composite plate   
 

Clamped supported square angle-ply laminated plate under transverse suddenly 

applied constant dynamic loading 

A square angle-ply (0o/45o/90o/core/90o/45o/30o/0o) sandwich laminated plate with 
clamped edges and subjected to a suddenly applied uniformly transverse load was 
analyzed and compared with Kommineni and Kant [1993](14).  The following layer 
material properties are used in the analysis: for face sheets (Graphite/epoxy prereg 
system) (E1=130.8 GPa; E2=10.6 GPa G12=G13=6 GPa; G23=3.9 GPa; v12=0.28; and 
r=15.8 kN.sec2/m4); for core sheet (US Commercial al. honeycomb, ¼ in cell size, 
0.003 in foil) (G13=0.5206 GPa; G23=0.1772 GPa; r=1.009 kN.sec2/m4).  The time 
step is (Dt=0.000025 sec),and applied load (q=50 kN/m2).  The geometry properties 
are (a=1.0 m, a/b=1, and h=0.01m, at top three stiff layers, thickness of each 
layer=0.025 h, at bottom four stiff layer, thickness of each layer=0.08125 h, and 
thickness of core=0.6 h).  Kommineni and Kant used nine-node isoparametric 
Lagrangian elements with nine-node degrees of freedom per node and divided the full 
plate into (4×4) element mesh. 

In the present study, the full laminated plate is modeled by (4×4) element 
mesh with nine-node isoparametric Lagrangian element and nine degrees of freedom 
per node. A consistent mass matrix and Newmark integration method with  a=1/2, 
and b=1/4 were used in the present study.  
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 Figure (6) shows the time history curve for the clamped angle-ply laminated 
plate under transverse suddenly applied load.  From this figure, it can be noticed that 
good agreement with other study exists with a difference not exceeding (1%). 
 
Parametric Study 

To investigate the large displacement elastic-plastic dynamic behavior of laminated 
composite plate under in-plane dynamic loading, effects of several important 
parameters were studied. 
 The selected parametric studies can be summarized as follows: 
1. The effect of through-thickness shear deformation. 
2. The effect of fiber’s orientation angle. 
3. The effect of damping. 
4. The effect of fiber waviness. 
 
 
  Each one of the above parameters was studied individually by analyzing a type 
of laminated composite plate.  In all cases, the nine-node isoparametric Lagrangian 
element was used and one quadrant of the plate was analyzed due to symmetry and 
(2×2) element mesh which was used for the cross-ply laminated plates while the 
angle-ply and sine wave fiber plates were analyzed by considering full plates with 
(4×4) element mesh.  The following geometry and layer material properties  of high 
graphite epoxy are used in the analysis: (E1=172.5 GPa; E2=7.08 GPa; G12=G13=3.45 
GPa, G23=1.38 GPa; Ef=341.42 GPa; Em=3.58 GPa; Vf=0.5; Vm=0.5; 
v12=v13=v23=0.25, r=15.8 kN.sec2/m4 Xt=Xc=1450 MPa, Yt=36 MPa, Yc=230 MPa, 
S=62 MPa)(83).  The geometry properties are (a=1.0 m, a/b=1). 
 
 
1. Effect of through-thickness shear deformation 

To study the effect of shear deformation on the large displacement elastic-plastic 
dynamic analysis of a laminated composite plate under in-plane constant dynamic 
loading, a simply supported square plate with slenderness ratio (b/h=20), and with 
symmetric cross-ply and antisymmetric cross-ply arrangements and with eight layers 
was analyzed. The initial imperfection is (wo/h= 0.1) by which the shape is considered 
to be a sinusoidal curve.   
  Figures (7) and (8) present the time history curves for the symmetric cross-ply, 
and for the antisymmetric cross-ply laminated composite plates by taking the through-
thickness shear deformation through the degrees of freedom of the element.  From 
these figures, it can be noticed that increasing the number of degrees of freedom per 
node from five degrees to nine degrees will increase the central deflection about 
(16%) for symmetric cross-ply and about (20%) for antisymmetric cross-ply plates.  
 
 
 
2.Effect of fiber’s orientation angle 
To show the effect of fiber’s orientation angle on the large displacement elastic-
plastic dynamic analysis of laminated composite plates under in-plane constant 
dynamic loading, a simply supported square plate with slenderness ratio (b/h=60) was 
considered.  The initial imperfection was (wo/h= 0.1) by which the shape was 
considered to be a sinusoidal curve. A consistent mass matrix and Newmark 
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integration method with  a=1/2, and b=1/4 were used in the present study.  A quarter 
of the laminated plate was modeled (2×2) element mesh with nine-node isoparametric 
Lagrangian elements having nine degrees of freedom per node.   
 Figure (9) presents the time history curve for the laminated simply supported 
square plate under in-plane dynamic loading and with many types of fiber’s 
orientation angle.  From this figure, it could be noticed that the central deflection of 
the plate with (0o/90o) is less than the deflections of others, this orientation’s fiber is 
the optimum for a plate under in-plane dynamic loading. 
 
 
 
3. Effect of damping   
To study the effect of damping on the large displacement elastic-plastic dynamic 
behavior of composite plates, two examples are considered.  The first one is a simply 
supported square plate with symmetric cross-ply lamination with eight layers and 
under in-plane dynamic 
 
 
 loading.  The second one is a simply supported square plate with antisymmetric 
cross-ply lamination with eight layers and under in-plane dynamic loading. Different 
values of damping factor (0.0-0.1) are considered in the present study. The initial 
imperfection shape is considered to be a sinusoidal curve.A quarter of the laminated 
plate is modeled by (2×2) element mesh with nine-node isoparametric Lagrangian 
elements having nine degrees of freedom per node. The plates were analyzed under 
in-plane constant dynamic loading ratio (Px/Pu=0.65) for the symmetric cross-ply 
plate and (Px/Pu=0.6) for the antisymmetric cross-ply plate. 
  
 Figure (10) presents the time history curve for a simply supported square plate 
with symmetric cross-ply lamination under in-plane constant loading with a range of 
damping factor (g) (0.0-0.1).  
  
 Figure (11) presents the time history curve for a simply supported square  plate 
with antisymmetric cross-ply lamination under in-plane constant loading with range 
of damping factor (g) (0.0-0.1). It is noticed that the response (deflection) decreases 
with the increase of the damping factor. Also, the plate shows no oscillation about the 
static deflection position for damping factors greater than or equal to (0.05).  This 
means that the plate is under the critical damping ratio.  So, it can be seen that the 
antisymmetric lamination of plates has a rate of damping faster than symmetric 
lamination.  This type of lamination can be used in places that need damping property 
 
. 
4. Effect of fiber waviness 
To study the effect of fiber waviness on the large displacement elastic-plastic dynamic 
behavior of composite (laminated) plate, two types of lamination were considered.  
The first one is a simply supported square plate, laminated plate with eight layers 
under in-plane constant dynamic loading.  The second one is a simply supported 
square symmetric cross-ply laminated plate with eight layers under also constant 
dynamic loading.  Different values of fiber path amplitude (D) (0.05-0.5) and different 
numbers of sequences (k) (4-12) were considered.  The plates were under in-plane 
constant dynamic loading (250 kN/m).  In the present study, the full laminate plate 
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was modeled with (4×4) element mesh with nine-node isoprametric Lagrangian 
elements having nine degrees of freedom per node. A consistent mass matrix and 
Newmark integration method with  a=1/2, and b=1/4 were used in the present study. 
  
 Figures (12)-(14) show the time history curves for the simply supported 
composite laminated plate with eight layers having sine wave fiber (0)8 and under in-
plane constant dynamic loading. 
   
  Figures (15)-(17) show the time history curves for the square symmetric cross-
ply composite laminated plate under in-plane suddenly applied constant dynamic 
loading and having eight layers with sine wave fiber. 
 

From these figures, the following can be noticed: 
1. The oscillation of the symmetric cross-ply laminated composite plate with sine 

wave fiber (k=12,D=0.4) is less than that of other plates. 
 
 
 
2. The time capacity of the laminated plate with symmetric cross-ply lamination and 

with sine wave fiber (k=4 and k=12) is greater than the time capacity of the 
laminated plate with symmetric cross-ply lamination and with sine wave fiber 
(k=8). 

3. The time capacity of the laminated plate with sine wave fiber (k=8,D=0.4) is 
greater than that of the others and also the time capacity of the symmetric cross-
ply plate with sine wave fiber (k=8,D=0.2) is greater than that of the others. 

 
 

Conclusions 

A nonlinear finite element method is adopted for the large displacement elastic-plastic 
dynamic analysis of anisotropic plates under in-plane compressive load.  Damping 
property is considered by using Rayleigh type damping which is linearly related to the 
mass and the stiffness matrices.  Newmark integration method is used for solving the 
dynamic equilibrium equations.  The effects of initial imperfection, orthotropy of 
individual layers, fiber’s orientation angle, type of loading, damping factor, and fiber 
waviness on the large displacement elastic-plastic dynamic analysis are considered. 
The conclusion it is shown that the antisymmetric cross-ply laminated plate has a 
damping rate faster than the symmetric cross-ply laminated plate and if damping is 
considered and if the response of the plate shows no oscillation about the static 
deflection position, it means that the damping factor is below the critical damping 
factor. 
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Figure (2): Geometry of an NL-layered laminate [Jones,1999](10) 
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Figure (5): Idealizated stress-strain relationship of uniaxial loading behavior for orthrotropic 
plate[Jones, 1999](10) 
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Figure (7): Effect of transverse shear deformation on the large displacement elastic-plastic analysis of 
symmetric cross-ply laminated plate under in-plane constant dynamic loading ratio (Px/Pu=0.3), 
(b/h=20,Dt=0.0001, wo/h=0.1,Pu=18563 kN/m) 
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Figure (8): Effect of transverse shear deformation on the large displacement elastic-plastic analysis of 
antisymmetric cross-ply laminated plate under in-plane constant dynamic loading ratio (Px/Pu=0.3), 
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Figure (9): Effect of fiber’s orientation angle on the large displacement elastic-plastic analysis of a 
laminated simply supported square plate under in-plane constant dynamic loading (Px=700 kN/m), 
(b/h=60, Dt=0.0001, wo/h=0.1) 
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Figure (11): Effect of damping factor on the large displacement elastic-plastic analysis of a simply 
supported square antisymmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100, 
Dt=0.0001, wo/h=0.1, Px/Pu=0.60) 

 

D
ef

le
ct

io
n 

ra
ti

o 
(w

/h
) 

Time ×103 (sec) 

 

0 5 10 15 20 25

-1

0

1

2

3

4

5

6

Antisymmetric cross-ply

g=0.00

g=0.01

g=0.05

g=0.075
g=0.10

Px Px 

L
oa

d  
Time 

Figure (12): Effect of fiber waviness on the large displacement elastic-plastic analysis of a simply 
supported square laminated plate under in-plane constant dynamic loading, (b/h=100, Dt=0.0001, 
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Figure (13): Effect of fiber waviness on the large displacement elastic-plastic analysis of a simply 
supported square laminated plate under in-plane constant dynamic loading, (b/h=100, Dt=0.0001, 
wo/h=0.1, Px=250 kN/m, k=8) 
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Figure (15): Effect of fiber waviness on the large displacement elastic-plastic analysis of a simply 
supported square symmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100, 
Dt=0.0001, wo/h=0.1, Px=250 kN/m, k=4) 
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Figure (16): Effect of fiber waviness on the large displacement elastic-plastic analysis of a simply 
supported square symmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100, 
Dt=0.0001, wo/h=0.1, Px=250 kN/m, k=8) 
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Figure (17): Effect of fiber waviness on the large displacement elastic-plastic analysis of a simply 
supported square symmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100, 
Dt=0.0001, wo/h=0.1, Px=250 kN/m, k=12) 

 

Time ×103 (sec) 

 

D
ef

le
ct

io
n 

ra
ti

o 
(w

/h
) 

0 5 10 15 20 25

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Symmetric cross-ply

D=0.05

D=0.10

D=0.20

D=0.30

D=0.40

Px Px 

L
oa

d  

Time 


