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Figure 13. The phenomenon observe where about 30-cm thick scum is accumulated
at tank
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Abstract

A nonlinear finite element method is adopted for the large displacement elastic-plastic dynamic
analysis of anisotropic plates under in-plane compressive loads. The analysis is based on the two-
dimensional layered approach with classical and higher order shear deformation theory with five,
seven, and nine degrees of freedom per node, nine-node Lagrangian isoparametric quadrilateral
elements are used for the discretization of the laminated plates. Both consistent and lumped mass
matrices are used in the present study. Damping property is considered by using Rayleigh type
damping which is linearly related to the mass and the stiffness matrices. Newmark integration method
is used for solving the dynamic equilibrium equations. The effects of initial imperfection, orthotropy
of individual layers, fiber’s orientation angle, type of loading, damping factor, and fiber waviness on
the large displacement elastic-plastic dynamic analysis are considered. The conclusion it is shown that
the antisymmetric cross-ply laminated plate has a damping rate faster than the symmetric cross-ply
laminated plate and if damping is considered and if the response of the plate shows no oscillation about
the static deflection position, it means that the damping factor is below the critical damping factor.
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Notations
Symbol Description
a, b Plate dimensions in x and y-directions, respectively.
[B] Strain-nodal displacement matrix.

D Flexural rigidity = Et 3/12(1— v? )
{d } Displacement vector.

{d } Velocity vector.

{d'} Acceleration vector.

E; Modulus of elasticity in i-direction.
Es Modulus of elasticity of fiber.

Em Modulus of elasticity of matrix.

{F} External load vector.

F Yield function.
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Dynamic external force vector.

Shear modulus.

Distance from plate middle surface to the upper and lower surface of L™ lamina.
Plate thickness.

Constant linear elastic stiffness matrix

Initial or large displacement matrix

Initial stress stiffness matrix

Tangent stiffness matrix.

Bending and twisting moments (per unit width) (on yz, xz, and both yz and xz-
sections).

Higher order bending and twisting moments (per unit width) (on yz, xz, and both yz
and xz-sections).

In-plane stress resultants (per unit width) (on yz, xz, and both yz and xz-sections).

Higher order in-plane stress resultants (per unit width) (on yz, xz, and both yz and
Xz-sections).

In-plane applied load in x-direction.
Element of elasticity matrix with respect to Cartesian coordinate system

Transverse shearing forces (per unit width) (on yz and xz-sections).

Uniformly distributed load (per unit area).

Residual load vector.

Transformation matrix.

Displacement components in X,y and z direction, respectively.
Amplitude of initial imperfection.

Coordinates.

Shear strain in ij-plane at middle surface.

Higher order shear strain in ij-plane at middle surface.
Strain vector.

Middle surface strain vector.

Normal strain in i-direction.

Normal strain in i-direction at middle surface.

Higher order normal strain in i-direction at middle surface.

Curvilinear coordinates system.
Fiber’s orientation angle.
Rotations of transverse normals in the (xz) and (yz) planes.

Higher order rotations of transverse normals in the (xz) and (yz) planes.
Bending curvature in i-plane at middle surface.

Bending curvature in ij-plane at middle surface.

Higher order bending curvature in i-plane at middle surface.

Higher order bending curvature in ij-plane at middle surface.
Poisson’s ratio in i-direction.
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{O'} Stress vector at sampling point.

o, Yield stress of steel

Introduction

Certain civil engineering structures are designed to carry their own dead load plus
superimposed loads which are immovable and unvarying with time, that is,
superimposed static loads. In such cases, the stress analysis involves only principles
of statics. More often the design of a civil engineering structure involves not only
static loads but also superimposed loads which are either moving or movable and may
vary with time as in superimposed dynamic loads. In such cases, the stress analysis
properly should involve principles of dynamics to determine the effect of dynamic
loading.

However, in many of these cases, experience has shown that the dynamic
effect makes a minor contribution to the total load which must be provided for the
design and therefore the dynamic effect need not be evaluated precisely. In such
cases, the dynamic effect may be handled by the use of an equivalent static load, or by
an impact factor or by a modification of the factor of safety.

There have been a number of developments which have led to growing interest
in a more precise evaluation of the effects produced by the dynamic portion of the
loading. Among these are the imposition of more severe live load conditions (that is,
machinery and vehicles moving at high speeds), the construction of high towers and
long bridges involving more severe and important wind-loading conditions, the
necessity of developing blast resistant constructions, and the desire to improve
earthquake resistance of constructions. These are some aspects where it may be
necessary to consider more precisely the response produced by dynamic loading.

The ability of thin-walled structures to absorb the energy of dynamic transient loading
has led to its utilization for several classes of important structures, such as
aerodynamic structures, power plant structure, bridge structures, etc. These types of
structures are designed under these loads to maintain the overall structural integrity
with irreversible deformation analysis. Weller, et al. [1989] ¥ used the ADINA
computer code for determining the dynamic load amplification factor (DLF) for
beams and plates under in-plane impact loads. Good agreement was found in
comparisons with self-developed finite difference computer codes and available
experimental results. Though the problem that had been studied was of a wave
propagation nature, a relatively small number of time steps were found to be enough
to describe the phenomenon quite accurately. This can be attributed to the relatively
short time duration of the applied loading (around the natural period of the structure).
They observed that the DLF was usually larger than unity, both for beams and plates.
In the presence of certain values of relatively large initial geometric imperfections and
combined with periods of the applied load which were close to the first period of
natural lateral vibrations of either the beam or the plate, DLF would be smaller than
unity. In [1993]“%, Kommineni and Kant presented a C°-continuous finite element
formulation of a higher order displacement theory for predicting linear and
geometrically nonlinear behavior in the sense of von-Karman transient response of
composite and sandwich plates. The displacement model accounts for nonlinear cubic
variation of the tangential displacement components through the thickness of the
laminated plate and the theory requires no shear correction coefficients. The
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parametric effects of the time step, finite element mesh, lamination scheme, and
orthotropy on the linear and geometrically nonlinear responses were investigated.
Their numerical results for central transverse deflection, stress, and stress resultant
were presented for rectangular composite and sandwich plates under various boundary
conditions and loadings. The conclusion of their study was that the refined shear
deformation theory is essential for predicting accurate responses of layered composite
and sandwich laminates. Tao, et al. [2004]™® presented a simple solution of the
dynamic buckling of stiffened plates under impact loading. Based on large deflection
theory, a discretely stiffened plate model had been used. The tangential stresses of
stiffeners and their in-plane displacements were neglected. The motion equations of
stiffened plates were obtained by using Lagrange-Hamilton's principle.  The
deflection of the plate was expressed as Fourier series, and by using Galerkin method
the discrete equations were solved by Runge-Kutta method. Their results were in
excellent agreement with the

finite element method. They observed that the Budiansky-Roth criterion was
partially applicable for detecting the dynamic buckling of a stiffened plate. The
conclusion of their study was that an appropriate shape of initial imperfection would
avoid local buckling of the structure under impact load. From the preceding review of
literature, it is clear that there is no study which considers the nonlinear dynamic
analysis of isolated laminated plate under axial compression load by taking into
account the effect of damping, type of loading, and type of fiber (straight or wavy).
There is also a little amount of literature that takes into account the higher order
displacement model of nine degrees of freedom per node with different types of
lamination.

Laminated Plate Theories

A laminated plate is a series of laminas bonded together to act as an integral structural
element. Thus, a laminate is not a material but instead a structural element with
essential features of both material properties and geometry. The stiffness and strength
of such a composite material with structural configuration are obtained from the
properties of the constituent laminas, and thus the macromechanical behavior of a
laminate is the main topic of this section. The lamination so described can be
considered as a single layer with "rule of mixtures™ representation of the interaction
between the multiple laminas in a plate or shell [Jones, 1999]7.

There are two categories of theories, equivalent single layer and three
dimensional elasticity theories. In the first category, the material properties of the
constituent layer are smeared to form a hypothetical single layer whose properties are
equivalent to through thickness integrated sum of its constituents, and this category
contains classical lamination theory, first order shear deformation theory, and higher
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order shear deformation theory. The higher order shear deformation theories are more
efficient to represent the transverse shear deformation, through-thickness
displacement and strains. The assumption of a higher order plate theory can also be
used within the equivalent layer formulation [Jones, 1999]“%. The strain expressions
derived from the displacement field were considered by [Ali, 2004]® with nine
degrees of freedom per node as follows:

u(x,y,z,t)=u,(x, y,t)+ 20, (x, y, t)+ z2u)(x, y, t)+ 2°67 (x, y,t)
v(x,y,2,t)=vo(x, y,t)+ 20, (x, y, t)+ 22v; (x, y, 1)+ 2°07 (x, y,t) (1)

W(x, Y, z,t)= WO(X, y,t)
in which the parameters (u, v, w, 0y, 6y, 6’;, and 6;) are defined previously, u;, and

v, are the corresponding higher order terms in Taylor's series expression and they are
also defined at the middle plane.  The strain-displacement relations after
differentiating Equation (1) are:
€, = au_ €2 +7x, +2%€° +2°%
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Also, all the strains above are defined in the middle-plane of the laminate. By
substitution from Equation (3) into the stress-strain relations given by the following
Equation:
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All coefficients in A, B, D, E, F, G, and H groups are defined

NL
Aij = Lz_:lQij (hL - h|__1)
A ) )
B; = (/2)2Q; (n ~hi.y)
N
Dij = (1/3)LZ=:1Qij (hL - hL—l)

NL
W4)2Qy(hi -l
N
Fij = (]/5)LZ_:1Qij (hL - hL—l)

NL 6 6
G; = (1/6)L2=1Qij (hf —h,)

i,j=1,2,60ri,j=4,5
I,j=1,2,60ri,j=4,5
I,j=1,2,60ri,j=4,5
i,j=1,2,60ri,j=4,5
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i,j=126
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as follows:

After complete integration, the stress-resultant/strain relations of the laminate

()

(6)

(72)
(7 b)
(7¢)
(7 d)
(7€)
(7 1)

(7 9)
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NL 7 7
H; = (J/?)Lzzlqu(m —h/,)

The present study explores the idea of tailoring the profile of reinforcing fibers
to improve the buckling strength of composite plates. This study investigates the
effect of waviness of fibers on the dynamic buckling curves, as shown in Figure (4),
and this waviness is of the form:

y(x)= asin(%) (8)
such that the angle of fiber orientation 0 varies along the longitudinal x-axis as:
dy okn kmx _
tan(0)= — = ——.cos| — | = Akm.cos(knX 9
(©)- 2 = . cof 1) - k. cos{knx) ®

where a = plate length; k= number of half sine waves; and a= wave amplitude. Two
normalized variables, A=a/a and X = x/a, are introduced.

The main objective is to study the effect of fiber waviness, characterized by k
and A, on the static and dynamic buckling behavior of composite laminates. The fiber
can also be rotated in any direction with the x-axis, as shown in Figure (3), by using
the following expression:

X, = xcos(B)+ ysin(B) (10)
where X, represent the x-coordinate for a rotated fiber, and B is the angle of the
waviness fiber.

The angle of fiber orientation in Equation (9) is variable with x-coordinate and
instead of the constant angle used for straight fibers.

Figure (4) shows the principal material directions aligned with the lamina axes

by angle (B).

Dynamic Equilibrium Equation

The dynamic equilibrium Equations are obtained by using the principle of virtual
work which states that for any arbitrary kinematically consistent set of displacements,
the internal virtual work done by stresses through virtual strains must be equal to that
done by the external forces irrespective of the material behavior as [Cook, 1995]®:

[(de) odv = [(du) P, ds+ {(du)T (P, — pti—Cu)dv (11)

v St

where du is a vector of virtual displacements, de is the vector of associated virtual
strains and o is the vector of actual stresses. The term P, is a vector of surface
tractions acting on the portions, of the boundary S . Vectors P,, pti and C uare the

body, inertial and damping forces respectively. The symbol () denotes differentiation
with respect to time. p is the mass density and C is the damping parameter.

For the finite element representation, the displacements, velocities and
accelerations u,uand Ui can be defined in terms of the nodal variables d,d and d by
the expressions
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u=YN;(Em)d; = Nd

du= Né&d (12)
=3 N, (Emd, =Nd (13)
i=1
0= N;End, =Nd (14)
i=1

m
where u=> N;(&,1)d; = Nd , N; is the shape functions for i node, and m is the
i=1
number of nodes.
With standard strain-nodal displacement matrix [B] the virtual strain vector
can be related to the nodal displacements as:

de = 3 [B]. 50, =[B5d (15)
i=1

Upon substitution of Equations (12-15) into Equation (11) then:

& [MJd+[cld + [KId]= a7 {f. ()} (16)

in which the mass matrix [M ] the damping matrix [C] the stiffness matrix [K] and
the external applied vector {fe (t)} have the following element contributions:

[M.]= [NTpNdv (17)
Ve

[c.]= [NTCNav (18)
Ve

[K.]=[[B]'[D][B]dv (19)
Ve

f.(t)=[NTP ds+ [ NP, dV (20)
se Ve

where s, and V, denote the surface and volume of the element under consideration. As
& is arbitrary, then Equation (16) may be written as:
[MT}+ [cHd b+ [k Hd} = {F. 0} 21)

Equation (21) is the dynamic equilibrium Equation for a single or multi-degree of
freedom system.
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Tangent Stiffness Matrix
The tangent stiffness matrix can be written as:
[KT]=[KO]+[KL]+[KG] (22)

where [K, ] is the constant linear elastic stiffness matrix and can be written as:

kJ=gmfhﬂ&hA

[KL] is the initial or large displacement matrix which is quadratically dependent upon
displacement u, and can be written as:

(23)

[k ]=[[B,]'[D][B, JdA+ [[B, I'[D][B A+ [[B, I [D][B, JdA (24)
A A A
Finally [Kc] Is the initial stress stiffness matrix and then:
dB [ { ° 0} (25)
e I =
Thus,
N,
Ny
0 0| Ny
< epatar ofjw | @
M,
My |

However, using the mathematical properties of the matrix [A], this matrix can be
written as:

-

N X
N, N
d[A]' ¢ N, =[ X Xy}[G]da (27)
N Xy N y
[Ny
and finally one can obtain
[K,]= 0 0 28
*~lo [kt (28)
Thus,
N N
- JEeT | el @)
A N Xy N y

Formulation of Element Mass Matrix

The kinetic energy of the element (e) can be expressed as follows:



where in the above Equation (34), 11, I, I3, and 14 are translation inertia, rotary inertia,

and respectively higher order inertia terms, and these are given by:

NL D
(1, 0,,15,1,)= jL(l,zz,z“,zﬁ)pLdz

L=1 h 1

where p" is material density of L-th layer.

Formulation of Damping Properties

(36)

The most common form for the representation of the damping matrix [C] is the so-
called Rayleigh-type damping [Timoshenko and Gere, 1961]%% which was given as;

[c]=a,[M]+ay[K]

(37)
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TI® = % [{d] [m}dJoa (30)
A
The velocity vector within an element is discretized such that:
.y NN :

{d}= 3 N, {d}, NN: number of nodes. (31)

i=1
By substituting Equation (31) into Equation (30), one gets:

1 W ~
T|e=§z{d} [NT[mIN; dAld} (32)

i=1 A
Thus,
11
[MF =[INJ [m]N]aa= [ [IN] [M]IN]3[dg dn (33)
A -1-1
The mass matrix for nine degrees of freedom per node is:
1, 0
I1
Il
|2
[l = I (34)
|3
|3
Iy
0 I,

For layered plates, the element mass matrix can be written as follows:

NL
[M]=X[m] (35)
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in which (a, and a;) are arbitrary proportionality factors, which make the damping
matrix satisfy the orthogonality condition with respect to the modal matrix [@®] in the
same way of the orthogonality conditions for the mass and stiffness matrices that is
[Bathe, 1996]“":

{o} (Mo} =[1]

{o} [} =[a] (38)
{o} [cfo}=2y]a]"
where

{CI)}: The modal matrix whose columns represent the natural modal shapes and the
superscript ( T ) denotes transpose.

[I]: Identity matrix.
[A] . Spectral matrix, which is a diagonal matrix with elements representing the

H 2
squares of the natural frequencies (®; ).

[y]: Modal damping matrix which is also a diagonal matrix with elements
representing the damping ratios for the system modes (1y;)

Premultiplying Equation (37) by {CD}T and postmultiplying it by {CID} yields

{o}' [cfo}=a,{o} [M]e}+a o} [k o} (39)

Substituting Equations (38) into Equation (39) gives;
2yIAl" =a[1]+ay[A] (40)

The two factors, a, and a; can be determined by specifying the damping ratios for two
modes for example 1 and 2, and substituting into Equation (40) as [Pytet, 1990]®:

2y,0, =a, + alo)f (41)
2,0, =, + alﬁ)g (42)

where ®; and m; are the natural frequencies for modes 1 and 2 respectively. By
solving the above two Equations one can get:

a = 20,0, (0,7, —0;7,)
’ (05 —oF)

(43)

a = 2(0,Y, — ®1Y1)
b (@3-0f)

(44)
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Then, the values of a, and a; are substituted into Equation (37) to get the required
damping matrix.

Failure criteria for laminated plate structure

The stresses in an individual lamina are fundamental to control the failure initiation
and progression in the laminate. The strength of each individual lamina is assessed
separately by considering the stresses acting on it along the material axes. The initial
failure of a lamina is governed by exceeding the maximum limit prescribed by a
failure criterion. The determination of failure load is very essential in understanding
the failure process as well as the reliability and safety of structures. The ultimate load
that makes the plate fail is calculated based on Tsai-Wu criterion for general
composite materials and on Hashin criterion for fiber composite materials as follows
[Jones, 1999]“%

Fi0i+|:ij0i0'j =1, i,j:l’ ...... ’6 (45)

where F; and F;; are strength tensors of the second and fourth order respectively and
the usual contracted tensor notation IS used except that

0, =Ty3,05 =T,3,and oy =7;,. Equation (45) is obviously very complicated thus it
will restrict the above attention to the reduction of above equation for an orthotropic
lamina under plane stress conditions:

2 2 2
Fo,+F,0, + Fy05+ F 07 ++F,,05 + F3305 + F,0,0, (46)
+ F30,0;5+ Fy0,05 + F440'i + FSSCSE3 + F%()'(Z3 =1

The terms that are linear in the stresses are useful in representing different strengths in
tension and in compression. The terms that are quadratic in the stresses are the more

or less usual terms to represent an ellipsoid in stress space, where F; =0 indicates

that to the shear strength of a material in compression and in tension is similar, and
o; =0 in z-direction. Also, the shear strength of a material is equal in three

dimensions and equal to S. Thus, the terms of F; is:
-t (22)
Fu = [ﬁ]ﬁz B (vac ]’F“ B ( zfzc ]
(o (B3]
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X., X, = The axial or longitudinal strength in compression and tension.
Y..Y, = The transverse strength in compression and tension.
Z.,Z, = The transverse strength in compression and tension.

R,T, S = Shear strength of the material.
Equation (46) becomes as:

F.c, +F,0, +F,0! ++F,,65+F,0,6,+F,0; +F, 6.+ F,0. =1 (48)

Equation (48) is suitable for the elastic-plastic analysis of anisotropic materials.
For matrix cracking failure, two different failure criteria are used depending on

whether the transverse normal stress, o,,, is in tension or in compression. The
failure index, e2, is defined in terms of transverse tensile strength, Y, , transverse
compressive strength, Y., and in-plane shear strength, R, and is expressed as:

e2 =2[(Y_CJZ _1]+(2J2 +(rﬁjz for o,, <0 (49)
™Y, |(2R 2R R ”
and,
o 2 T 2
e2 = (Y—";z] +(%j for 65, >0 (50)

where (en) is the failure index for matrix cracking. Matrix cracking is assumed to
occur when the failure index (en,) exceeds unity.
Fiber-matrix shear failure is assumed to be dependent on a combination of

axial stress, o,, and shear stress, 712, and is expressed as follows:

2 2 2 2
2= T2 | for g, >0and| | <[22 (51)
X, R X, R
and,
2 2 2 2
2= 4[T2| for g, <Oand| L] <[22 (52)
X, R X, R

where () is the failure index for fiber-matrix shearing, X is the tensile strength along
the fiber direction and X. is the compressive strength along the fiber direction.
Equations (51) and (52) predict that when the failure (es) exceeds unity, fiber-matrix
shearing dominated failure occurs.

Fiber breakage failure occurs in tension due to the combination of axial stress
and shear stress while the failure in compression is governed by buckling as expressed
in terms of only axial stress. The criterion for breakage failure is expressed as
follows:

2 2
2 Oy T1o
et =|—| +|==| foroy,, >0 53
(3] () e =
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and,

22
e = [ﬂj for oy, <0 (54)
XC

where (es) is the failure index for fiber breakage. The fiber breakage failure occurs
when (e;) exceeds unity.

Forced vibration analysis

The calculation of the nonlinear dynamic response of structure of structures including
instability or buckling phenomena has received considerable attention and a good
amount of literature has appeared on this subject. The nonlinear dynamic analysis
depends largely on solving the following Equations:

[IMI{d o+ [cHdm)+ [k, T{dm} = {F )} (55)

in which [KT] is the tangent stiffness matrix of the plate (or structure) and depends

on the current displacements and stresses. The most conventional implicit time
integration procedures is Newmark method.  After solving Equation (55) at time
(t+At) for displacements, velocities, and accelerations, the following equation as:

([Ks]+a,[M]+a,[cDd},a ={F () }rmt + [Mm ](az {d }t a3 {d'}t ) (56)
+ [C](a4 {d }t +ag {d'}t)
For convenience, the following is used:

(K Ly =[Kr ]+a5[M]+ay[C] (57)

and,

FOky ={FO}n + [Mm ](az {d }t +a; {d }t )"‘ [C](a4 {d }t +as {d }t ) (58)
So, Equation (5.66) may be written in the form:

[KT ]eff {d }t+At = {F (t)}eff (59)

For a linear system, [KT ]eff will be constant during the analysis at any time, while in
the nonlinear analysis, [K ]eff is a function of current displacement vector {d} .

Therefore, an iterative procedure must be used to define [KT ]eﬁ. In the nonlinear

analysis, it is more useful to put Equation (59) in increment form. For such purpose,
Equation (59) may be rewritten as:

k. Jad}=faF ) (60)

in which [KT] is the effective stiffness matrix and {Alf(t)} is the effective load
vector. Equation (60) is solved by an iterative procedure like Equation (56). It may
be noted that Equation (56) may be used for solving linear problems, while for
nonlinear problems, Equation (60) should be used.
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Solving Equation (60) for {Ad}, approximate values for accelerations,
velocities and displacements may be given as:

{d. }t+At =a,{ad} -a, {d }t —a3 {d. }t

{d }t+At =a,{Ad} -a, {d }t — & {d. }t (61)
{d }t+At = {d }t + {Ad} ;
Where

1 y 1 1

= pan? TR T Ray BT

Applications and Discussions

Several plates are analyzed to study the different effects on the large displacement
elastic-plastic dynamic behavior of plates with some comparison with other
researchers.

Comparison with available theoretical investigation of composite plate

Clamped supported square angle-ply laminated plate under transverse suddenly
applied constant dynamic loading

A square angle-ply (0°45°/90°core/90°/45°/30°/0°) sandwich laminated plate with
clamped edges and subjected to a suddenly applied uniformly transverse load was
analyzed and compared with Kommineni and Kant [1993]**. The following layer
material properties are used in the analysis: for face sheets (Graphite/epoxy prereg
system) (E;=130.8 GPa; E»=10.6 GPa G1,=G13=6 GPa; G»3=3.9 GPa; v;1,=0.28; and
p=15.8 kN.sec?/m*); for core sheet (US Commercial al. honeycomb, ¥ in cell size,
0.003 in foil) (G13=0.5206 GPa; G23=0.1772 GPa; p=1.009 kN.sec’’m?). The time
step is (At=0.000025 sec),and applied load (q=50 kN/m?). The geometry properties
are (@a=1.0 m, a/b=1, and h=0.01m, at top three stiff layers, thickness of each
layer=0.025 h, at bottom four stiff layer, thickness of each layer=0.08125 h, and
thickness of core=0.6 h). Kommineni and Kant used nine-node isoparametric
Lagrangian elements with nine-node degrees of freedom per node and divided the full
plate into (4x4) element mesh.

In the present study, the full laminated plate is modeled by (4x4) element
mesh with nine-node isoparametric Lagrangian element and nine degrees of freedom
per node. A consistent mass matrix and Newmark integration method with a=1/2,
and B=1/4 were used in the present study.
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Figure (6) shows the time history curve for the clamped angle-ply laminated
plate under transverse suddenly applied load. From this figure, it can be noticed that
good agreement with other study exists with a difference not exceeding (1%).

Parametric Study

To investigate the large displacement elastic-plastic dynamic behavior of laminated
composite plate under in-plane dynamic loading, effects of several important
parameters were studied.
The selected parametric studies can be summarized as follows:
The effect of through-thickness shear deformation.
The effect of fiber’s orientation angle.
The effect of damping.
The effect of fiber waviness.

oINS S

Each one of the above parameters was studied individually by analyzing a type
of laminated composite plate. In all cases, the nine-node isoparametric Lagrangian
element was used and one quadrant of the plate was analyzed due to symmetry and
(2x2) element mesh which was used for the cross-ply laminated plates while the
angle-ply and sine wave fiber plates were analyzed by considering full plates with
(4x4) element mesh. The following geometry and layer material properties of high
graphite epoxy are used in the analysis: (E;=172.5 GPa; E,=7.08 GPa; G1,=G;3=3.45
GPa, G23=1.38 GPa; E=341.42 GPa, En=3.58 GPa; V{=0.5; V,=0.5;
V12=V13=V23=0.25, p=15.8 kN.sec’’m* X=X.=1450 MPa, Y,;=36 MPa, Y.=230 MPa,
S=62 MPa)®). The geometry properties are (a=1.0 m, a/b=1).

1. Effect of through-thickness shear deformation

To study the effect of shear deformation on the large displacement elastic-plastic
dynamic analysis of a laminated composite plate under in-plane constant dynamic
loading, a simply supported square plate with slenderness ratio (b/h=20), and with
symmetric cross-ply and antisymmetric cross-ply arrangements and with eight layers
was analyzed. The initial imperfection is (w,/h= 0.1) by which the shape is considered
to be a sinusoidal curve.

Figures (7) and (8) present the time history curves for the symmetric cross-ply,
and for the antisymmetric cross-ply laminated composite plates by taking the through-
thickness shear deformation through the degrees of freedom of the element. From
these figures, it can be noticed that increasing the number of degrees of freedom per
node from five degrees to nine degrees will increase the central deflection about
(16%) for symmetric cross-ply and about (20%) for antisymmetric cross-ply plates.

2.Effect of fiber’s orientation angle

To show the effect of fiber’s orientation angle on the large displacement elastic-
plastic dynamic analysis of laminated composite plates under in-plane constant
dynamic loading, a simply supported square plate with slenderness ratio (b/h=60) was
considered. The initial imperfection was (w,/h= 0.1) by which the shape was
considered to be a sinusoidal curve. A consistent mass matrix and Newmark
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integration method with a=1/2, and 3=1/4 were used in the present study. A quarter
of the laminated plate was modeled (2x2) element mesh with nine-node isoparametric
Lagrangian elements having nine degrees of freedom per node.

Figure (9) presents the time history curve for the laminated simply supported
square plate under in-plane dynamic loading and with many types of fiber’s
orientation angle. From this figure, it could be noticed that the central deflection of
the plate with (0°/90°) is less than the deflections of others, this orientation’s fiber is
the optimum for a plate under in-plane dynamic loading.

3. Effect of damping
To study the effect of damping on the large displacement elastic-plastic dynamic
behavior of composite plates, two examples are considered. The first one is a simply
supported square plate with symmetric cross-ply lamination with eight layers and
under in-plane dynamic

loading. The second one is a simply supported square plate with antisymmetric
cross-ply lamination with eight layers and under in-plane dynamic loading. Different
values of damping factor (0.0-0.1) are considered in the present study. The initial
imperfection shape is considered to be a sinusoidal curve.A quarter of the laminated
plate is modeled by (2x2) element mesh with nine-node isoparametric Lagrangian
elements having nine degrees of freedom per node. The plates were analyzed under
in-plane constant dynamic loading ratio (P«/P,=0.65) for the symmetric cross-ply
plate and (Px/P,=0.6) for the antisymmetric cross-ply plate.

Figure (10) presents the time history curve for a simply supported square plate
with symmetric cross-ply lamination under in-plane constant loading with a range of
damping factor (y) (0.0-0.1).

Figure (11) presents the time history curve for a simply supported square plate
with antisymmetric cross-ply lamination under in-plane constant loading with range
of damping factor (y) (0.0-0.1). It is noticed that the response (deflection) decreases
with the increase of the damping factor. Also, the plate shows no oscillation about the
static deflection position for damping factors greater than or equal to (0.05). This
means that the plate is under the critical damping ratio. So, it can be seen that the
antisymmetric lamination of plates has a rate of damping faster than symmetric
lamination. This type of lamination can be used in places that need damping property

4. Effect of fiber waviness

To study the effect of fiber waviness on the large displacement elastic-plastic dynamic
behavior of composite (laminated) plate, two types of lamination were considered.
The first one is a simply supported square plate, laminated plate with eight layers
under in-plane constant dynamic loading. The second one is a simply supported
square symmetric cross-ply laminated plate with eight layers under also constant
dynamic loading. Different values of fiber path amplitude (A) (0.05-0.5) and different
numbers of sequences (k) (4-12) were considered. The plates were under in-plane
constant dynamic loading (250 kKN/m). In the present study, the full laminate plate
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was modeled with (4x4) element mesh with nine-node isoprametric Lagrangian
elements having nine degrees of freedom per node. A consistent mass matrix and
Newmark integration method with a=1/2, and f=1/4 were used in the present study.

Figures (12)-(14) show the time history curves for the simply supported
composite laminated plate with eight layers having sine wave fiber (0)s and under in-
plane constant dynamic loading.

Figures (15)-(17) show the time history curves for the square symmetric cross-
ply composite laminated plate under in-plane suddenly applied constant dynamic
loading and having eight layers with sine wave fiber.

From these figures, the following can be noticed:
1. The oscillation of the symmetric cross-ply laminated composite plate with sine
wave fiber (k=12,A=0.4) is less than that of other plates.

2. The time capacity of the laminated plate with symmetric cross-ply lamination and
with sine wave fiber (k=4 and k=12) is greater than the time capacity of the
laminated plate with symmetric cross-ply lamination and with sine wave fiber
(k=8).

3. The time capacity of the laminated plate with sine wave fiber (k=8,A=0.4) is
greater than that of the others and also the time capacity of the symmetric cross-
ply plate with sine wave fiber (k=8,A=0.2) is greater than that of the others.

Conclusions

A nonlinear finite element method is adopted for the large displacement elastic-plastic
dynamic analysis of anisotropic plates under in-plane comﬁressive load. Damping
property is considered by using Rayleigh tﬁpe damping which is linearly related to the
mass and the stiffness matrices. Newmark integration method is used for solving the
dynamic equilibrium equations. The effects of initial imperfection, orthotropy of
individual layers, fiber’s orientation angle, type of loading, damping factor, and fiber
waviness on the large displacement elastic-plastic dynamic analysis are considered.
The conclusion it is shown that the antisymmetric cross-ply laminated plate has a
damping rate faster than the symmetric cross-ply laminated plate and if damping is
considered and if the response of the plate shows no oscillation about the static
]geflection position, it means that the damping factor is below the critical damping
actor.
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supported square symmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100,
At=0.0001, wo/h=0.1, P,=250 kKN/m, k=8)



