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ABSTRACT 

        In this study the energy gap (Eg) for both silicon and germanium under high pressure 
and different temperatures is evaluated using two approaches. One of them by evaluating 
the gradient of (Eg) with pressure (dEg/dP), and with temperature (dEg/dT) under different 
pressures. The other, by using different equation of state (Birch-Murnaghan, Misra-Goyal, 
Vinet and modified Lennard-Jones) to evaluate the variation of lattice constant with 
pressure, and then evaluate the variation of (Eg) with pressure. 
 ــــــــــــــــــــــــــــــــــــــــــــــــــــ

 دراسة نظرية لفجوة الطاقة للسليكون و الجرمانيوم تحت الضغط العالي 
  

  الملخص

       تم في هذا البحث حساب فجوة الطاقة لكلٍ من السليكون و الجرمانيوم تحت الـضغط العـالي وعنـد                   

 ومع   ،(dEg/dP) فجوة الطاقة مع الـضغط       رحدهما بحساب انحدا  أ. درجات حرارة مختلفة باستخدام مدخلين    

 مرنكهـان،   -برخ(والآخر باستخدام معادلات حالة مختلفة      .  تحت ضغوط مختلفة   (dEg/dT)درجة الحرارة     

لحساب تغير ثابت الشبيكة مع الضغط، ومن ثم حساب تغير          ) ورةط جونس الم  - كويال، فينت ولينارد   -ميسرا

  . طفجوة الطاقة مع الضغ

 ــــــــــــــــــــــــــــــــــــــــــــــــــــ
INTRODUCTION 

       The high pressure investigation of semiconductors have become a focus area in 
condensed matter physics because of their tunable optical and electronic properties (Brad et 
al., 2010). As the band gap energy of semiconductors plays a fundamental role in electrical 
and optical properties, it is important and necessary to investigate the band gap change in 
order to get better understanding of their relevant properties. Thus, it is a significant way to 
understand the modification of band gap of semiconductor under external pressure. (Ouyang 
et al., 2009). 
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Silicon and Germanium 
       All Group IV semiconductors (C, Si and Ge) has the diamond crystal pattern as crystal 
structure. The tetrahedral configuration is typical of the bonding in the Group IV elements. 
Each of the atoms at the tetrahedron corners is shared by four primitive cells, so that this set 
of atoms contributes a total of one atom to the primitive cell. On adding to it the atom at the 
center we arrive at a count of two atoms per primitive cell. We thus have a lattice with basis. 
      The electron configuration of silicon in its ground state is 22622 33221 pspss  but its 
normal valence state arises when one of the 3s electron is promoted to a 3p level thus giving 
the fourvalent configuration 3622 33221 pspss . The tetrahedral 3sp  hybrids are 
responsible for the tetrahedral configuration of the crystal structure. The states 
( )622 221 pss  have all large negative energies and they can be regarded as core states that 
do not take part in the band structure. 
      In the same way the electron configuration of germanium in its ground state is 

221062622 44333221 psdpspss  which becomes in the Ge crystal 
31062622 44333221 psdpspss . (Altmann, 1991). 

 
 
Band Structure in Si and Ge 
       One of the most important reasons for computing band structures is to determine the 
band gap i.e. the difference between the highest valence band and the lowest conduction 
band energies, since this can provide insight into potentially useful materials for optical 
device application (Rushton, 2002). 
       An ideal semiconductor band structure at 0 K is characterized by a completely filled 
valence band and a completely empty conduction band; the two are separated by a band gap, 
in which there are no allowable states. (Giovane, 1998). 
       The energy-momentum relationship for Si and Ge are shown in (Fig.1 and Fig.2). Both 
of these semiconductors are categorized as indirect gap semiconductors because the 
transition from energy maximum in the valence band to the energy minimum in the 
conduction band does not conserve momentum unless a third particle, such as phonon, is 
emitted or absorbed. 

 
                 Fig.1: Band structure of Si. (Levinshtein et al., 2001). 
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                Fig.2: Band structure of Ge. (Levinshtein et al., 2001). 

 
Effect of Pressure and Temperature on the Energy Gap 
       Two approaches have been used in studying the effect of pressure and temperature on 
the band gap of Si and Ge. 
       One of them by evaluating (Eg) with pressure and temperature using the following 
equation. (Arezky et al., 2009). 

       ( ) ( )
cT

TkPETPE gg +
−+=

2

0, α                           …………..………..(1)  

where Eg(0) is the energy gap at P=0 and T=0. α is the pressure coefficient (dEg/dP). k and 
c are temperature coefficients. 
      If we put P=0 in Eq.(1) we will have  

       ( ) ( )
cT

TkETE gg +
−=

2

0                                      ……….……………(2)  

Eq.(2) is the same equation displayed by (Varshni 1967), and if we put T=0 we will have  
 
       ( ) ( ) PEPE gg α+= 0                                        …………………..…(3) 
Eq.(3) is the same equation displayed by (Levinshtein et al., 2001). 
      Using Eq.(3) with the values of ( )0gE  and α from table (1) we can plot the variation of 
the energy gap with pressure for Ge and Si, as shown in (Fig.3 and Fig.4), which show the 
difference between the effect of pressure on the energy gap of the two elements although 
both of them belong to the same group of the periodic table, and they have the same crystal  
structure.  
 
Table1: values of Eg(0), pressure coefficient α and temperature coefficients K and c for Si                  

and Ge. (Levinshtein et al. ,2001)  
 

c   K K ×10-4  eV/K α ×10-3  eV/kbar  Eg(0)  eV Material 
636 4.73 -1.4 1.17 Si 
235 4.8 5.1 0.742 Ge 
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Fig.3: The variation of the energy gap with high pressure for Ge using Eq.(3). 
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Fig.4: The variation of the energy gap with high pressure for Si using Eq.(3). 

  
       It is seen from Fig.3 that the energy gap increases with increasing pressure in Ge while 
decreases with increasing pressure in Si (Fig.4). In other words the pressure coefficient (α) 
for Si is negative and for Ge is positive. The difference of the values of α depends on the 
type of transition, e.g. for the  Γv→Lc transition α is about (5 meV/kbar) as in Ge, while for 
Γv→Xc transition α is about (-1 to -2 meV/kbar) as in Si. (Wei and Zunger, 1999). 
      The negative value of α in Si can be explained (Lee et al., 1985) as the strong influence 
of the d levels that lie in energy well above the X maxima of the conduction band. These 
levels repel the conduction band at X, forcing it downward in energy (relative to the 
minimum at Γ). 
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       The other approach is to evaluate the variation of Eg with pressure using lattice constant 
a(P), Murnaghan equation of state (EOS), and the the following equation displayed 
by(Angilella et al., 2008). 
 

      ( )
γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

c
g a

PaAE 1                                      …….….....……(4) 

 
where  A, ac and γ are fitting parameters and their values are: 

71675.1,7797.6,21.50 === γ
o

AaeVA c  

       ( ) ( ) oB

o

o P
B
BaPa

′
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+=

3
1

10                              …….....………..(5) 

o

Aa Si 38.5)0( =  , 
o

Aa Ge 727.5)0( =          (Rushton, 2002).  
oB  and oB′  are the bulk modulus and its first-order pressure derivative at zero pressure.  

      Eq.(5) is Murnaghan EOS and the quantity
oB

o

o P
B
B ′

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+

1

1 represents
o

P

V
V , and the variation 

of the lattice parameter with pressure can be written in general as:  

        ( ) ( )
3
1

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o

P

V
VaPa                                      ….........………….(6) 

       By substituting the values (1→0.91) for )/( oP VV to evaluate the pressures then using 
Eq.(5) to find the lattice constant variation with pressure, then evaluate the variation of the 
band gap energy with pressure using Eq.(4). The results are shown in (Fig. 5 and 6). 
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Fig.5. The variation of the band gap energy with pressure using Eqs.(4) and (5) for Ge. 
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     Fig.6. The variation of the band gap energy with pressure using Eqs.(4) and (5) for Si. 

 
 
       Since Eq.(6) represent the general form of the variation of lattice parameter with 
pressure, we found that it is suitable to evaluate the variation of lattice parameter using 
Birch-Murnaghan, Misra-Goyal, Vinet and modified Lennard-Jones EOSs, then evaluate the 
variation of the energy gap with pressure: 
The modified Generalized Lennard –Jones equation of state (mGL-JEOS) is (Jiuxun S., 
2005). 

 
                                             ………………….(7) 
                                    
 

  where oBn ′=
3
1            

 
 
The Misra –Goyal EOS is (Tripathi et al., 2006) 
 

{ } { } { }[ ]3/123/13/423/13/43/52 25310156
20

−−−−−−−−− −++−+−+−= ηηδηηηβηηηηαo
MG

BP  …..(8)                                

                                                                                                           
with ( )( ) ( ) ,12,732,734396 =−′=−′−′+′′+= δβα ooooo BBBBB    

0V
Vp=η  

 
       "

oB   is the second pressure derivative of oB . 
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The Birch–Murnaghan EOS is (Birch, 1947; Tripathi et al., 2006). 
 

      [ ] ( )( )⎥⎦
⎤

⎢⎣
⎡ −−′+−= −−− 14

4
31

2
3 3/23/53/7 ηηη o

o
BM BBP                            …………...(9) 

 
 
The Vinet EOS is (Vinet et al., 1986) 
 

                                                                                
………………(10)     

 
 
The results of using the above EOSs with Eq.(4) and (5) are shown in (Fig.7 and 8). 
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      Fig.7:  Variation of  the bandgap energy with pressure from different EOSs using  
                 Eqs.(4)  and (5) for Ge. 
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        Fig.8: Variation of the bandgap energy with pressure from different EOSs using  
                  Eqs.(4) and (5) for Si. 
 
 
       Comparing the variation of Eg with P in Fig.(5, 7 for Ge and 6, 8 for Si) with results 
shown in Fig.(3 for Ge and 4 for Si) we can see that: 
1- Evaluation of the variation of Eg with P using the equation given by (Angilella et al., 

2008) i.e. Eq.(4) does not take into account the negative sign of the pressure coefficient 
for Si, so that Eg increases with increasing P for Si using this approach (Fig. 8) which 
does not agree with the results of (Fig. 4) We conclude that this approach is valid for 
semiconductors with positive pressure coefficient only. 

 
2- (Angilella et al., 2008) considered that Grüneisen parameter (γ) has the same value for Si   

and Ge and that it is constant at different pressures, in fact γ has different values for Si 
and Ge and it changes under different pressures. (Al-Sheikh et al., 2006). 

 
 
 

Calculations of Eg Variation with Pressure and Temperature 
       Eq.(2) is an expression for the variation of the energy gap with temperature for 
semiconductors under zero pressure. Fig.9. shows the variation of the energy gap with 
temperature. 
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Fig. 9: The variation of energy gap with temperature using Eq.(2) for Si and Ge. 

 

 
      The variation of Eg with T at different pressures using Eq.1 for Si and Ge is shown in 
(Fig.10 and 11).  
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Fig.10: Variation of Eg with temperature T at different pressures using Eq.(1) for Ge. 
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Fig.11: Variation of Eg with temperature T at different pressures using Eq.(1) for Si. 

 
      Fig.10 shows the effect of the positive value of pressure coefficient for Ge i.e. although 
Eg decreases with increasing temperature, the increase of pressure increases Eg. Fig.11 
shows the effect of the negative value of pressure coefficient for Si, i.e. in addition of 
decreasing Eg with increasing temperature, Eg decreases with increasing pressure. 
      The gradient of the energy gap with temperature for Ge (Fig.10) is greater than that for 
Si (Fig.11) although opposite of that appears in these figures as a results of the different 
scales. 
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