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Abstract 
 One of the major constraints on hardware implementations of Artificial Neural 

Networks (ANNs) is the amount of circuitry required to perform the multiplication 
process of each input by its corresponding weight and there subsequent addition. Field 
Programmable Gate Array (FPGA) is a suitable hardware IC for Neural Network (NN) 
implementation as it preserves the parallel architecture of the neurons in a layer and 
offers flexibility in reconfiguration and cost issues. In this paper the adaption of the 
ANN weights is proposed using Particle Swarm Optimization (PSO) as a mechanism 
to improve the performance of ANN and also for the reduction in the ANN hardware. 
For this purpose we modified the MATLAB PSO toolbox to be suitable for the taken 
application. In the proposed design training is done off chip then the fully trained 
design is download into the chip, in this way less circuitry is required. This paper 
executes four bit Arithmetic Logic Unit (ALU) implemented using Xilinx schematic 
design entry tools as an example for the implementation of digital circuits using ANN 
trained by PSO algorithm. 
Keywords: Particle Swarm Optimization (PSO), Artificial Neural Network (ANN), 

Field Programmable Gate Array (FPGA). 

الحشد الجزيئي لتنفيذ الدوائر  أفضليةالشبكات العصبية ا�صطناعية بواسطة  تدريب
 مصفوفة البوابات القابلة للبرمجة باستخدامالرقمية 

الخ/صة
حقة �بالوزن المرافق له وعملية الجمع ال إدخالزمة لتنفيذ عملية ضرب كل �تعتبر كمية الدوائر ال

مص-فوفة البواب-ات ). ANN(المعوق-ات الرئيس-ية لتنفي-ذ دوائ-ر الش-بكات العص-بية ا/ص-طناعية  إحدىلھا 
تح-افظ  >نھ-اھ-ي دائ-رة متكامل-ة مناس-بة لبن-اء الش-بكات العص-بية ا/ص-طناعية  )FPGA(القابل-ة للبرمج-ة 

 إع-ادة إط-ارعلى البناء المتوازي للخ�ي-ا العص-بية ا/ص-طناعية ف-ي الطبق-ة الواح-دة وتع-رض مرون-ة ف-ي 
الشبكات العص-بية ا/ص-طناعية  أوزانراح تبني تم في ھذا البحث اقت. قضايا الكلفة إلى باFضافةالبرمجة 
 باFض-افةالعص-بية ا/ص-طناعية   الش-بكات أداءلتحس-ين  كإلي-ة) PSO(الحش-د الجزيئ-ي  أفضلية باستخدام

الحشد الجزيئ-ي  أفضلية أدواتلھذا الغرض قمنا بتعديل صندوق . تقليل الدوائر ال�زمة لبناء الشبكات إلى
خارج الرقاقة  ية التدريبعمل تمت في التصميم المقترح. المأخوذ في بيئة المات�ب ليكون مناسب للتطبيق

ھ-ذا البح-ث  ينف-ذ .ريقة سنحتاج اق-ل ع-دد م-ن ال-دوائربھذه الط ,الرقاقة إلى دريبل التصميم كامل التثم حم
الرسم التخطيط-ي ل-زايلنكس كمث-ال لتطبي-ق  أدوات باستخدامبت  أربعذات ) ALU( دائرة حساب ومنطق
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Introduction 
Swarm Intelligence 

warm Intelligence (SI) is a 
modern artificial intelligence 
discipline that is concerned with 

the design of multi agent systems. The 
design paradigm for these systems is 
fundamentally different from many 
traditional approaches. Instead of the 
sophisticated controller that governs the 
global behavior of the system, the SI 
principle is based on many 
unsophisticated entities that cooperate 
in order to exhibit a desired behavior. 
Inspiration for the design is taken from 
the collective behavior of social insects 
such as ants, termites, bees and wasps, 
as well as from the behavior of other 
animal societies such as flocks of birds 
or schools of fish. Even though the 
single members of these societies are 
unsophisticated individuals, they are 
able to achieve complex task in 
cooperation [1]. 
Particle Swarm Optimization  

 PSO is an emerging population based 
optimization method, a parallel 
evolutionary computation technique 
originally designed by Kennedy and 
Eberhart in 1995 [2]. The basic concept 
of PSO basically comes from a large 
number of birds flying randomly and 
looking for food together. Each bird is 
an individual called a particle. As the 
bird looking for food, the particles fly in 
a multidimensional search space 
looking for the optimal solution. All the 
particles are composed of family rather 
than the isolated individual for each 
other. They can remember their own 
flying experience. According to the 
cognitive memory, all the particles can 
adjust their position moving toward.  

Their global best position or their 
neighbor’s local best position. PSO has 
a few parameters to adjust, so that its 
convenient to make the parameters 
reach to the optimum values, a large 
amount of calculation work and much 
time can be saved, on the other hand, 
PSO can find the optimum solutions or 
near the optimal solutions with a fast 
convergent speed, because it has only 
two computation formulas for iteration 
[3].  

The most popular formulation of 
how particle adjusts its velocity and 
position are shown in equations (1) and 
(2). 
VI  (t+1)(d) = Wvit(d) 
             +C1r1 (Pbi(d)-xit(d))  
             +C2r2 (Gbi(d)-xit(d))         … (1) 
Xi  (t+1) (d) = xit(d)+vi(t+1)(d)            … (2) 
Where, d is the index of dimension in 
the search space, W represents the 
inertia weight, C1 and C2 are regarded as 
cognitive and social parameters for 
algorithm respectively, r1 and r2 are two 
random numbers. Pbi is the personal 
best position recorded by particle i, 
while Gbi is the global best position 
obtained by any particle in the 
population [4]. 
Artificial Neural Network  

The discipline of NNs originates 
from the understanding of the human 
brain. The average human brain consists 
of 3*1010 neurons of various types, with 
each neuron connecting to up to 104 
synapses processing information 
separately and simultaneously [5]. 
ANN consists of a number of very 
simple and highly interconnected 
processors, which are analogous to the 
biological neuron. Each neuron receives 
a number of input signals through its 
connections, producing a single output 

S
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signal. The output signal is transmitted 
through the neuron outgoing 
connection. Neurons are connected by 
links; each link has a numerical weight 
associated with it. Weights are the basic 
means of long term memory in ANNs. 
ANN learns through repeated 
adjustments of these weights [6]. 

Each neuron computes the 
weighted sum of the input signal 
applied some activation function to the 
net sum then firing an output according 
to the used activation function, thus the 
output of the neuron could be depicted 
as in equation (3). 
Y i=fi(∑ wij ∗ xj − θi	


�� )                 ...(3) 
Where, Yi is the output of neuron i, xj is 
the jth input to the neuron, wij is the 
connection weight between neuron i and 
j input, θi neuron i bias and fi is the 
activation function corresponding to 
neuron i [7]. 
Field Programmable Gate Array 
  FPGA is a prefabricated silicon 
device that can be electrically 
programmed to become almost any kind 
of digital circuit or system [8]. FPGA 
architecture is dominated by its 
programmable interconnects, and 
configurable logic blocks which are 
relatively simple. However, these 
devices are more flexible than other 
devices like Complex Programmable 
Logic Device (CPLD) especially in 
terms of the range of designs [9]. 

   FPGA based reconfigurable 
computing architecture are well suited 
to implement ANNs as one can develop 
concurrency and rapidly reconfigure to 
adapt the weights and topologies of an 
ANN [10]. FPGA realization of ANN 
with large number of neurons is still a 
not easy task because ANN algorithm is 
wealthy with multiplication process and 

it’s relatively expensive to realize. 
Various works reported in this area 
includes new multiplication algorithm 
for ANN, NNs with some constraints to 
achieve higher speed of process at 
lower price and multichip realization 
[11- 13].     
Theory Description 

ANNs have been successfully used 
in a wide range of scientific and 
engineering applications. ANN is 
capable of exhibiting intelligent 
behavior and modeling complex non 
linear functions which makes it proper 
to variable conditions. Training is the 
process of gradually adjusting the 
weight of connections. BP algorithm is 
mainly used to train ANNs for many 
applications. Since this algorithm is 
based on gradient descent which 
demands derivatives, it’s complex and 
prone to get trapped in local optima. It 
also has a slow convergence rate and a 
high resources requirement on 
hardware. PSO is one of the 
evolutionary computation techniques 
based on SI; PSO algorithm has been 
employed for training feed forward 
NNs. 

In NN training, the main goal is to 
obtain a set of weights that minimizes 
error. In order to address the problem of 
NN training to PSO; we represent each 
set of weights and biases of a network 
by a single particle. Thus, each particle 
is a string of continuous valued 
numbers encoding a candidate solution 
for weights and biases of all neurons in 
the network the length of the particle 
depends on the network intended to 
train. A pool of particles is considered 
as a swarm (population) for PSO. By 
repetitively updating particles of the 
swarm, the most suited network weights 
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are gradually determined. Different 
stopping criteria are used. One criterion 
is to update the particles until the error 
between actual and target output is 
lower than a given threshold. Stopping 
the training processes after a given 
period without any improvement in 
training is the next criterion. Another 
criterion is training the network for a 
given iteration [14]. 

 PSO has its own advantages and 
drawbacks over other computational 
algorithms, advantages like its 
probabilistic mechanism and multi 
starting points, hence PSO can avoid 
getting into the local optimal solution 
[15], but the most utilized PSO property 
is its free derivative activation function, 
which means that we will train feed 
forward NNs using PSO as the learning 
algorithm with only hard limit 
activation function for all network 
layers. According to the hard limit 
activation function properties the output 
will be either one or zero, this property 
will be very helpful simplifying the 
network multiplication process.                              

For the purpose of NN 
implementation of digital logic circuits 
we have modified the MATLAB PSO 
toolbox to be more suitable with our 
application. The modification is in the 
search space environment, instead of 
searching all real search space values 
the searching will be restricted to the 
integer search space only which means 
more save in term of time and efforts.  
PSO tools will give us the exactly 
weights needed for the network 
training, these weights will be only 
integers numbers. These integers will be 
helpful in execution the multiplication 
process using only AND gates. The goal 
of training ANN using modified 

MATLAB toolbox is to get zero error 
value as depicted in equation (4). 

E= 
∑ ∑ (��

��
���

�
���  � ��

�)^�  

��
                   ... (4) 

Where, ti
k and yi

k represent the actual 
and the predicted function values 
respectively, m is the number of 
training samples, and n is the number of 
output nodes. 
The Proposed Design of PSO Neuron 

Hardware realization of ANN 
depends on the efficient execution of 
single neuron; one of the major 
constraints on hardware 
implementations of NNs is the amount 
of circuitry required to perform the 
multiplication of each input by its 
corresponding weight and their 
subsequent addition. This problem is 
especially acute in digital designs, 
where parallel multipliers and adders 
are extremely expensive in terms of 
circuitry.  

FPGAs provide different design 
choices to be evaluated in a short time 
and keep system cost at a minimum. For 
the proposed design, training of ANN 
using modified PSO toolbox will be 
done off chip, and a fully trained 
configuration is downloaded into 
hardware. In this way less hardware is 
required. As training occurs only once 
in the lifetime of an application training 
off line method does not reduce the 
network’s functionality. 

Constructing digital circuits using 
ANNs means that the input will be 
restricted between two values one and 
zero, when the NN is trained with only 
integer weights values, the 
multiplication process will not need 
more than AND gates. Suppose a 
neuron with a single input and weights 
are blocked in the integer range of [-3, 
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3], two bits will represent the weight 
and a single bit represents the weight’s 
sign. Therefore three AND gates are 
sufficient to represent the multiplication 
process with sign, where 0 stands for 
the positive sign and 1 stands for the 
negative sign. Figure (1) shows single 
input two bit weight multiplication 
process. This structure will be repeated 
for each input. Product produced by the 
multiplication process will be added or 
subtracted according to the weights 
signs using special designed 
Adder/Subtracter with sign digital 
circuit. Figure (2) shows a two bit 
Adder/Subtracter with sign logic circuit. 
Adder/Subtracter with sign digital 
circuit will consist of: maximum 
numbers block, magnitude comparator, 
full adders, 4*1 multiplexer, AND gates 
and XOR gates. The function of the 
maximum number block is to put the 
maximum number of two input numbers 
on its X output and the smallest number 
on its Y output. Figure (3) shows two 
bit maximum number block logic 
circuit. Since hard limit activation 
function has been applied for all 
network layers, therefore the output of 
the neurons will be 1 if the net (final 
neuron input weights product 
summation) greater or equal zero, and 0 
if the net is less than zero. Figure (4) 
shows two inputs, two bits weight 
neuron logic circuit. Output of the 
neuron will be the same as the inverted 
sign of the final neuron net. Figure (5) 
shows the inverted neuron output.  
Arithmetic Logic Unit  

ALU performs all the necessary 
arithmetic and logic operations. It 
requires one or two operands upon 
which it operates and produces result. 
It’s basically a multifunction 

combination logic circuit. It provides 
select inputs to select the particular 
operation. The popular ALU IC, 
IC74LS181, is a four bit high speed 
parallel ALU, controlled by the four 
select input (S0- S3) and the Mode 
control (M). It can perform all the 16 
possible logic function operations or 16 
different arithmetic operation on active 
HIGH or active LOW operand. Table 
(1) shows the function table of the ALU 
operations [16]. Figure (6) shows the 
logical diagram of the DM 74LS181 4-
bit ALU.  

Since, we have a large data set 
16,384 due to 14 inputs we will divide 
the network into 6 parts with maximum 
8 inputs to simplify the design. Figures 
(7, 8, 9, 10, 11, 12) show part (1, 2, 3, 4, 
5, 6) ALU logic diagrams respectively, 
figures (13, 14, 15, 16, 17, 18) show 
part (1, 2, 3, 4, 5, 6) error against 
iteration respectively. All parts will be 
designed on Xilinx XC 3000 chip.   
Part One ALU 
 Part 1 will be repeated four times in the 
overall ALU design using only 6 
neurons in the input layer and 2 neurons 
in the output layer. The training 
parameters are given by: W=0.6, C1= 
C2=1.7 these parameters will be 
repeated for all designs. No. of particles 
1000, weights are arranged in the 
integer range between [-7, 7] therefore 4 
bits will be sufficient to represent this 
range, three bits for the weight and a 
single bit for weight’s sign. Weights 
obtained by the PSO modified tools are: 
W{1, 1}=[ -4   -3  0  0  -1  -2; -5  -7  2   
-2  1  0] and B{1}= [7; 5]. Error goal 
reached successfully termination after 
19 iterations. Figure (19), shows the 
hardware design of part 1 ANN based 
on FPGA.  
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Part Two ALU 
Part 2 will be represented by 4 

neurons in the input layer, 3 neurons in 
the hidden layer and single neuron in 
the output layer. Part 2 training 
parameters are: No. of particles 10000, 
minimum range for weights required for 
the network training arranged in the 
integer range of [-3, 3] therefore, three 
bits are sufficient to represent the 
weight and its sign. Error goal reached 
successful termination after 31 
iterations. Weights obtained by 
modified PSO tools are: W{1, 1}=[2   2  
1 -1;2  1  -1  0;-1  1  2  -1], W{2,1}=[2  
-2  -2], B{1}=[-3;-1;-2] and B{2}= 1. 
Figure (20), shows part 2 ALU ANN 
hardware design. 
Part Three ALU 

Part 3 will be represented by 6 
neurons in the input layer, 3 neurons in 
the hidden layer and 1 neuron in the 
output layer. Part 3 training parameters 
are: No. of particles 10000, minimum 
weights range required for the training 
process will be blocked in the integer 
range between [-7, 7]. Error goal 
reached successful termination after 55 
iterations. Weights obtained by PSO 
modified tools are: W{1,1}=[4  0  7 -4  
1 -4; -6  -1  -3  -3   -1  7; 2  1  -5   5  1    
-3], B{1}=[-2;4;-2] , B{2} = 7 and  
W{2, 1}=[-5  -5  -3]. Figure (21) shows 
part 3 ALU hardware ANN design. 
Part Four ALU 

Part 4 will be represented by 8 
neurons in the input layer, 3 neurons in 
the hidden layer and single neuron in 
the output layer. Part 4 ALU training 
parameters are: No. of particles 1000, 
minimum weights range required for the 
training process will be blocked in the 
integer range between [-31, 31]. Error 
goal reached successful termination 

after 124 iterations. Weights obtained 
by the PSO modified tools are: W{1, 
1}=[-2  -1  -5  -3  -8  28  -1  13; -4  -1  -
9  -6  -30  30  -2  15; 2  1  12  3  25  -31  
1  -19], B{1}=[18; 8; 26], W{2, 1}=[-
23  23  14] and B{2}= -9. Figure (22) 
shows part 4 ALU ANN design. 
Part Five ALU 

Part 5 will be implemented using 8 
neurons in the input layer and single 
output neuron. Part 5 training 
parameters are: No. of particles 1000, 
minimum weights required to reach the 
intended error goal are arranged in the 
integer range between [-31, 31]. Error 
goal reached successful termination 
after 27 iterations, weights obtained by 
PSO modified tools are: W{1, 1}=[-2    
-1  -5  -3  -14  -9  -1  26] and B{1}=13. 
Figure (23) shows part 5 ALU hardware 
design. 
Part Six ALU 

Part 6 will be implemented by 3 
neurons in the input layer, three neurons 
in the hidden layer and single output 
neuron. Part 6 training parameters are: 
No. of particles 100, minimum weights 
required to reach the intended error goal 
are arranged in the integer range 
between [-3, 3]. Error goal reached 
successful termination after 62 
iterations, weights obtained by PSO 
modified tools are: W{1, 1}=[- 2   1  -2; 
0   2   1; -2  -2  -2] and B{1}={1; -2; 3}, 
W{2, 1}=[ -1   1   1], B{2}= -1. Figure 
(24) shows part 6 ALU ANN hardware 
design. Figure (25) shows the overall 4 
bit ALU design and figures (26) (a, b, c) 
represent random output readings from 
the overall ALU using Xilinx 
foundation series logic simulator. 

Conclusions 
This paper proposes a hardware 

design of an ANN using FPGA. FPGA 
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is chosen mainly because of the lower 
price as compared to other technologies, 
parallel implementation of ANN using 
software as well as with hardware 
approaches.  
The objective of this paper was to 
reduce the number of neurons needed 
for the training process, as well as 
reducing the single neuron complexity 
by the abstraction of the multiplication 
process needed to multiply each input 
by the corresponding weight. PSO 
optimization algorithm is the most 
suitable training algorithm required to 
our application implementing of digital 
circuits using ANN. NNs are trained by 
minimizing the error function in search 
space based on weights. PSO generates 
possible solutions and measure their 
quality by using a forward propagation 
through the NN to obtain the value of 
error function (minimized error to zero). 
This error value is used as the particle’s 
fitness function to direct it towards 
more promising solution. The global 
best particle corresponded to the desired 
trained after adequate iterations. The 
design of NN on to an FPGA is a 
relatively simple process. Once the 
training is completed and the correct 
network weights are determined, these 
weights will be hard coded on the 
FPGA, and since we have taken these 
weights as integers, these integers will 
be represented as a binary digital bits 
one and zero entered to the designed 
ANN hardware bus as a VCC and 
ground, where the VCC stands for 
binary 1 and the ground stands for 
binary 0. The accuracy in which these 
weights are coded depends upon the 
number of the available bits. The 
MATLAB modified PSO toolbox is 
used in the training of the ANNs 

minimum weights required to get the 
highest accuracy (100%) which was 
calculated using trail and error method.  
Refrences 
[1] C. Blum, D. Merkle, “Swarm 

Intelligence: Introduction and 
Application”, Springer, 2008. 

[2] J. Kennedy and R. Eberhart, “ 
Particle Swarm  Optimization”,  
IEEE Int.   Conf. on Neural 
Networks, Australia, PP. 1942-1948, 
1995. 

[3]  L. Wang, X. Wang, J. Fu and L. 
Zhen, “A Novel Probability Binary  
Partical Swarm Optimization 
Algorithm and its Application”, 
Academy publisher, Journal of 
software, China, Vol. 3, No. 9, 
December, 2008. 

[4] T. Gong and A. L. Tuson, “Particle 
Swarm Optimization for Quadratic 
Assignment Problem A Forma 
Analysis Approach”, International 
Journal of Computational 
Intelligence Research, Vol. 4, No.2, 
PP. 177-185, 2008. 

[5] K. Du and M. Swamy, “Neural 
Network in a Soft Computing 
Framework”, Springer, 2006. 

[6] M. Negnevitsky, “Artificial 
Intelligence: A Guide to Intelligent 
Systems. (2nd edition)”, Addison 
Wesley, 2005. 

[7] X. Yao, “Evolving Artificial Neural 
Network”, IEEE, Vol. 87, No. 9, 
September, 1999. 

[8] I. Kuon, R. Tessier and J. Rose, 
“FPGA Architecture: Survey and 
Challenges”, Now Publisher, 2008. 

[9] A. K. Mani, “Digital Electronics:       
Principles, Devices and   
Applications”, Wiley, 2007. 

[10] A. Muthuramalingam, S. 
Himavathi and E. Srinivasan, 



Eng. & Tech. Journal, Vol. 29, No.7, 2011               Training Artificial Neural Networks by PSO to    
                                                                                         Perform Digital Circuits Using Xilinx FPGA 

 

1336 
 

“Neural Network Implementation 
Using FPGA: Issues and 
Application”, International Journal 
of Information Technology, India, 
Vol. 4, No. 2, PP. 86-92, April, 
2007. 

[11] R. H. Turner, R. F. Woods, 
“Highly Efficient Limited Range  
Multipliers for LUT- Based FPGA 
Architecture”, IEEE transactions on 
vary large scale integration system, 
Vol. 15, No.10, PP. 1113-1117, 
2004.   

[12] M. Marchesi, G. Orlandi, F. piazza 
and A. Uncini, “Fast Neural 
Network without Multipliers”, 
IEEE transactions on NN , Vol.4, 
No.1,1993. [13] B. Noory and V. 
Grozo, “A Reconfigurable 

Approach to Hardware 
Implementation of Neural 
Network”, IEEE Canadian 
conference on Electrical and 
Computer Engineering, PP.1861-
1863, 2003.    

[14] A. Farahani, S. Fakhraie, S. Safari, 
“Scalable Architecture for On-Chip 
Neural Network Training Using 
Swarm Intelligence”, EDAA, 2008. 

[15] R. Mendes, P. Cortez, M. Rocha 
and J. Nevers, “Particle Swarm for  
Feed forward Neural Network 
Training”, IEEE Transactions, PP. 
1895-1899, June, 2002. 

[16]A. P. Godse, D. A. Godse, “Digital 
Electronics”, Technical 
Publications Pune, 2008. 

Table 1 ALU operation 

 



Eng. & Tech. Journal, Vol. 29, No.7, 2011               Training Artificial Neural Networks by PSO to    
                                                                                         Perform Digital Circuits Using Xilinx FPGA 

 

1337 
 

  

Figure.1 Two bits with sign   multiplication digital circuit. 
 

 
Figure.2 Two bits Adder/Subtracter circuit. 

 
Figure.3 Two bits maximum number logic diagram. 
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Figure.4 Two inputs neuron with two bits weight circuit. 

 
Figure.5 Two inputs neuron with two bits weight circuit. 

 
Figure.6 DM 74LS181 4-bit ALU logic diagram. 

 
Figure.7 Part 1 logic diagram.    Fig.8 Part 2 logic diagram.    Fig.9 Part 3 logic 

diagram. 



Eng. & Tech. Journal, Vol. 29, No.7, 2011               Training Artificial Neural Networks by PSO to    
                                                                                         Perform Digital Circuits Using Xilinx FPGA 

 

1339 
 

         
Figure.10 Part 4 logic diagram.  Fig.11 Part 5 logic diagrams.   Fig.12 Part 6 logic 

diagrams. 
 
 

 
Figure.13 Error against iteration part 1 ALU.   Figure.14 Error against iteration part 2 
ALU. 

  
Figure.15  Error against iteration part 3 ALU.     Figure16 Error against iteration part 4 
ALU. 
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Figure.17 Error against iteration part 5 ALU.      Figure.18 Error against iteration part 6                   
ALU. 
 

Figure.19 Part1ANNimplementation.           
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Figure.20 Part2 ANN implementation. 

Figure.21 Part3 ANN implementation. 
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Figure.22 Part4 ANN implementation. 

Figure.23 Part5 ANN implementation. 
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Figure.24 Part6 ANN implementation. 

 
Figure.25 Overall 4-bit ALU block diagram. 
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(a) 
 

 
(b) 
 

 
(c) 

Figure. (26) 4bit ALU random simulation reading. 
 


