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Abstr act

The flow field between two blades was analyzed numerically by solving the
steady, two dimensional and incompressible (time-mass averaged Navier- Stokes
equations). The (k-¢) turbulent modd was used to simulate the condition of the
momentum equation and to obtain the eddy viscosity. The SIMPLE algorithm is
used to satisfy velocity-pressure coupling method and to satisfy the conservation
of mass. A computer code was constructed in this work using FORTRAN 90
language to simulate the flow. The numerical results were compared with
experimental results of other researcher for flow through the cascade of axial
compressor, and were found to be in a good agreement. Three different airfoils
common, used for axial flow compressors blades, were investigated in the present
study. The study shows that stall happens. At incidence angles (-8° to 7°) for
NACA 65(12)10 and (-9° to 3°) for NACA 65(18)10 and (-7° to 9% for NACA
65(8)10. The result also show that stall happens when the total pressure loss is
greater than 0.06 for NACA 65(8)10 when stagger angle is greater than 45° stall
happens for total pressure loss less 0.06 as the outlet flow angle decreases.
However, the quasi-three dimensional, steady, incompressible, turbulent, adiabatic
and single-phase fluid flow inside the blade-to-blade passage of an axial flow
compressor stator was also studied and the study shows that Stall was seen to take
place at blade tips during starting.
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Nomenclatures:-

English Symbols

a, & by Coordinate
transformation
coefficient

Ap Pressure-correction
discretization coefficient

CuC Term appeared in
correction eguations

CnCa, Constants in the k-e

Cez modd

E Constant used in the law
of the wall

Gk Production term  of
kinetic energy

U Contravariant ~ veocity
components in X-
direction(nm/s)

\% Contravariant ~ veocity
components in h-
direction(nm/s)

J Jacobian transformation

K Turbulent kinetic
energy(kJkg)

kvon  v/on karmen constant

P Pressure(Pascal)

PC Peclet number

S Sourceterm of f

Sh Source term due to
nonorthogonality(kg/s”

S Residual mass
source(kg/(m.s))

Stord Total source terms(kg/s?)
u Velocity component in x
direction(nm/s)

v Veocity component in y
direction(nm/s)

X Axial coordinate in the
physical domain
Y Pitch-wise coordinate in

the physical domain

Yo Dimensionless  distance
from solid walls to the
first node

Y, Normal distance from

solid walls to the first
node(m)

737

Greek Symbols

a, Inlet flow angle(deg)

a, outlet flow angle(deg)

Y Stagger angle(deg)

Dx,Dh Distance between control
volume faces(m)

D' Elementary area of control
volume(n)

G Diffusion coefficient

m Laminar
viscosity(kg/(m.s))

m Effective total
viscosity(kg/(m.s))
Turbulent eddy
viscosity(kg/(m.s))

x,h Curvilinear coordinates

r Density(kg/n’)

I ntroduction

Stability in a compressor is the
ability of a compressor to recover from
disturbances that alter the compressor
operation  about an  operationa
equilibrium point. Disturbances may be
considered as transient or ddiberate
changes to the operating point. A rapid
increase in pressure across the blade
causes a marked thickening of the
boundary layers and produces an
effective contraction in the flow, thus a
contraction coefficient is introduced in
the modd line. In the case of transient
disturbances, the system is stable if it
returns to its original operating point. If
the disturbances drive the compressor
away from the original point, the system
will be unstable. The steady state match
between a compressor and its drive
turbine or jet nozzle, which is perturbed
by a transient change of mass-flow, is a
good example of this case. When there
are deliberate changes to the operating
point, the performance is considered
stable if a new operational equilibrium
point can be achieved, eg., shifting the
operating point by changing the
compressor shaft speed. If steady state
operation at a new operating point is not
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possible, the system is unstable
Stability in compressors may be studied
from two different perspectives. The
first is called operational stability, which
deals with the matching of compressor
performance with a downstream flow
device such as a turbine or throttle. The
second is aerodynamic stability, which
deals with deteriorations in the
operation due to flow separation, stall or
surge[1].
Stall

During the normal operation of a
compressor, the airflow through the
compressor is essentialy steady and
axisymmetric in a rotating coordinate
system. If a flow, instability is somehow
introduced into the system (say, dueto a
change in the rotor speed, flow
separation at the inlet, or other type of
flow distortion), instabilities may
develop and the Compressor
performance may deteriorate. The
instability manifests itsdf as ether a
rotating stall or surge. It often takes only
a few seconds for rotating stall to build
up and the compressor can operate
under rotating stall for several minutes
before damage develops. Rotating stall
can occur in both compressible and
incompressible flow. In a coordinate
system attached to the blades, rotating
stall moves in a direction opposite to the
blade motion at a fraction of the rotor
Speed. However, in the inertial
coordinate system, the stall region
propagates in the same direction as the
whed motion. The number of stall cdls
depends on the compressor at hand; one
to nine stalled cells has been reported.
Two types of stall associated with the
number of stalled cells exist, progressive
and abrupt. In progressive sall, a
phenomenon involving multiple stalled
cdls, the pressure ratio after stal
reduces gradually. Abrupt stall resultsin
a sudden drop in total-to-total pressure
rise, and appears to always involve a
single staled cdl. One of the
characteristics of pure rotating stall is
that the average flow is steady with

respect to time, but the flow has a
circumferentially  non-uniform  mass
deficit. During rotating stall, the cyclical
variation of the pressures on the blades
can cause them to fatigue and eventually
break. Several types of rotating stall
exist [2]:
- Part-Span: A restricted region of the
blade passage, usually the tip is stalled.
Stall near the root has aso been
reported.
- Full-Span: The entire height of the
annulusis stalled.
- Small/Large scale: In this case, a
small/large part of annular flow path is
blocked.
M athematical for mulation:-
Governing equations

The two-dimensional instantaneous
governing equations of mass momentum
for steady, turbulent, incompressible
flow in a coordinates system can be
written in tensor conservation form
expressed in Cartesian coordinates as
follows[3].

ﬂ = \l) = = o & a a =

ﬂ—xj(ruj)_o (1)

1 1

TP ro

(Tt, + 1t )

et )
i (2)

Where, t; is the viscous shear
stress tensor that is expressed as [4]:
€equ. 0
" T
t, = mg x; x5
62 V.«
3 fix, '
The Reynolds stress tensor tj; can be

determined according to the boussineq
assumption as.

- -(3)

[« oY ey ey en Y eny en?

— éeqy u u. . u
t,J—mlég‘eﬂu' 1 J:-gﬂu"dijﬂ
geTx;  fIxp 5 3 1x, A
2 —
-3 dj----- (4)
Where:
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m: is the turbulence eddy viscosity and
estimated by the k- e two equation
turbulence mode! :

C.rk2
m :T """"""" 5
The differential form of the

turbulence kinetic energy (k) and
dissipation rate of turbulence kinetic

energy (e) have given as
[5]:
) Z .. u
Truk) _ 9 &8 m otk §
‘ﬂxj ‘ﬂxj A S é,ﬂxjg
+G -re---------- (6)
rue) . e. . 7% mofel
— 1 =Cua— +— A&m+ —
T, Ol ‘ﬂxjg Seéfﬂxja
e2
-Cr— - - - - - - -
al ™
Where Gk ='[ij(M is the
1%

turbulence production term. The last
coefficients appearing in equation (7)
are as those adopted in ref. [4] in the
standard k-e two-equation turbulence
model. These coefficients are:

Cm =0.09, 5,=1.0, s. =1.3, Cy =1.44,
Cez=1.92

Boundary conditions

At inlg, Cartesian veocity
component (u, V) is prescribed with inlet
flow angle. For turbulence quantities,
such as (K) and (e) are normally not
known, but they must be estimated.
Usually[6]

At exit, the velocity distribution is
decided by what is happing within the
domain [7]. The gradients normal to the

outlet surface of al quantities is
assumed zero.
The wall is the most common

boundary encountered in confined fluid
flow problems. In this section, a solid
wall paralld to the x-direction is
considered. The impermeable no-dlip
condition (v=u=0) is the appropriate
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condition for the velocity components at
solid walls. The turbulence scalar

transport equations for (k and e ) are
only valid for fully turbulent regions.
An additional model must be introduced
to treat the laminar sublayer region. The
(Wall Function Method) [4] is used in
the present study to eiminate the large
number of grid points needed to resolve
the laminar sub-layer at near-wall
regions. The following function are used
to bridge the near —wall region:

u, ny.k
WEE - (®)

Y, In(Ey;)

Where y; =1 (k,Cn?)"?y /'m

e, = (Chk,)"? Iky, - - - - (9)

In(Ey’

Q" edy = (C#’ka)s’zw- - (10)
dk
— =0-------- 11
dy. 1D
Here, y is the conventional

coordinate normal to the wall and t is

the wall shear stress. The subscript p
refers to the grid node next to the wall; k
and E are the constants from the law of
the wall, with values of 0.4 and 8.8,
respectively[4].

Transformation of
equations

The governing eguations can be
expressed in the general form [7]

the governing

ﬂ(ruf)+ﬂ(rvf):lapeﬂg
fix Ty xe TXg
+1&G£9+ ------ 12
& s S 42
Where:
(f) is the general dependent
variable.

(C) is the generalized diffusion
coefficient.
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(S ) isthesourceterm.

Eg. (12) changes according to
general transformation E=&(xy),
n=n(xy). partia derivative of any
function f are transformed according to

_(Yh fx - yx fh)

f - - - (134
" 3 (13a)
(% fo +x )
f, = 3 - - - (13p)
Where J is the jacobain of the

transformation given by
I=X Y =% Yy ----(14)

Since the strong conservative form
of the equation is desirable for
numerical computations, the integral
form of the conservational equations

over a finite volume element is
preferable. Upon introducing
U=uy, - Wil
A AT
V= -y,
a, =% + Yy a
T R S (16)

b, = X %, + yxyhi:-)

The following integral conservative
relation is obtained from eg. (12) for an
arbitrary scalar dependent variable @:

(ruf), +(rvf), =(Coaf, ), +

(G]azf h )h + Stota,f
Where:

Sota,f = Snx +Sf
Sx,h = (GJblf h )x + (GJblf X )h

Numerical formulation:-
Discretization of the
equations

The general form of the governing
equation (17) is integrated over each
discrete CV in the computational plane
(&, m). Let a new working variable be

governing

740

(1e)’ such that superscript j can be any of
the computational directions (j=& or 7).
This is called the total flux in the "
direction. It is expressed mathematically
asfollows:

(f ) =ruf - Gf, §

(1f ) =rvf - sz)t/) -------- ae)

Where G, = Ja,G, G, =Ja,G
Substituting (18) in (17) gives:-
X ﬂ h

—(If If )’ = --(19

T+ 20 ) =S --09)

1h
By integrating equation (19) over the
typical CV around node P.

6 )% - 1F)° wian +
£ )7 - )7 s oz =

Stotal f | p AcAn

l

For convenience, the above
notation can further be simplified to:-
| -IW+In-IS:SOIEl|,fD"--(21)

e

Where, D' = DxDh

The requirement now isto express
the (I ’s) at node (P) in equation (21) in
terms of the properties of the considered
(P) node and its neighbor nodes (E, W,
N, and S).

As atypical analysis, the I, can be
considered as follows: -

1= (rUF),0h - (Gf. ), on -~ (22)

Assume (Fe) is the mass convective
flux at face (€), which can be defined as
follows:

Expanding the second term in
equation (22) (by expressing the partial
derivative w.rt. & using central
differencing scheme) and substituting
for I3 utilizing its definition given by
therelation in equation (18) gives: -
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(Gf,).Dh = gaamo _-f,)-

At this point, it would be useful to
define a quantity De; it is the diffusion
term coefficient at face (€). Hence, this
coefficient can be expressed as: -

(24)

D, =N ... (29
DX &
Substituting equation (25) in

equation (24) and the result in equation

(22) gives: -
D,(f ¢ - f,)--(26)

I e = Fef e -

Equation (26) contains the
quantity e., which needs to be specified
in terms of neighbor nodal values. This
is usually achieved by using an
appropriate interpolation scheme. In the
present work hybrid scheme is used. for
simplifying the analysis discussed the
upwind scheme and after some
arrangement is converted to hybrid
scheme based on Peclet number. The
upwind scheme is carried out as follows:

Ff o =te[[F.0fl- fe [[- F..0l
Hence, substituting this in (26)
gives.-

o =fo[[F.0- f[- F.0f]+

D. (f P f E) """"""" (27)
But:-
[F. ol =[- ..ol +F.
Hence, substituting this in

equation (27) and rearranging, gives:
Ie - Fef P (De + [[_ Fe’o]])

(f P~ f E)
At this stage, a quantity Aeg can be
defined; this is the discretizing
coefficient that carries the effect of
neighbor E on P in the discretized
general transport equation of a property

(f).
A = (D +[[- F..0f)
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substituting (29) in (28) results
into:

Ie_ FefP :AE(fP - fE) ___(30)

Similar  expressions can be
obtained at other CV faces (w, n, and s).
Hence: -

Ie_FefP:AE(fP_fE) u
Iw_waP:AN(fW_fP) :
In' anP:AN(fP'fN) y-"(31)

Is_stP:AS(fS_fP) b
The next step is that, the continuity
equation is integrated over the same CV.

(F.- F)+(F, - F;)=0---(32)

Now equation (32) is multiplied
by ep to get:
Ff.-Ff.+Ff, -Ff,=0-(33)
Then, equation (33) is subtracted from
equation (21) to give:
(Ie FefP)_(Iw_waP)+(|n_anP)

- (I s st P) :Sotal,f D' --- (34)

Hence, substituting the result of
(31) into (34) and rearranging gives.

[o]

ADf P :a Awa nb +Sotal,f D
Where the Discretizing coefficient of
node P can be define as follows:
A=A A A A (36)
Since equation (36) is a genera
discretized form of the conservative
general transport equation and can be
applied for both a staggered and non-
staggered CV by setting the appropriate
boundary at the interfaces. The
argument of o can hold for any
dependent variables.

Grid arrangement for the dependent
variables

The use of staggered grid in the
body fitted coordinate system flows,
requires the solution of momentum
equations for  covariant  velocity
components on the faces of the control
volume. Calculating of coefficients and
geometrical factors (ay, by, @) must be
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performed for many sets of grid, hence
programming becomes very difficult
and more effort is required to calculate
the coefficients and geometrical factors.
These problems can be avoided through
the solution of the momentum equations
by using Cartesian velocity components
on a non-staggered (collocated) grid
where all variables are stored in the
center of the control volume asin [8].
Pressure correction equation (P. C. E.):

After solving the momentum
equation, the veocity fieddd obtained
does not guarantee the conservation of
mass unless the pressure field is
corrected. Therefore, the velocity
components (u,v) ,(U)V) and the
pressure must be corrected according to
the continuity equation as follows:-

u=u +u¢ i

v=Vv +ve :::
U=U*+UG-------- (37)
Vv =v*+v¢:::
p=p*+pti,

Where superscript (* ) refers to the last
iteration values and the superscript ()
refers to the corrected variables. the
continuity equation is rewritten after
introducing  the  correction  of
contravariant velocity components (U,
and V in equation (37)) to get:-

[ +uglon, - |r 0" +ud,on,

+r b +vdloe, - [ +vd,

DX, =0------ (8)

This equation lead to

sPg- PO P¢- P u
§E¢_P(C1a1)e +%(C1bl)e8_
éP¢- Pg P¢ - P$ u
SPT(Clal)W +T(C1b1)w8+
6PC - P P$- P¢ u
S%(Czbl)” *—on : (Czaz)ng_
8 Dx (Czbl)s + PDh S (Czaz)su
=S, e (39)
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S 2lruron), - [ruton.)s
[rvon). - (v on),J--- (a0)

ep" ou
C, = rJZDhéDA i
>

Oy - (at)
, . @&Dp" 0f
C,=r1 DV%—:T
Ap ﬂb

Equation (39) represents the discretized
continuity equation called full pressure-
correction eguation.

The cross-derivatives of pressure
correction in equation (39), such as

(P, PSP, PS) are equal to zero
for orthogonal grid. for non-orthogonal
gird, if the cross-derivatives of the
pressure correction are retained, the
derived pressure correction equation
will be a nine-diagonal matrix for two-
dimensional flows. Solving this matrix
is complex and expensive, therefore the
cross-derivatives terms are usualy
omitted for simplicity. This is called
simplified pressure correction equation
[9] and [10].

in the present work the cross-
derivativeis calculated as[3]

P& - PSP - P
Dh 2Dh

Calculation of the M ass Sour ce (S, of
P.C.E.

The mass source (S,) in equation
(39) is calculated from the eguation
(40). Contravariant velocities at the
control volume faces

(L) U™ ) V7)o V7)) appeared

in this equation can be calculated from
Cartesian faces velocities as following.

U, = J(uexX +VeXy).l.J

U; = 3uix, +vix,

\Y/ :J(u;hX +v;hy)%:/

*

V. = J(u;JwX +v;hy)t)

*
e
*
w
*
n

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol.27, No.4, 2009

Prediction of Stall Phenomenon in Blade-to-
Blade Passage of Axial Flow Compr essor

The u-Cartesian velocity at east
face is usually obtained by liner
interpolation, i.e.

In a collocated grid arrangement this
may lead to pressure oscillations. To
avoid this, the face velocities are
obtained from (Rhie and Chow
inter polation) [11] by subtracting and
adding the pressure gradient to equation
(43) asfollows:

u——(uE u;) - @é {P )

1

" Q u
R - - -
A g ¢
The pressure gradient terms in
equation (44) are calculated in different
ways. The first one is calculated as the
mean value of the pressure gradient in P
and E nodes, i.e. the second one is

calculated on the face, i.e. this yield to
the-

+

[qorN) ('P) D~

4DX§cB

[P - 3R +3P - R ]- - - (45)

Equation (45) used to calculate the u-
velocity at east face of control volume.
The first teem is calculated as a
weighted average. The second term is
represents a fourth-order derivative term
to dampen oscillations. The v Cartesian
velocity components at face (e) are
simply averaged weighted linear
interpolation without the need to any
further treatment. This is because the
pressure gradient across face (€) does
not affect these components, hence:-

* 1 * * é
U == (Ug +Up) + x <
2 &

In the same way can obtain the
Cartesian velocity component for the
control volume faces (w, n, s)
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Pr essur e-velocity coupling method

In the present work, the (SIMPLE)
algorithm  (semi-implicit method for
pressure-linked equations) is used to
couple the pressure and velocity as in
[12]. This method is done by solving the
momentum equations using the guessed
pressure fidd to obtain the veocity
fidd. The wvdocity filed obtained
satisfies the momentum equations. Then
the velocity and pressure are corrected
because the veacity fidd violates the
conservation of mass.

Convergencecriteria

At the end of each solver iteration,
the residual sum for each of the
conserved variables is computed and
stored, thus recording the convergence
history. The residuals decay to some
small value and then stop changing. In
this work an iteratively converged
solution is assumed to be reached when
the largest residual of all variables is
less than 10, where residual can be
define as follow:

Res=q A +S - Af - -(49)
nb
Grid generation

The simplest grid generation
technique is the algebraic method. The
derivatives of the boundary in the
physical plane provide even more
flexibility in the mapping. For instance,
orthogonally at the boundary can be
forced in the physical plane. The interior
grid points of the algebraic gird in the
physical domain can be calculated by
using the following algebraic equations:

><| +lJ)——+><( H) r
y--- (49
wwn OO0 YD), 6 iy
(-9

Where (x (i, j), y (i, j)) are any
interior points in the physical domain, m

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol.27, No.4, 2009

Prediction of Stall Phenomenon in Blade-to-
Blade Passage of Axial Flow Compr essor

and n are the node numbers in the x and
y directions respectively, and | is the
axial length of the physical domain. The
grid that generated algebraicaly by
using equations (47) for the NACA
65(12)10 linear cascade is shown in Fig.

@D.

Quasi-three dimensional flow:-

The through-flow field will be
applied by using quasi-three
dimensional flow. The mathematical
approach for describing quasi-three
dimensional flow will be discussed
using theradial equilibrium theory.

Radial equilibrium theory

The earliest approaches to radial
flow analysis were based on the radial
equilibrium theory.

The basic assumption of the radial
equilibrium type of design is that the
radial velocity (vr) is zero at entry and
exit from a blade row. The equation of
motion using cylindrical coordinates for
incompressible, inviscid flow is[13]:

2
uﬂ_\N+Wﬂ_\N_ V_:-EE_ - - -(49)

X I r qr
If there is a radia equilibrium,
equation (48) may be written as:

Thetotal pressure P, is given by:
P =P+yru’+v?)- - - (5]

And
1dP _v* du, 6 adv
STt pu—/—+v—
r dr r dr dr
du vd
=u—+——o(rv)- - (52
dr rdr( )--02)

If the total pressure does not vary
with radius then:

744

d ., ,1d, .,
= (U?)+——(rv)2=0- - - (53
L)) 59

Equation (52) will hold for the flow
between blade rows of the compressor,
and may be used to determine the axial
velocity (u) variation once the tangential
velocity (v) distribution is chosen. If (v
= f(r)) then the distribution of (u) with
radius is obtained.

The free vortex design satisfies
the requirement of radial equilibrium
[14], from this case obtains: r. v =
constant and no variation of (u) across
blade height.

Results and discussions

The computational model was
built based on the linear cascade of
NACA 65-(12) 10 compressor blade. In
addition, to study the behavior of the
compressor before and after stall has
happen; two cases were taken. The
treatments of boundary conditions of
these cases were described in article
(2.2) and the input data needed were
recorded in table (1).

Case (1), the veocity vectors and
the contours of velocity and dtatic
pressure at mid-span (at 50% of the
blade’s height) at best incidence angle
are presented in Figures. (2), (3) and (4)
respectively. Velocity vectors show that
the fluid is changing its direction from
inlet to exit following the signature of
blade profile.

From figure (3) due to the shape of
the airfoil, the flow is seen to accelerate
along the suction and pressure sides hear
the leading edge, and the maximum
velocity occurs at a position just off the
suction side at about 21% of blade
chord. These phenomenon prove that the
compressor works as a nozzle-diffuser.

The static pressure contour figure
(4) shows that, on the suction side, the
pressure falls very rapidly from the
stagnation point towards the throat,
reaching a minimum value at 26% of
chord line. After that acce eration occurs
until reaching the trailing edge. On the
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pressure side, the same behavior can be
seen but the position of the minimum is
at 21% of chord line.

For case (2) figures (5), (6)
and (7) represent the velocity vector and
contours of the velocity and static
pressure at mid-span when the stall
happens. From figures (5)and(6) it is
noticed that the direction of the velocity
changes according to the airfoil of
blade, but on the suction side the
velocity is reduced to reach a minimum
value (about 4 m/s) at 37% of chord
line, then the veocity reverses its
direction to form a vortex.

Figure (7) Shows that the pressure
decreases towards the exit direction.
This is on the suction surface. On the
pressure surface the pressure decreases
until reaching minimum value at 42% of
chord line. After that acce eration occurs
until thetrailing edge.

The incidence at which stalling
occurs is difficult to define precisdy,
and the stalling point is usually arbitrary
specified as the incidence at which the
total pressurelossislessthan or equal to
0.06. [14]. The incidence angle is
plotted with total pressure loss as in
figure (8). It is noticed that the total
pressure loss after 0.06 increases rabidly
and the minimum total pressure loss is
at incidenceof -1".

The stall limit of NACA 65(12)10
for multi stagger angle, is illustrated in
Figure (9), it is noticed from this figure
that the range of inlet flow angle
become little if stagger increases, and it
is noticed that the outlet flow angle do
not change at the same stagger angle.
Thisisthe samefor (Carter rule) [14].

Figure (10) shows the relation
between total pressure loss and diffusion
factor. It is noticed that if the diffusion
factor is larger than 0.6 the total
pressure loss increases rapidly. So the
stall limit is at diffusion factor 0.6 or
less. But for larger camber angle NACA
65(18)10 the diffusion may be at over
0.6 and total pressure loss is less than
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0.06 without causing stall to happen as
shown infigure (11).

To explore the effect of the
camber angle on the stall limits, the stall
limit is plotted for NACA 65(18)10 and
NACA 65(8)10 in figures (12) and (13)
respectively. It is noticed that stall limit
acts at different incidence angles.

Long compressor blades are
twisted from hub to tip. There are many
methods to calculate this twist. In the
present work the free vortex theory was
used. Boundary conditions for this
problem are the same as those of case
one. The hub to tip ratio taken is (0.5).
The dimensions of the blade were, the
chord length (15cm) and span length
(30cm).

The inlet and outlet flow angles
were plotted with span from hub to tip
in figure (14). It is noticed that both
inlet and outlet flow angles decrease
from hub to tip but outlet flow angle has
alargesop.

Figure (15) presents the variation
of thetotal pressure loss coefficient with
span from hub to tip. It is noticed that
the maximum total pressure loss act at
the tip of the span. This means that the
stall began at thetip of the blade.

The Comparison between the
experimental and theor etical results:
The theoretical results obtained in
this study by using numerical technique
were compared with the experimental
results of [sabah 2008]. Figure (16)
shows this comparison for the veocity
in the three sections of interest for

stagger angle (0°). The sections taken
were at 0.125, 0.5 and 0.875 of the blade
to blade spacing.

This figure shows that at the
section 0.125 from the space, the present
result lower than that of the reference.
However, the same behavior is noticed.
At the middle of the blade to blade
spacing, the results are vary close
While, at 0.875 from space, the results
are also close.
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This figure shows that the results
are different at the suction surface and
get closer as we approach the pressure
surface. However, the behavior in al
casesis nearly the same.

This comparison agreement is
considered to be good bearing in mind,
the approximation of theoretical results,
as compared with actual practical
results.

Conclusions

The following conclusions of are
drawn
1. The incidence angle when stall
happen is the same for any stagger angle
for any NACA airfail.
2. Stall limit changes if the airfail
of blade is changed and decreases with
the increase of angle of camber.
3. Stall begins when the outlet
flow angle decrease bdow a certain
value.
4, Stall normally starts at the blade
tip.
5. The range of inlet flow angle of
cascade without stall decreases when
stagger angle increase.
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Separation

Table (1) Operating and boundary

Inbat vela ey

A

Figure (1): Grid generation for
cascade of axial compr essor

Conditions
Total Inlet | Outlet No. of N
velocit flow flow Iteration -
Case . Y /
atinlet | angle | angle to /////j/-/’/
(m/s) | (deg) | (deg) | converge ?jizi .
S
1 70 34 | 74 99 Zj;:;
;jfiiii’
2 70 54 -84 179 %/j:j :

Figure (2): Velocity vector for case(1)
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velocity [~
91.6537 [
85.5435
79.4332 B
73.323 B
67.2127 B
61.1025 r
54.9922 r
48.882 ~
427717 H
36.6615 -~
30.5512
24.441
18.3307
12.2205
6.11025
Figure (3): Velocity contour for Figure (5): Velocity vector for case (2)
case (1)
static pressure velocity
103074 87.6945
102802 81.8482
102530 76.0019
102258 70.1556
101986 64.3093
101714 58.463
101442 52.6167
101170 46.7704
100898 40.9241
100626 35.0778
100354 29.2315
100082 23.3852
99809.8 17.5389
99537.8 11.6926
99265.8 5.8463
Figure (4): Static pressure contour for Figure (6): Velocity contour for case

case (1) 2)
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Figure (11): Variation of pressureloss
coefficient with diffusion factor for
NACA 65 (18) 10
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Figure (9): Stall limit for different
stagger angle of NACA 65(12)10
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Figure (13): Stall limit for different Figure (15): Variation of total
stagger angle of NACA 65 (8) 10 pressure loss coefficient with span
from hub to tip
° 50
540 \
E Ed —inlet blade angle 48
3 —— outlet blade angle| 2at0.125S
3 a oref,at0.125'S
=10 —_— = #at05s
E oA ; . . i : %34 eref.at05S
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Figure (14): Varla_tlon of inlet and oL o ovs oo
outlet blade angle with span from hub Chord of blade
totip Figure (16): Comparison between

present work and reference [15]
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