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Abstract 
        The flow field between two blades was analyzed numerically by solving the 
steady, two dimensional and incompressible (time-mass averaged Navier- Stokes 
equations). The (κ-ε) turbulent model was used to simulate the condition of the 
momentum equation and to obtain the eddy viscosity. The SIMPLE algorithm is 
used to satisfy velocity-pressure coupling method and to satisfy the conservation 
of mass. A computer code was constructed in this work using FORTRAN 90 
language to simulate the flow. The numerical results were compared with 
experimental results of other researcher for flow through the cascade of axial 
compressor, and were found to be in a good agreement.  Three different airfoils 
common, used for axial flow compressors blades, were investigated in the present 
study. The study shows that stall happens. At incidence angles (-80 to 70) for 
NACA 65(12)10 and (-90 to 30) for NACA 65(18)10 and (-70 to 90) for NACA 
65(8)10. The result also show that stall happens when the total pressure loss is 
greater than 0.06 for NACA 65(8)10 when stagger angle is greater than 450 stall 
happens for total pressure loss less 0.06 as the outlet flow angle decreases. 
However, the quasi-three dimensional, steady, incompressible, turbulent, adiabatic 
and single-phase fluid flow inside the blade-to-blade passage of an axial flow 
compressor stator was also studied and the study shows that Stall was seen to take 
place at blade tips during starting. 

Key words: axial flow compressor, surge, separation, flow simulation 

   في ضاغطة محورية ذات مرحلة واحدةالانهواءالتنبأ بحدوث ظاهرة 
    الخلاصة 

تم تحليل حقل الجريان عدديا بين ريشتي ضـاغطة محوريـة وذلـك بحـل معـادلات        
. ثنائية الابعاد واللاانـضغاطية للحالـة المـستقرة   ) وكلة و الزمن لنافير ست  تمتوسط الك (الجريان

تم استخدامه لاكمال الحسابات المطلوبة فـي معادلـة الـزخملقد    ) k-ε(نموذج الاضطراب   
  اسـتخدمت لتحقيـق الازدواج(SIMPLE)الخوارزميـة   . وللحصول على اللزوجة الدوامية   

أُنشئ برنامج حاسوبي في هذا. لكتلةالمطلوب بين معادلة السرعة والضغط وكذلك لتحقيق حفظ ا        
النتائج العددية قورنت مـع نتـائج.  لنمذجة الجريان) FORTRAN 90(العمل باستخدام لغة 

عملية لباحث أخر لجريان المائع داخل ممر ريش الضاغطة المحوريـة ووجـد تقـارب جيـد
 المـستخدمة لـريشفي هذه الدراسة تم اختبار ثلاثة انواع من المقـاطع المعروفـة و            .بالنتائج

 التلقائي عند زوايا حـدوثالانهواءالدراسة بينت حدوث ظاهرة  . الضاغطة المحورية 
 NACAلــ  ) 30 الـى  90-(و NACA 65(12)10  لــ  )70 الى80- (خارج المدى 

 الانهـواء وكذلك بينت النتائج ان ظاهرة . NACA 65(8)10لـ ) 90 الى 70-( و 10(18)65
لكـن بالنـسبة لــ).0.06( ثابت خسارة الضغط الكلي اكبر مـن         التلقائي تحدث عندما يكون   

)(NACA 65(8)10و عند زاوية انحناء اكبر من )التلقائي يحدث عنـد ثابـتالانهواء) 450 
تـم. و ذلك عند حدوث نقصان في زاوية خروج الهـواء ) 0.06(خسارة الضغط الكلي اقل من     

  و المـستقر ) قاطع منفـصلة ثنائيـة الأبعـاد      بشكل م (كذلك دراسة جريان المائع ثلاثي الابعاد       
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خالي من الصدمة داخل ممـر ريـش الـضاغطة          ال  و  الادياباتي  و  المضطرب  و اللاانضغاطي
  . التشغيل الريشة في بدايةطرف يحدث عند الانهواءو بينت الدراسة أن . المحورية

 
Nomenclatures:- 
English Symbols 

a1, a2, b1                 Coordinate 
transformation 
coefficient 

Ap Pressure-correction 
discretization coefficient 

C1,C2           Term appeared in 
correction equations 

Cµ,Cε1, 
Cε2      

Constants in the k-ε 
model 

E Constant used in the law 
of the wall 

Gk Production term of 
kinetic energy 

U Contravariant velocity 
components in ξ-
direction(m/s) 

V Contravariant velocity 
components in η-
direction(m/s) 

J Jacobian transformation 
K Turbulent kinetic 

energy(kJ/kg) 
kvon Von karmen constant 
P Pressure(Pascal) 
PC Peclet number 
Sφ Source term of φ 
Sζ,η               Source term due to 

nonorthogonality(kg/s2 
Sm Residual mass 

source(kg/(m.s)) 
Stotal Total source terms(kg/s2) 
u Velocity component in x 

direction(m/s)           
v Velocity component in y 

direction(m/s) 
X Axial coordinate in the 

physical domain 
Y Pitch-wise coordinate in 

the physical domain 
Yp

+               Dimensionless distance 
from solid walls to the 
first node 

Y1   Normal distance from 
solid walls to the first 
node(m) 

Greek Symbols 
α1                      Inlet flow angle (deg)                                           

α2             outlet flow angle(deg) 
γ Stagger angle(deg) 
∆ξ,∆η Distance between control 

volume faces(m) 
∆∀ Elementary area of control 

volume(m2)         
Γ Diffusion coefficient 
µ Laminar 

viscosity(kg/(m.s)) 
µe Effective  total 

viscosity(kg/(m.s)) 
µT             Turbulent eddy 

viscosity(kg/(m.s)) 
ξ,η Curvilinear coordinates 
ρ Density(kg/m3) 

 
Introduction 
        Stability in a compressor is the 
ability of a compressor to recover from 
disturbances that alter the compressor 
operation about an operational 
equilibrium point. Disturbances may be 
considered as transient or deliberate 
changes to the operating point. A rapid 
increase in pressure across the blade 
causes a marked thickening of the 
boundary layers and produces an 
effective contraction in the flow, thus a 
contraction coefficient is introduced in 
the model line. In the case of transient 
disturbances, the system is stable if it 
returns to its original operating point. If 
the disturbances drive the compressor 
away from the original point, the system 
will be unstable. The steady state match 
between a compressor and its drive 
turbine or jet nozzle, which is perturbed 
by a transient change of mass-flow, is a 
good example of this case. When there 
are deliberate changes to the operating 
point, the performance is considered 
stable if a new operational equilibrium 
point can be achieved, e.g., shifting the 
operating point by changing the 
compressor shaft speed. If steady state 
operation at a new operating point is not 
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possible, the system is unstable. 
Stability in compressors may be studied 
from two different perspectives. The 
first is called operational stability, which 
deals with the matching of compressor 
performance with a downstream flow 
device such as a turbine or throttle. The 
second is aerodynamic stability, which 
deals with deteriorations in the 
operation due to flow separation, stall or 
surge[1].  
Stall 
        During the normal operation of a 
compressor, the airflow through the 
compressor is essentially steady and 
axisymmetric in a rotating coordinate 
system. If a flow, instability is somehow 
introduced into the system (say, due to a 
change in the rotor speed, flow 
separation at the inlet, or other type of 
flow distortion), instabilities may 
develop and the compressor 
performance may deteriorate. The 
instability manifests itself as either a 
rotating stall or surge. It often takes only 
a few seconds for rotating stall to build 
up and the compressor can operate 
under rotating stall for several minutes 
before damage develops. Rotating stall 
can occur in both compressible and 
incompressible flow. In a coordinate 
system attached to the blades, rotating 
stall moves in a direction opposite to the 
blade motion at a fraction of the rotor 
speed. However, in the inertial 
coordinate system, the stall region 
propagates in the same direction as the 
wheel motion. The number of stall cells 
depends on the compressor at hand; one 
to nine stalled cells has been reported. 
Two types of stall associated with the 
number of stalled cells exist, progressive 
and abrupt. In progressive stall, a 
phenomenon involving multiple stalled 
cells, the pressure ratio after stall 
reduces gradually. Abrupt stall results in 
a sudden drop in total-to-total pressure 
rise, and appears to always involve a 
single stalled cell. One of the 
characteristics of pure rotating stall is 
that the average flow is steady with 

respect to time, but the flow has a 
circumferentially non-uniform mass 
deficit. During rotating stall, the cyclical 
variation of the pressures on the blades 
can cause them to fatigue and eventually 
break. Several types of rotating stall 
exist [2]: 
• Part-Span: A restricted region of the 
blade passage, usually the tip is stalled. 
Stall near the root has also been 
reported. 
• Full-Span: The entire height of the 
annulus is stalled.  
• Small/Large scale: In this case, a 
small/large part of annular flow path is 
blocked. 
Mathematical formulation:- 
Governing equations 
    The two-dimensional instantaneous 
governing equations of mass momentum 
for steady, turbulent, incompressible 
flow in a coordinates system can be 
written in tensor conservation form 
expressed in Cartesian coordinates as 
follows[3]. 
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         Where, tij is the viscous shear 
stress tensor that is expressed as [4]: 
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The Reynolds stress tensor τij can be 
determined according to the boussineq 
assumption as: 
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Where :  
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µt : is the turbulence eddy viscosity and 
estimated by the ε−k  two equation 
turbulence model : 

)5(
2

−−−−−−−−−−−−−=
ε

ρ
µ µ kC

t

        The differential form of the 
turbulence kinetic energy ( k ) and 
dissipation rate of turbulence kinetic 
energy (ε ) have given as 
[5]:
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        Where )(
j

i
ijK

x
uG

∂
∂

= τ  is the 

turbulence production term. The last 
coefficients appearing in equation (7) 
are as those adopted in ref. [4] in the 
standard k-ε two-equation turbulence 
model. These coefficients are: 
cµ =0.09, σk=1.0, σε =1.3, Cε1 =1.44, 
Cε2 =1.92 
 
Boundary conditions 
        At inlet, Cartesian velocity 
component (u, v) is prescribed with inlet 
flow angle. For turbulence quantities, 
such as (k) and (ε) are normally not 
known, but they must be estimated. 
Usually[6]  
        At exit, the velocity distribution is 
decided by what is happing within the 
domain [7]. The gradients normal to the 
outlet surface of all quantities is 
assumed zero. 
        The wall is the most common 
boundary encountered in confined fluid 
flow problems. In this section, a solid 
wall parallel to the ξ-direction is 
considered. The impermeable no-slip 
condition (v=u=0) is the appropriate 

condition for the velocity components at 
solid walls. The turbulence scalar 
transport equations for ( εandk ) are 
only valid for fully turbulent regions. 
An additional model must be introduced 
to treat the laminar sublayer region. The 
(Wall Function Method) [4] is used in 
the present study to eliminate the large 
number of grid points needed to resolve 
the laminar sub-layer at near-wall 
regions. The following function are used 
to bridge the near –wall region: 
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        Here, y is the conventional 
coordinate normal to the wall and wτ is 
the wall shear stress. The subscript p 
refers to the grid node next to the wall; k 
and E are the constants from the law of 
the wall, with values of 0.4 and 8.8, 
respectively[4]. 
 
Transformation of the governing 
equations  
        The governing equations can be 
expressed in the general form [7] 
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Where: 
(φ ) is the general dependent 

variable. 
( Γ ) is the generalized diffusion 

coefficient.  
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( φS ) is the source term. 
Eq. (12) changes according to 

general transformation ξ=ξ(x,y), 
η=η(x,y). partial derivative of any 
function f are transformed according to  

)13(
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fyfy
fx −−−

−
=

ηξξη
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Where J is the jacobain of the 
transformation given by  

)14(−−−−−= ξηηξ yxyxJ  

        Since the strong conservative form 
of the equation is desirable for 
numerical computations, the integral 
form of the conservational equations 
over a finite volume element is 
preferable. Upon introducing  

)15(−−−−−






−=

−=

ξξ

ηη

uyvxV
vxuyU

 

)16(

1

22
2

22
1

−−−−−−−










+=

+=

+=

ηξηξ

ξξ

ηη

yyxxb
yxa

yxa
          

The following integral conservative 
relation is obtained from eq. (12) for an 
arbitrary scalar dependent variable Φ: 
( ) ( ) ( )
( ) ( )17----------,2

1

φηη
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φ

φφρφρ

totaSJa

JaVU

+Γ

+Γ=+

Where: 
φηξφ SSStota +=,  

( ) ( )
ηξξηηξ φφ 11, JbJbS Γ+Γ=

 
Numerical formulation:- 
Discretization of the governing 
equations 
        The general form of the governing 
equation (17) is integrated over each 
discrete CV in the computational plane 
(ξ, η). Let a new working variable be 

(Iø)j such that superscript j can be any of 
the computational directions (j=ξ or η). 
This is called the total flux in the jth 
direction. It is expressed mathematically 
as follows: 

( )
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Where ΓΓΓΓ 2211   , JaJa ==  

 Substituting (18) in (17) gives:- 

( ) ( ) )19(, −−=
∂
∂

+
∂
∂

φ
ηξ φ

η
φ

ξ totaSII         

By integrating equation (19) over the 
typical CV around node P. 

( ) ( )

( ) ( )[ ]
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Δξs
ηIn
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φ
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
 −

 

For convenience, the above 
notation can further be simplified to:- 

)21(, −−∀∆=−+− φtotalsnwe SIIII
Where, ηξ∆∆=∀∆  

The requirement now is to express 
the (I ’s) at node (P) in equation (21) in 
terms of the properties of the considered 
(P) node and its neighbor nodes (E, W, 
N, and S). 

As a typical analysis, the Ie can be 
considered as follows: - 

( ) ( ) ( )22 -- U 1 ηφηφρ ξ ∆Γ−∆=
eeeI

       Assume (Fe) is the mass convective 
flux at face (e), which can be defined as 
follows:  

)23(−−−−−−∆= ηρ ee UF  

       Expanding the second term in 
equation (22) (by expressing the partial 
derivative w.r.t. ξ using central 
differencing scheme) and substituting 
for Γ1 utilizing its definition given by 
the relation in equation (18) gives: - 
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)24()()( 1
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        At this point, it would be useful to 
define a quantity De; it is the diffusion 
term coefficient at face (e). Hence, this 
coefficient can be expressed as: - 

(25)----- 
e
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


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=
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ηJaDe  

        Substituting equation (25) in 
equation (24) and the result in equation 
(22) gives: - 

( ) -(26)- PEeeee DFI φφφ −−=  

Equation (26) contains the 
quantity øe, which needs to be specified 
in terms of neighbor nodal values. This 
is usually achieved by using an 
appropriate interpolation scheme. In the 
present work hybrid scheme is used. for 
simplifying the analysis discussed the 
upwind scheme and after some 
arrangement is converted to hybrid 
scheme based on Peclet number. The 
upwind scheme is carried out as follows: 

[ ][ ] [ ][ ]                             0,  0, eEePee FFF −−= φφφ
        Hence, substituting this in (26) 
gives:- 

[ ][ ] [ ][ ]
( ) (27) ------------- 
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But:- 

[ ][ ] [ ][ ]                                                                                 0, 0, eee FFF +−=
         Hence, substituting this in 
equation (27) and rearranging, gives:  

[ ][ ]( )
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0,
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eePee FDFI
φφ
φ

−
−+=−

                                  

At this stage, a quantity AE can be 
defined; this is the discretizing 
coefficient that carries the effect of 
neighbor E on P in the discretized 
general transport equation of a property 
(φ). 

[ ][ ]( ) (29) ------ 0,eeE FDA −+=  

substituting (29) in (28) results 
into: 

( ) (30)---  EPEPee AFI φφφ −=−  

Similar expressions can be 
obtained at other CV faces (w, n, and s). 
Hence: - 
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The next step is that, the continuity 
equation is integrated over the same CV. 

( ) ( ) ( )32 --- 0=−+− snwe FFFF  

Now equation (32) is multiplied 
by øP to get: 

( )33- 0=−+− PsPnPwPe FFFF φφφφ         
Then, equation (33) is subtracted from 
equation (21) to give: 

( )34 --- )(
)()()(
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−+−−−

φφ
φφφ

totalPss
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        Hence, substituting the result of 
(31) in to (34) and rearranging gives: 

(35) -----  , ∀∆+=∑ φφφ totalnbnbPP SAA        
Where the Discretizing coefficient of 
node P can be define as follows: 

(36) ------- SNWEP AAAAA +++=         
Since equation (36) is a general 
discretized form of the conservative 
general transport equation and can be 
applied for both a staggered and non-
staggered CV by setting the appropriate 
boundary at the interfaces. The 
argument of ø can hold for any 
dependent variables. 
 
Grid arrangement for the dependent 
variables  

The use of staggered grid in the 
body fitted coordinate system flows, 
requires the solution of momentum 
equations for covariant velocity 
components on the faces of the control 
volume. Calculating of coefficients and 
geometrical factors (a1, b1, a2) must be 
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performed for many sets of grid, hence 
programming becomes very difficult 
and more effort is required to calculate 
the coefficients and geometrical factors. 
These problems can be avoided through 
the solution of the momentum equations 
by using Cartesian velocity components 
on a non-staggered (collocated) grid 
where all variables are stored in the 
center of the control volume as in [8]. 
Pressure correction equation (P. C. E.):  
        After solving the momentum 
equation, the velocity field obtained 
does not guarantee the conservation of 
mass unless the pressure field is 
corrected. Therefore, the velocity 
components (u,v) ,(U,V) and the 
pressure must be corrected according to 
the continuity equation as follows:- 
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Where superscript (∗ ) refers to the last 
iteration values and the superscript (') 
refers to the corrected variables. the 
continuity equation is rewritten after 
introducing the correction of 
contravariant velocity components (U, 
and V in equation (37)) to get:- 
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Equation (39) represents the discretized 
continuity equation called full pressure-
correction equation. 
        The cross-derivatives of pressure 
correction in equation (39), such as 
( neP′ , seP ′ , nwP ′ , swP ′ ) are equal to zero 
for orthogonal grid. for non-orthogonal 
gird, if the cross-derivatives of the 
pressure correction are retained, the 
derived pressure correction equation 
will be a nine-diagonal matrix for two-
dimensional flows. Solving this matrix 
is complex and expensive, therefore the 
cross-derivatives terms are usually 
omitted for simplicity. This is called 
simplified pressure correction equation 
[9] and [10]. 
        in the present work the cross-
derivative is calculated as [3] 
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∆
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Calculation of the Mass Source (Sm) of 
P. C. E. 

The mass source (Sm) in equation 
(39) is calculated from the equation 
(40). Contravariant velocities at the 
control volume faces 
( ( ) ( ) ( ) ( )snwe VVUU **** ,,, ) appeared 
in this equation can be calculated from 
Cartesian faces velocities as following. 
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The u-Cartesian velocity at east 
face is usually obtained by liner 
interpolation, i.e. 

)43()(
2
1

−−−−−−+= ∗∗∗
PEe uuu                                        

In a collocated grid arrangement this 
may lead to pressure oscillations. To 
avoid this, the face velocities are 
obtained from (Rhie and Chow 
interpolation) [11] by subtracting and 
adding the pressure gradient to equation 
(43) as follows: 

( )

( ) )44( 

  )(
2
1

−−−−




















 ∀∆
−+





















 ∀∆
−−+=

∗

∗∗∗∗

e

x
p

e

x
p

PEe

P
A

J

P
A

Juuu

ξ

ξ

ξ

ξ

       
  The pressure gradient terms in 
equation (44) are calculated in different 
ways. The first one is calculated as the 
mean value of the pressure gradient in P 
and E nodes, i.e. the second one is 
calculated on the face, i.e. this yield to 
the- 
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Equation (45) used to calculate the u-
velocity at east face of control volume. 
The first term is calculated as a 
weighted average. The second term is 
represents a fourth-order derivative term 
to dampen oscillations. The v Cartesian 
velocity components at face (e) are 
simply averaged weighted linear 
interpolation without the need to any 
further treatment. This is because the 
pressure gradient across face (e) does 
not affect these components, hence:- 
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       In the same way can obtain the 
Cartesian velocity component for the 
control volume faces (w, n, s) 

 
Pressure-velocity coupling method 
        In the present work, the (SIMPLE) 
algorithm (semi-implicit method for 
pressure-linked equations) is used to 
couple the pressure and velocity as in 
[12]. This method is done by solving the 
momentum equations using the guessed 
pressure field to obtain the velocity 
field. The velocity filed obtained 
satisfies the momentum equations. Then 
the velocity and pressure are corrected 
because the velocity field violates the 
conservation of mass.  
 

 
Convergence criteria 
       At the end of each solver iteration, 
the residual sum for each of the 
conserved variables is computed and 
stored, thus recording the convergence 
history. The residuals decay to some 
small value and then stop changing. In 
this work an iteratively converged 
solution is assumed to be reached when 
the largest residual of all variables is 
less than 10-4, where residual can be 
define as follow: 
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Grid generation  
        The simplest grid generation 
technique is the algebraic method. The 
derivatives of the boundary in the 
physical plane provide even more 
flexibility in the mapping. For instance, 
orthogonally at the boundary can be 
forced in the physical plane. The interior 
grid points of the algebraic gird in the 
physical domain can be calculated by 
using the following algebraic equations: 
- 
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        Where (x (i, j), y (i, j)) are any 
interior points in the physical domain, m 
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and n are the node numbers in the x and 
y directions respectively, and l is the 
axial length of the physical domain. The 
grid that generated algebraically by 
using equations (47) for the NACA 
65(12)10 linear cascade is shown in Fig. 
(1). 
 
 
 
Quasi-three dimensional flow:- 

The through-flow field will be 
applied by using quasi-three 
dimensional flow. The mathematical 
approach for describing quasi-three 
dimensional flow will be discussed 
using the radial equilibrium theory.  
 
Radial equilibrium theory 

The earliest approaches to radial 
flow analysis were based on the radial 
equilibrium theory.  

The basic assumption of the radial 
equilibrium type of design is that the 
radial velocity ( vr ) is zero at entry and 
exit from a blade row. The equation of 
motion using cylindrical coordinates for 
incompressible, inviscid flow is [13]: 
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        If there is a radial equilibrium, 
equation (48) may be written as: 
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The total pressure Pt is given by: 
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If the total pressure does not vary 
with radius then: 
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Equation (52) will hold for the flow 
between blade rows of the compressor, 
and may be used to determine the axial 
velocity (u) variation once the tangential 
velocity (v) distribution is chosen. If (v 
= f(r)) then the distribution of (u) with 
radius is obtained. 

The free vortex design satisfies 
the requirement of radial equilibrium 
[14], from this case obtains: r. v = 
constant and no variation of (u) across 
blade height.  
 
Results and discussions  
        The computational model was 
built based on the linear cascade of 
NACA 65-(12) 10 compressor blade. In 
addition, to study the behavior of the 
compressor before and after stall has 
happen; two cases were taken. The 
treatments of boundary conditions of 
these cases were described in article 
(2.2) and the input data needed were 
recorded in table (1). 
        Case (1), the velocity vectors and 
the contours of velocity and  static 
pressure at mid-span (at 50% of the 
blade’s height) at best incidence angle 
are presented in Figures. (2), (3) and (4) 
respectively. Velocity vectors show that 
the fluid is changing its direction from 
inlet to exit following the signature of 
blade profile. 
        From figure (3) due to the shape of 
the airfoil, the flow is seen to accelerate 
along the suction and pressure sides near 
the leading edge, and the maximum 
velocity occurs at a position just off the 
suction side at about 21% of blade 
chord. These phenomenon prove that the 
compressor works as a nozzle-diffuser.  
        The static pressure contour figure 
(4) shows that, on the suction side, the 
pressure falls very rapidly from the 
stagnation point towards the throat, 
reaching a minimum value at 26% of 
chord line. After that acceleration occurs 
until reaching  the trailing edge. On the 
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pressure side, the same behavior can be 
seen but the position of the minimum is 
at 21% of chord line. 

        For case (2) figures (5), (6) 
and (7) represent the velocity vector and 
contours of the velocity and static 
pressure at mid-span when the stall 
happens. From figures (5)and(6) it is 
noticed that the direction of the velocity 
changes according to the airfoil of 
blade, but on the suction side the 
velocity is reduced to reach a minimum 
value (about 4 m/s) at 37% of chord 
line, then the velocity reverses its 
direction to form a vortex. 

Figure (7) Shows that the pressure 
decreases towards the exit direction. 
This is on the suction surface. On the 
pressure surface the pressure decreases 
until reaching minimum value at 42% of 
chord line. After that acceleration occurs 
until  the trailing edge. 

The incidence at which stalling 
occurs is difficult to define precisely, 
and the stalling point is usually arbitrary 
specified as the incidence at which the 
total pressure loss is less than or equal to 
0.06. [14]. The incidence angle is 
plotted with total pressure loss as in 
figure (8). It is noticed that the total 
pressure loss after 0.06 increases rabidly 
and the minimum total pressure loss is 
at incidence of -1°. 

The stall limit of NACA 65(12)10 
for multi stagger angle, is illustrated in 
Figure (9), it is noticed from this figure 
that the range of inlet flow angle 
become little if stagger increases, and it 
is noticed that the outlet flow angle do 
not change at the same stagger angle. 
This is the same for (Carter rule) [14]. 

Figure (10) shows the relation 
between total pressure loss and diffusion 
factor. It is noticed that if the diffusion 
factor is larger than 0.6 the total 
pressure loss increases rapidly. So the 
stall limit is at diffusion factor 0.6 or 
less. But for larger camber angle NACA 
65(18)10 the diffusion may be at over 
0.6 and total pressure loss is less than 

0.06 without causing stall to happen as 
shown in figure (11). 

To explore the effect of the 
camber angle on the stall limits, the stall 
limit is plotted for NACA 65(18)10 and 
NACA 65(8)10 in figures (12) and (13) 
respectively. It is noticed that stall limit 
acts at different incidence angles. 
          Long compressor blades are 
twisted from hub to tip. There are many 
methods to calculate this twist. In the 
present work the free vortex theory was 
used. Boundary conditions for this 
problem are the same as those of case 
one. The hub to tip ratio taken is (0.5). 
The dimensions of the blade were, the 
chord length (15cm) and span length 
(30cm).      
         The inlet and outlet flow angles 
were plotted with span from hub to tip 
in figure (14). It is noticed that both 
inlet and outlet flow angles decrease 
from hub to tip but outlet flow angle has 
a large slop. 
        Figure (15) presents the variation 
of the total pressure loss coefficient with 
span from hub to tip. It is noticed that 
the maximum total pressure loss act at 
the tip of the span. This means that the 
stall began at the tip of the blade. 
  
The Comparison between the 
experimental and theoretical results: 
       The theoretical results obtained in 
this study by using numerical technique 
were compared with the experimental 
results of [sabah 2008]. Figure (16) 
shows this comparison for the velocity 
in the three sections of interest for 
stagger angle (0 0 ). The sections taken 
were at 0.125, 0.5 and 0.875 of the blade 
to blade spacing. 
        This figure shows that at the 
section 0.125 from the space, the present 
result lower than that of the reference. 
However, the same behavior is noticed. 
At the middle of the blade to blade 
spacing, the results are vary close. 
While, at 0.875 from space, the results 
are also close. 
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        This figure shows that the results 
are different at the suction surface and 
get closer as we approach the pressure 
surface. However, the behavior in all 
cases is nearly the same. 
        This comparison agreement is 
considered to be good bearing in mind, 
the approximation of theoretical results, 
as compared with actual practical 
results. 
 
Conclusions 
         The following conclusions of are 
drawn 
1. The incidence angle when stall 
happen is the same for any stagger angle 
for any NACA airfoil. 
2. Stall limit changes if the airfoil 
of blade is changed and decreases with 
the increase of angle of camber. 
3. Stall begins when the outlet 
flow angle decrease below a certain 
value. 
4. Stall normally starts at the blade 
tip. 
5. The range of inlet flow angle of 
cascade without stall decreases when 
stagger angle increase. 
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Table (1) Operating and boundary 
Conditions 

 

Case 

Total 

velocity 

at inlet 

(m/s) 

Inlet 

flow 

angle 

(deg) 

Outlet 

flow 

angle 

(deg) 

No. of 

Iteration 

to 

converge 

1 70 34 7.4 99 

2 70 54 -8.4 179 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (1): Grid generation for 

cascade of axial compressor 
 

 
 
(2D)  03 Mar 2008 (2D)  03 Mar 2008 

 
Figure (2): Velocity vector for case(1) 
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(2D)  22 Mar 2008 

91.6537
85.5435
79.4332
73.323
67.2127
61.1025
54.9922
48.882
42.7717
36.6615
30.5512
24.441
18.3307
12.2205
6.11025

velocity

(2D)  22 Mar 2008 

 
Figure (3): Velocity contour for        

case (1) 
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static pressure
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Figure (4): Static pressure contour for 

case (1) 
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Figure (5): Velocity vector for case (2) 
 
 
 
 
(2D)  22 Mar 2008 

87.6945
81.8482
76.0019
70.1556
64.3093
58.463
52.6167
46.7704
40.9241
35.0778
29.2315
23.3852
17.5389
11.6926
5.8463

velocity

(2D)  22 Mar 2008 

 
Figure (6): Velocity contour for case 

(2) 
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(2D)  22 Mar 2008
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Figure (7): Static pressure contour for 

case (2) 
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Figure (8): Variation of pressure loss 

coefficient with incidence angle 
 
 
 
 
 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70
inlet flow angle

ou
tle

t f
lo

w
 a

ng
le

stagger angle=20 stagger angle=25 stagger angle=35
stagger angle=40 stagger angle=30 stagger angle=45
stagger angle=50 stagger angle=55

 
Figure (9): Stall limit for different 
stagger angle of NACA 65(12)10 
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Figure (11): Variation of pressure loss 

coefficient with diffusion factor for 
NACA 65 (18) 10 
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Figure (12): stall limit for different 

stagger angle of NACA 65(18)10 
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Figure (13): Stall limit for different 

stagger angle of NACA 65 (8) 10 
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Figure (14): Variation of inlet and 

outlet blade angle with span from hub 
to tip 
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Figure (15): Variation of total 

pressure loss coefficient with span 
from hub to tip 
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Figure (16): Comparison between 
present work and reference [15] 
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