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Abstract:
In this paper we proposed a new HS type conjugate gradient method by

using two kind of modification, first derived a new non-quadratic model second
using structure of the memoryless BFGS quasi-Newton method. The new proposed
method always generates a descent condition. We give a sufficient condition for
the global converges of the proposed general method. Finally, some numerical
results are also reported.

مقیدةالغیرة ــلیـمثفي الأالخطوات المتعددةتحسین طریقة التدرج المترافق باستخدام 

حامدأیمان طارق.دهدى عصام احمد. د

الملخص

لمترافـــق باســـتخدام نـــوعین مـــن فـــي التـــدرج اH/sتـــم اقتـــراح طریقـــة جدیـــدة لـــصیغة فـــي هـــذا البحـــث 

ــــــصیغة أولاالتحــــــسینات ، اشــــــتقاق نمــــــوذج غیــــــر تربیعــــــي جدیــــــد وثانیــــــا تطبیــــــق خاصــــــیة تقلیــــــل الخــــــزن ل

BFGS. تـم برهنتهـا أنهـا تحقـق الـشرط الـضروري للانحـدار وكـذلك تحقـق خاصـیة التقـارب الطریقـة الجدیـدة

.الشامل
1. Introduction

We are concerned with the following unconstrained minimization
problem:

)x(fminimize (1)
where RR:f n ® is smooth and its gradient )x(f)x(g Ñ=  is available. There are
several kinds of numerical methods for solving (1), which include the steepest
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descent methods, the Newton method and quasi-Newton methods, for example.
Among them the conjugate gradient method is one choice for solving large-scale
problems, because it does not need any matrices. Conjugate gradient methods are
iterative methods of the form

kkk1k dxx l+=+ (2)

î
í
ì =-

³b+-
= +

+
+

0kforg
1kfordgd 1k

kk1k
1k (3)

where )x(gg kk =  denotes )x(f kÑ  , kb is a positive scalar and ka is a positive
scalar which is determined by a line search step satisfying the sufficient descent
condition:

2
1k1k

T
1k gcdg +++ -£ (4)

where .  stands for Euclidean norm.
The HS, FR, PR and LS are four well-known conjugate gradient methods, they are
specified by:

k
T
k

k
T

1kHS
k yd

yg +=b (Hestenes and Stiefel, 1952), (5)

2
k
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1kFR

k g
g +=b (Fletcher and Reeves, 1964), (6)

2
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k
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1kPR
k

g
yg +=b (Polak, 1969) (7)

k
T
k

k
T

1kLS
k gd

yg
-

=b + (Liu and Story, 1991), (8)

where k1kk ggy -= + .

Note that these formulas for kb  are equivalent for each other if the objective
function is strictly convex quadratic function and kl is exact line search. There are
many researches on convergence properties of these methods see for example
(Hager and Zhang, 2006) and (Nocedal and Wright, 2006).

To establish the convergence results methods mentioned above, it is usually
required that the step ka  should satisfy the following strong Wolfe conditions

k
T
kkkkkk dg)x(f)dx(f da£-a+ (9)

k
T
kk

T
kkk dgd)dx(g s-£a+ (10)
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where 10 <s<d< . On the other hand, many numerical methods (e.g. the steepest
descent method and quasi-Newton methods) for unconstrained optimization are
proved to be convergent under the Wolfe conditions:

k
T
kkkkkk dg)x(f)dx(f da£-a+ (11)

k
T
kk

T
kkk dgd)dx(g s³a+ (12)

see (Wolfe,1969) and (Zoutendijk,1970).
Also the conjugate gradient methods always satisfy the sufficient descent condition

2

1kk1k
T gcdg

1k ++ -£
+

(13)
where c is a positive constant.

In this paper, we propose a new HS type conjugate gradient method by using
structure memoryless BFGS quasi-Newton method (Nocedal,1980) and (Shanno,
1978). The present paper is organized as follows. In section 2 we derived a new
non-quadratic model and use it in new multi-step of algorithm. In section 3 we
define the memoryless BFGS quasi-Newton method. In section 4 we propose a
specific new conjugate gradient method based on the new non-quadratic model and
new multi-step quasi-Newton method and prove its global converges. Finally in
section 5, some numerical experiments are presented.

2- The Non-Quadratic Models.
Most of the currently used optimization methods use a local quadratic

representation of the objective function, but the use of the quadratic model may be
inadequate to incorporate all the information (Fried, 1999) so that more general
models than quadratic are proposed as a basic for CG algorithms, also (Al-Bayati,
1993) and (Tassopoulos and Story, 1984) have proposed further modifications of
the conjugate gradient method whichs are based on some non-quadratic models. If

)x(q is a quadratic function defined by:

cxbGxx
2
1)x(q TT ++= (14)

where G  is nn ´  symmetric and positive definite matrix and b is a constant vector
in nR and c is a constant. Then we say that f is defined as a nonlinear scaling of

)x(q if the following conditions hold (Boland et al., 1979):

0F
dq
dFand0q)),x(q(F)x(f >¢=>=

The following proportions are immediately derived from the above conditions:
1- Every contour line of )x(q is a contour line of f .

2- If *x is minimize of )x(q then it’s also a minimize of f .
In this area there are various published works.
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(a) A CG methods which minimize the function:
np R   x0,p,))x(q()x(f Î>= , in at most n-step have been described by

(Fried, 1991).
(b) The special polynomial case:

)x(q
2
1)x(q))x(q(F 2

21 Î+=Î , where 21,ÎÎ  scalars, has been investigated

by (Boland et al., 1979).
(c) A rational model has been developed by (Tassopoulos and Story, 1984)

where: .0,0,
)x(q
1)x(q))x(q(F 21

2

1 >Î>Î
Î

+Î=

(d)   Another rational model was considered by (Al-Bayati, 1993) where:

0,0,
)x(q1

)x(q))x(q(F 21

2

1 >Î>Î
Î-
Î= .

2.1 An Extended CG method
We consider a new non-quadratic model defined by:

e))x(q(F 1)x(q2)x(q 2 ++= (15)

Assume that 0q >  and 0
dq
df

> , the unknown quantities kr  were expressed in term

of available quantities of the algorithm (i.e. function and gradient value of the
objective function) using the expression for kr

1k

k
k F

F

+
¢
¢

=r (16)

From the relations
( )*

1k1k1k xx GFg -¢= +++ (17)
( )*

kkk xx GFg -¢= (18)
Where G  is the Hessian matrix, we have

( )
( )*
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furthermore
( ) ( ) ( ) k

T
kkk

T
kkkk

T
k1k

T
k dgxxgxdxgxxg l+-=-l+=- ***

+

and
( ) ( ) ( )*++

*
++

*
+ -=-l-=- xxgxdxgxxg 1k

T
1kkk1k

T
1kk

T
1k

since 0dg k
T

1k =+ . Therefore, we express kr  as follows:
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( )
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l+-

=r
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(19)

From (16), (17) and (19), we get:
( ) ( )

( ) ( )*
1k

*
1k1k

k
T
kk

*
k

*
kk

k xx GxxF
dgλxx GxxF

--¢
+--¢

=r
+++

Therefore

qF2
dgqF2

1k1k

k
T
kkkk

i

++
¢
l+¢

=r (20)

If we express kF¢  and 1kF +
¢  as follows, using the derivation the general exponential

function,
e)1)x(q(2F

2
k )1)x(q(

kk
++=¢ (21)

e)1)x(q(2F
2

1k )1)x(q(
1k1k

+
++

++=¢ (22)

Solving (15) for q(x) we have:

1))x(f(ln)x(q 2
1

-= (23)

so that 2
1

kkk ))f(ln(f2F =¢ (24)

2
1

1k1k1k ))f(ln(f2F +++ =¢ (25)
By substituting for the 1k1k qf ++¢  and kk qf ¢  in (20), we have

2
1

1k1k

2
1

kk
k

))f(ln(f2

ŵ))f(ln(f2

++

+
=r (26)

Where
2

dgŵ k
T
kkl= (27)

3- The Memoryless BFGS Quasi-Newton Method
The direction 1kd +  in the quasi-Newton BFGS method is given by:

1k1k1k gHd +++ -= (28)
 where 1kH +  is nxn  symmetric and positive definite matrix and defined by:

k
T
k

T
kk

k
T
k

kk
T
k

k
T
k

k
T
kk

T
kkk

k1k ys
ss)

ys
yHy1(]

ys
HyssyH[HH ++

+
-=+ (29)

If we use the memoryless BFGS (i.e. IH k = , where I is the identity matrix) then
the formula of 1kH +  is defined by:
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Where k1kkkk xxds -=a= + . In this case, 1kd +  can be written as:

y
ys
gss]
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gy
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yy1[(gd k
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T
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1k1k
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++ +-+--=
(31)

4- New Multi-step Quasi Newton Method
In this section we drive a new multi-step quasi Newton method based on

memoryless BFGS quasi-Newton method as a conjugate gradient method. This
type of algorithms has been investigated for the first time by Ford and Maghrabi
(Ford and Maghrabi, 1994). Now let us define a new multi-step by:

)ss(r 1kkkkk -m-r= (32)
)yy(w 1kkkkk -mr-= (33)

where
1k

T
1k

k
T

1k
k ss

ss
--

-=m (34)

and kr is define in (26).
then the matrix in eq(29) is defined by:
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If we use the memoryless BFGS then the new direction 1kd +  is defined

by: w
wr
grr]

wr
gw

wr
gr)

wr
ww1[(gd k
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since 0gr 1k
T
k =+ ‘ then equation (36)  becomes:

k
k

T
k

1k
T
k

1k
new

1k r
wr
gwgd +

++ +-= (37)

Or equivalent to k

k
T

k

k
T

1k
1k

new
1k r

wr
wggd +

++ +-= (38)

This search direction can be rewriten as the form:

k
MHS
k1k

new
1k rgd b+-= ++ (39)

where ,
wr
wg

k
T

k

k
T

1kMHS
k

+=b  and kkkk r,,w, mr are defined in (26, 32-34) respectively,

the property of this multi-step is satisfying the QN-condition:
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kk1k syH =+ (40)
we can rewrite (40) by equivalent new form:

kk1k rwH =+ (41)
since kk r,w   are defined in (32-33), so the relation (41) must satisfy a modified of
the form:

)ss()yy(H 1kkkk1kkkk1k --+ mr-=mr- (42)
where kk ,mr  are positive scalar and defined in (26,43) respectively .
 now from (42) we obtain:

1kkkkk1kkkk1k ss)yy(H --+ mr-r=mr-

1kkkkk1k1kkkk1k ssyHyH --++ mr-r=mr-

]yHs[s
yHssyH

1k1k1kkkkk

1k1kkk1kkkkkk1k

-+-

-+-+

-mr-r=
mr+mr-r=

since ( 1k1k1k syH --+ = )

kkk1k syH r=\ + ’ which is equivalent to (standard quasi-Newton
condition).
4.1- Outline of New Algorithm
Step1: Set ,x0 Î (initial point, scalar termination).
Step2: Set 0k = ’ kk gd -= .
Step3: Set 0k,dxx kkk1k ³l+=+ where kl is obtained from the line search
procedure.
Step4: check for convergence, i.e. if <Î+1kg , stop; otherwise continue.

Step5: Compute
2
1

1k1k

2
1

kk
k

))f(ln(f2

ŵ))f(ln(f2

++

+
=r  , where

2
dgŵ k

T
kkl= .

Step6: Compute kkk ,r,w m which are defined in (32-34).
Step7: Compute the new search direction defined by:

1k,dgd k
MHS
K1k1k ³b+-= ++ ’ where MHS

Kb is computed by the following

formula
k

T
k

k
T

1kMHS
k wr

wg +=b  .

Step8: if  k=n  or  if 1kk
T

1k g2.0gg ++ >  is  satisfied  go  to  step  (2),  else  set
k=k+1and go to step then stop.  Otherwise go to step 3.
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4.2 global convergence
In order to establish the descent condition and the global convergence of the

new proposed method, we make the following additional assumption.
4.2.1 Assumption
1) The level set }{ )x(f)x(f/x 0£=W  at 0x is bounded.
2) In some neighborhood N ofW , f is continuously differentiable and its gradient
is Lipschitz continuous with Lipschitz constant 0L > , i.e.

yxL)y(g)x(g -£-  , for all Ny,x Î . (43)
The above Assumption implies that there exists a positive constant g  such that :

g£)x(g for  all WÎx . (44)

4.2.2Theorem
The direction 1kd +  given in (38) satisfies the descent condition

2

1k1k
T gdg

1k ++ -=
+

(45)
Proof:

Since 00 gd -= , we have 2
00

T
0 gdg -= , which satisfies (45).

Now from (8), we have:

1kk
MHS
k

2

1k1k
T

1k grggd ++++ b+-= , where
k

T
k

k
T

1kMHS
k wr

wg +=b

1k
T
k

k
T
k

k
T

1k2

1k1k
T

1k gr
wr
wgggd +

+
+++ +-=

Since 0gr 1k
T
k =+

2

1k1k
T

1k ggd +++ -=\ .

We note that this method always satisfies 0gdg 2
kk

T
k <-= for all k, which

implies the sufficient descent condition (13) with c=1.
Property (*): Consider the method (2) and (3) , assume that there exists a positive
constant g  such that g³+1kg holds  for  all  k.  then  we  say  that  the  method  has
Property (*) if there exists constants 1b >  and 0>x such that for all k:

bk £b (46)

and
b
1s kk £bÞx£ (47)

Also we need the following additional Assumption (Ford et al., 2009) to prove the
global convergence of the proposed method.
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4.2.3 Assumption
1) Assume that there exists appositive constant 1t such that, for all k

dgrg k
T
k1k

T
k t>

(48)
2) Assume that there exists appositive constant 2t such that satisfies 10 1 £t£  and

ïþ

ï
ý
ü

ïî

ï
í
ì

t£mr
--+

+

1k
T
k

k
T
k

1k
T

1k

k
T

1k
2kk yr

yr
,

yg
yg

min for all k (49)

4.2.4 Theorem: Consider the method (2) and (3) that satisfies the following
conditions:

(1) 0k ³b for all k.
(2) Property (*) holds.
Assume that kl satisfies  the  strong  Wolfe  condition  (9)  and  (10).  If

Assumption 4.2.1 holds, then the method converges in the sense that
0gLim 1kk

=+¥®
(Ford et al., 2009).

Now using the above theorem, we obtain the following global convergence
property.

4.2.5 New Theorem:
Suppose that Assumption 4.2.1 and 4.2.3 are satisfied. Consider the method

(2)-(3) with (38). Assume that kl satisfies the strong Wolfe condition (9) and (10)
then the new method converges in the sense that 0gLim 1kk

=+¥®
.

Proof:
 It’s clearly 0k ³b . So we only prove that the proposed method satisfies

condition (2) of Theorem (4.2.4). To this end, we assume that there exists a
constant g such that g³+1kg  for all k.
It follows from (33) and (49) that:

1k
T

1kkkk
T

1kk
T

1k ygygwg -+++ mr+=

k
T

1k2

k
T

1k2k
T

1k

yg)1(

ygyg

+

++

t+£

t+£

k1k2 sgL)1( +t+£ . (50)
and also from (33), (49), and the fact 0rg k

T
1k =+  we have
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1k
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k
T
k2 rg)1( t-= (51)

It follow from (48) and (45) that:
(52)gdgrg 2

k1k
T
k1k

T
k t=t³

Therefore, from (51) yield
(53)g)1(wr 2

k21k
T
k t-t³

By definition of MHS
kb , (50) and (53) and since Ask <  ,we have

b
)1(

AL)1(
g)1(

sgL)1(

wr

wg
2

21

2

k21

k1k2

k
T
k

k
T

1kMHS
k =

gt-t
gt+

£
t-t

t+
££b ++ (54)

Now let
bL)1(

)1(
21

2
2

gt-t
gt+

=x

Then, if x£ks , we have

(55)
b
1

)1(
AL)1(
2

21

2MHS
k £

gt-t
gt+£b

Therefore, Property (*) holds. Thus from Theorem (4.2.4), the Theorem is true (i.e.
0gLim 1kk

=+¥®
).

5 Numerical results
A new non-quadratic model is derived and a new implicit multi-step quasi

Newton method have also been derived, using these two derivations in memoryless
BFGS method and obtain the new modification of HS (modified Hestenes-Stiefel)
method.

We compare MHS with standard HS method. The parameters in the strong
Wolfe line search were chosen to be 001.0=d and 9.0=s . For each test
problem, the termination criterion is 5

1k 10g -
+ < , also the value of

km where
1k

T
1k

k
T

1k
k ss

ss
--

-=m is between the (0,1). The numerical results of our
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experiment are reported from Table (1). Each problem was tested with various
value of n changing from n=100, 1000, 10000. The numerical results are given in
the  form of  NOI  (Number  of  Iterations),  NOE (Number  of  Evaluations)  and  using
a program written in FORTRAN language.

Table (1)

Comparison the new modified HS method with the standard HS method

Dim. New modified
HS method

HS method New modified
HS method

HS methodTest fn.

NOF   NOI NOF   NOI

Test fn. Dim.

NOF   NOI NOF   NOI

100 93      40 109          41 100 8              2 8              2

1000 188       70 109          41 1000 8             2 8             2

Powell

10000 177         73 163          57

Penalty

10000 10            3 10            3

100 198       30 272          36 100 49       19 44        16

1000 214         46 328          40 1000 48      19 44        16

Cantrel

10000 269       37 370          43

Cubic

10000 49        19 44        16

100 186         61 110          34 100 65        12 65         12

1000 163          60 172          47 1000 87        18 82        18

Miele

10000 289         94 429        157

Sum

10000 173        38 185         36

100 89           44 99           49 100 27         5 27         5

1000 103          51 141         70 1000 27         5 27         5

Wolfe

10000 280          137 399        164

Extended

cilff

10000 29         6 29         6

100 24           10  25           10 100 21         9 15         6

1000 27           11  25           10 1000 25         11 18        7

Shallow

10000 27            11  24             9

Denschnb
(CUTE)

10000 24        10 18        7

100 60            24 54           22 100 14         6 12         5

1000 72            29 88           32 1000 13         5 12         5

Rosen

10000 67            28 54            22

Dixmaana
(CUTE)

10000 17        7 12         5

100 18              6 16              5 100 13        5 13        5

1000 18               6 16              5 1000 13        5 13        5

Recip

10000 25               8 18              6

Dixmaanb
(CUTE)

10000 14         5 14         5
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