#### A Modified Conjugate Gradient Method using multi-step in Unconstrained Optimization

Dr. Huda Issam Ahmed<sup>\*\*</sup> Dr.Eman Tarik Hamed

Abstract:

In this paper we proposed a new HS type conjugate gradient method by using two kind of modification, first derived a new non-quadratic model second using structure of the memoryless BFGS quasi-Newton method. The new proposed method always generates a descent condition. We give a sufficient condition for the global converges of the proposed general method. Finally, some numerical results are also reported.

تحسين طريقة التدرج المترافق باستخدام الخطوات المتعددة في الأمثلية غير المقيدة

الملخص

في هذا البحث تم اقتراح طريقة جديدة لصيغة H/s في التدرج المترافق باستخدام نوعين من التحسينات ،أولا اشتقاق نموذج غير تربيعي جديد وثانيا تطبيق خاصية تقليل الخزن لصيغة BFGS.الطريقة الجديدة تم برهنتها أنها تحقق الشرط الضروري للانحدار وكذلك تحقق خاصية التقارب الشامل.

# 1. Introduction

We are concerned with the following unconstrained minimization problem:

$$minimize f(x) \tag{1}$$

where  $f: \mathbb{R}^n \to \mathbb{R}$  is smooth and its gradient  $g(x) = \nabla f(x)$  is available. There are several kinds of numerical methods for solving (1), which include the steepest

\*Assistant Prof. \ College of Computers Sciences and Math.\ University of Mosul.

Received:1/10 /2011 \_\_\_\_\_Accepted: 21 /12 / 2011

<sup>\*\*</sup>Assistant Prof. \ College of Computers Sciences and Math.\ University of Mosul.

descent methods, the Newton method and quasi-Newton methods, for example. Among them the conjugate gradient method is one choice for solving large-scale problems, because it does not need any matrices. Conjugate gradient methods are iterative methods of the form

$$x_{k+1} = x_k + \lambda_k d_k$$

$$d_{k-1} = \int -g_{k+1} \qquad \text{for } k = 0 \qquad (2)$$

$$d_{k+1} = \begin{cases} -g_{k+1} & \text{Ior } k = 0\\ -g_{k+1} + \beta_k d_k & \text{for } k \ge 1 \end{cases}$$
(3)

where  $g_k = g(x_k)$  denotes  $\nabla f(x_k)$ ,  $\beta_k$  is a positive scalar and  $\alpha_k$  is a positive scalar which is determined by a line search step satisfying the sufficient descent condition:

$$g_{k+1}^{T} d_{k+1} \leq -c \|g_{k+1}\|^{2}$$
(4)

where  $\|\cdot\|$  stands for Euclidean norm.

The HS, FR, PR and LS are four well-known conjugate gradient methods, they are specified by:

$$\beta_{k}^{\text{HS}} = \frac{g_{k+1}^{T} y_{k}}{d_{k}^{T} y_{k}} \text{(Hestenes and Stiefel, 1952)}, \tag{5}$$

$$\beta_{k}^{FR} = \frac{\|\mathbf{g}_{k+1}\|^{2}}{\|\mathbf{g}_{k}\|^{2}}$$
 (Fletcher and Reeves, 1964), (6)

$$\beta_{k}^{PR} = \frac{g_{k+1}^{T} y_{k}}{\|g_{k}\|^{2}} (Polak, 1969)$$
(7)

$$\beta_k^{\text{LS}} = \frac{g_{k+1}^{\text{T}} y_k}{-d_k^{\text{T}} g_k} \text{(Liu and Story, 1991)}, \tag{8}$$

where  $y_k = g_{k+1} - g_k$ .

Note that these formulas for  $\beta_k$  are equivalent for each other if the objective function is strictly convex quadratic function and  $\lambda_k$  is exact line search. There are many researches on convergence properties of these methods see for example (Hager and Zhang, 2006) and (Nocedal and Wright, 2006).

To establish the convergence results methods mentioned above, it is usually required that the step  $\alpha_k$  should satisfy the following strong Wolfe conditions

$$f(\mathbf{x}_{k} + \boldsymbol{\alpha}_{k} \mathbf{d}_{k}) - f(\mathbf{x}_{k}) \le \delta \boldsymbol{\alpha}_{k} \mathbf{g}_{k}^{\mathrm{T}} \mathbf{d}_{k}$$

$$(9)$$

$$|_{\mathbf{x}(\mathbf{x}_{k} + \boldsymbol{\alpha}_{k} \mathbf{d}_{k})^{\mathrm{T}} \mathbf{d}_{k}| \le -\mathbf{x}_{k} \mathbf{a}^{\mathrm{T}} \mathbf{d}_{k}$$

$$(10)$$

$$|\mathbf{g}(\mathbf{x}_{k} + \boldsymbol{\alpha}_{k} \mathbf{d}_{k})^{\mathsf{T}} \mathbf{d}_{k}| \leq -\sigma |\mathbf{g}_{k}^{\mathsf{T}} \mathbf{d}_{k}$$
(10)

where  $0 < \delta < \sigma < 1$ . On the other hand, many numerical methods (e.g. the steepest descent method and quasi-Newton methods) for unconstrained optimization are proved to be convergent under the Wolfe conditions:

$$f(x_k + \alpha_k d_k) - f(x_k) \le \delta \alpha_k g_k^T d_k$$
(11)

$$g(x_k + \alpha_k d_k)^T d_k \ge \sigma \ g_k^T d_k$$
(12)

see (Wolfe, 1969) and (Zoutendijk, 1970).

Also the conjugate gradient methods always satisfy the sufficient descent condition  $\mathbf{g}_{_{k+1}}^{^{\mathrm{T}}}\mathbf{d}_{_{k+1}} \leq -\mathbf{c}_{_{k}} \left\| \mathbf{g}_{_{k+1}} \right\|^{2}$ (13)

where c is a positive constant.

In this paper, we propose a new HS type conjugate gradient method by using structure memoryless BFGS quasi-Newton method (Nocedal,1980) and (Shanno, 1978). The present paper is organized as follows. In section 2 we derived a new non-quadratic model and use it in new multi-step of algorithm. In section 3 we define the memoryless BFGS quasi-Newton method. In section 4 we propose a specific new conjugate gradient method based on the new non-quadratic model and new multi-step quasi-Newton method and prove its global converges. Finally in section 5, some numerical experiments are presented.

#### 2- The Non-Quadratic Models.

Most of the currently used optimization methods use a local quadratic representation of the objective function, but the use of the quadratic model may be inadequate to incorporate all the information (Fried, 1999) so that more general models than quadratic are proposed as a basic for CG algorithms, also (Al-Bayati, 1993) and (Tassopoulos and Story, 1984) have proposed further modifications of the conjugate gradient method whichs are based on some non-quadratic models. If q(x) is a quadratic function defined by:

$$q(x) = \frac{1}{2}x^{T}Gx + b^{T}x + c$$
(14)

where G is  $n \times n$  symmetric and positive definite matrix and b is a constant vector in  $\mathbb{R}^n$  and c is a constant. Then we say that f is defined as a nonlinear scaling of q(x) if the following conditions hold (Boland et al., 1979):

$$f(x) = F(q(x)),$$
  $q > 0$  and  $\frac{dF}{dq} = F' > 0$ 

The following proportions are immediately derived from the above conditions:

- 1- Every contour line of q(x) is a contour line of f.
- 2- If  $x^*$  is minimize of q(x) then it's also a minimize of f.

In this area there are various published works.

(a) A CG methods which minimize the function:

 $f(x) = (q(x))^p$ , p > 0,  $x \in R^n$ , in at most n-step have been described by (Fried, 1991).

(b) The special polynomial case:

 $F(q(x)) = \in_1 q(x) + \frac{1}{2} \in_2 q^2(x)$ , where  $\in_1, \in_2$  scalars, has been investigated by (Boland et al., 1979).

- (c) A rational model has been developed by (Tassopoulos and Story, 1984) where:  $F(q(x)) = \frac{\epsilon_1 q(x) + 1}{\epsilon_2 q(x)}, \quad \epsilon_1 > 0, \quad \epsilon_2 > 0.$
- (d) Another rational model was considered by (Al-Bayati, 1993) where:

$$F(q(x)) = \frac{\epsilon_1 q(x)}{1 - \epsilon_2 q(x)}, \quad \epsilon_1 > 0, \ \epsilon_2 > 0.$$

#### 2.1 An Extended CG method

We consider a new non-quadratic model defined by:

$$F(q(x)) = e^{q(x)^2 + 2q(x) + 1}$$
(15)

Assume that q > 0 and  $\frac{df}{dq} > 0$ , the unknown quantities  $\rho_k$  were expressed in term

of available quantities of the algorithm (i.e. function and gradient value of the objective function) using the expression for  $\rho_k$ 

$$\rho_{k} = \frac{F'_{k}}{F'_{k+1}}$$
(16)

From the relations

$$g_{k+1} = F'_{k+1} G(x_{k+1} - x^*)$$

$$g_{k} = F'_{k} G(x_{k} - x^*)$$
(17)
(18)

Where G is the Hessian matrix, we have

$$\rho_{k} = \frac{F'_{k}}{F'_{k+1}} = \frac{g_{k}^{T}(x_{k+1} - x^{*})}{g_{k+1}^{T}(x_{k} - x^{*})}$$

furthermore

$$g_{k}^{T}(x_{k+1} - x^{*}) = g_{k}^{T}(x_{k} + \lambda_{k}d_{k} - x^{*}) = g_{k}^{T}(x_{k} - x^{*}) + \lambda_{k}g_{k}^{T}d_{k}$$
  
and  
$$g_{k+1}^{T}(x_{k} - x^{*}) = g_{k+1}^{T}(x_{k+1} - \lambda_{k}d_{k} - x^{*}) = g_{k+1}^{T}(x_{k+1} - x^{*})$$
  
since  $g_{k+1}^{T}d_{k} = 0$ . Therefore, we express  $\rho_{k}$  as follows:

$$\rho_{k} = \frac{g_{k}^{T}(x_{k} - x^{*}) + \lambda_{k}g_{k}^{T}d_{k}}{g_{k+1}^{T}(x_{k+1} - x^{*})}$$
(19)

From (16), (17) and (19), we get:

$$\rho_{k} = \frac{F'_{k} (x_{k} - x^{*}) G(x_{k} - x^{*}) + \lambda_{k} g_{k}^{T} d_{k}}{F'_{k+1} (x_{k+1} - x^{*}) G(x_{k+1} - x^{*})}$$

Therefore

$$\rho_{i} = \frac{2F'_{k} q_{k} + \lambda_{k} g_{k}^{T} d_{k}}{2F'_{k+1} q_{k+1}}$$
(20)

If we express  $F'_k$  and  $F'_{k+1}$  as follows, using the derivation the general exponential function,

$$F'_{k} = 2(q_{k}(x) + 1)e^{(q_{k}(x) + 1)^{2}}$$
(21)

$$F'_{k+1} = 2(q_{k+1}(x) + 1)e^{(q_{k+1}(x) + 1)^2}$$
(22)

Solving (15) for q(x) we have:

$$q(x) = (\ln f(x))^{\frac{1}{2}} - 1$$
(23)

so that 
$$F'_{k} = 2f_{k}(\ln(f_{k}))^{\frac{1}{2}}$$
 (24)

$$F'_{k+1} = 2f_{k+1}(\ln(f_{k+1}))^{\frac{1}{2}}$$
(25)

By substituting for the  $f'_{k+1}q_{k+1}$  and  $f'_k q_k$  in (20), we have

$$\rho_{k} = \frac{2f_{k}(\ln(f_{k}))^{\frac{1}{2}} + \hat{w}}{2f_{k,k}(\ln(f_{k,k}))^{\frac{1}{2}}}$$
(26)

Where 
$$\hat{\mathbf{w}} = \frac{\lambda_k g_k^{\mathrm{T}} \mathbf{d}_k}{2}$$
 (27)

#### 3- The Memoryless BFGS Quasi-Newton Method

The direction  $d_{k+1}$  in the quasi-Newton BFGS method is given by:

$$d_{k+1} = -H_{k+1}g_{k+1}$$
(28)

where  $H_{k+1}$  is nxn symmetric and positive definite matrix and defined by:

$$H_{k+1} = H_{k} - \left[\frac{H_{k}y_{k}s_{k}^{T} + s_{k}y_{k}^{T}H_{k}}{s_{k}^{T}y_{k}}\right] + \left(1 + \frac{y_{k}^{T}H_{k}y_{k}}{s_{k}^{T}y_{k}}\right)\frac{s_{k}s_{k}^{T}}{s_{k}^{T}y_{k}}$$
(29)

If we use the memoryless BFGS (i.e.  $H_k = I$ , where I is the identity matrix) then the formula of  $H_{k+1}$  is defined by:

$$H_{k+1} = I_{k} - \left[\frac{y_{k}s_{k}^{T} + s_{k}y_{k}^{T}}{s_{k}^{T}y_{k}}\right] + \left(1 + \frac{y_{k}^{T}y_{k}}{s_{k}^{T}y_{k}}\right)\frac{s_{k}s_{k}^{T}}{s_{k}^{T}y_{k}}$$
(30)

Where  $s_k = \alpha_k d_k = x_{k+1} - x_k$ . In this case,  $d_{k+1}$  can be written as:

$$d_{k+1} = -g_{k+1} - \left[\left(1 + \frac{y_k^T y_k}{v_k^T y_k}\right) \frac{s_k^T g_{k+1}}{s_k^T y_k} - \frac{y_k^T g_{k+1}}{s_k^T y_k}\right] s_k + \frac{s_k^T g_{k+1}}{s_k^T y_k} y_k$$
(31)

#### 4- New Multi-step Quasi Newton Method

In this section we drive a new multi-step quasi Newton method based on memoryless BFGS quasi-Newton method as a conjugate gradient method. This type of algorithms has been investigated for the first time by Ford and Maghrabi (Ford and Maghrabi, 1994). Now let us define a new multi-step by:

$$r_{k} = \rho_{k}(s_{k} - \mu_{k}s_{k-1})$$
(32)

$$w_{k} = (y_{k} - \rho_{k}\mu_{k}y_{k-1})$$
(33)

where 
$$\mu_k = \frac{s_{k-1}^T s_k}{s_{k-1}^T s_{k-1}}$$
 (34)

and  $\rho_k$  is define in (26).

then the matrix in eq(29) is defined by:

$$H_{k+1}^{\text{new}} = H_{k} - \left[\frac{H_{k}W_{k}r_{k}^{T} + r_{k}W_{k}^{T}H_{k}}{r_{k}^{T}W_{k}}\right] + \left(1 + \frac{W_{k}^{T}H_{k}W_{k}}{r_{k}^{T}W_{k}}\right)\frac{r_{k}r_{k}^{T}}{r_{k}^{T}W_{k}}$$
(35)

If we use the memoryless BFGS then the new direction  $d_{k+1}$  is defined by:  $d_{k+1}^{\text{new}} = -g_{k+1} - \left[\left(1 + \frac{W_k^T W_k}{T}\right) \frac{r_k^T g_{k+1}}{T} - \frac{W_k^T g_{k+1}}{T}\right]r_k + \frac{r_k^T g_{k+1}}{T}W_k$  (36)

by: 
$$\mathbf{a}_{k+1} = -\mathbf{g}_{k+1} - \left[\left(1 + \frac{\mathbf{x}_{k}}{\mathbf{r}_{k}^{\mathrm{T}}\mathbf{W}_{k}}\right) + \frac{\mathbf{x}_{k}}{\mathbf{r}_{k}^{\mathrm{T}}\mathbf{W}_{k}} - \frac{\mathbf{x}_{k}}{\mathbf{r}_{k}^{\mathrm{T}}\mathbf{W}_{k}}\right]\mathbf{r}_{k} + \frac{\mathbf{x}_{k}}{\mathbf{r}_{k}^{\mathrm{T}}\mathbf{W}_{k}}\mathbf{W}_{k}$$
  
since  $\mathbf{r}^{\mathrm{T}}\mathbf{g}_{k} = -\mathbf{0}$ , then equation (36), becomes:

since  $r_k^T g_{k+1} = 0$ , then equation (36) becomes:

$$\mathbf{d}_{k+1}^{\text{new}} = -\mathbf{g}_{k+1} + \frac{\mathbf{w}_{k}^{T}\mathbf{g}_{k+1}}{\mathbf{r}_{k}^{T}\mathbf{w}_{k}}\mathbf{r}_{k}$$
(37)

Or equivalent to  $d_{k+1}^{new} = -g_{k+1} + \frac{g_{k+1}^{T}W_{k}}{r_{k}^{T}W_{k}}r_{k}$  (38)

This search direction can be rewriten as the form:

$$d_{k+1}^{new} = -g_{k+1} + \beta_k^{MHS} r_k$$
(39)

where  $\beta_k^{\text{MHS}} = \frac{g_{k+1}^T W_k}{r_k^T W_k}$ , and  $\rho_k$ ,  $W_k$ ,  $\mu_k$ ,  $r_k$  are defined in (26, 32-34) respectively,

the property of this multi-step is satisfying the QN-condition:

$$\mathbf{H}_{k+1}\mathbf{y}_{k} = \mathbf{s}_{k} \tag{40}$$

we can rewrite (40) by equivalent new form:

$$\mathbf{H}_{k+1} \mathbf{w}_{k} = \mathbf{r}_{k} \tag{41}$$

since  $w_k, r_k$  are defined in (32-33), so the relation (41) must satisfy a modified of the form:

$$H_{k+1}(y_{k} - \rho_{k}\mu_{k} y_{k-1}) = (s_{k} - \rho_{k}\mu_{k} s_{k-1})$$
(42)

where  $\rho_k, \mu_k$  are positive scalar and defined in (26,43) respectively . now from (42) we obtain:

$$\begin{aligned} H_{k+1}(y_{k} - \rho_{k}\mu_{k} \ y_{k-1}) &= \rho_{k}s_{k} - \rho_{k}\mu_{k}s_{k-1} \\ H_{k+1}y_{k} - \rho_{k}\mu_{k}H_{k+1} \ y_{k-1} &= \rho_{k}s_{k} - \rho_{k}\mu_{k}s_{k-1} \\ H_{k+1}y_{k} &= \rho_{k}s_{k} - \rho_{k}\mu_{k} \ s_{k-1} + \rho_{k}\mu_{k}H_{k+1} \ y_{k-1} \\ &= \rho_{k}s_{k} - \rho_{k}\mu_{k} \ [s_{k-1} - H_{k+1} \ y_{k-1}] \end{aligned}$$

since  $(H_{k+1} y_{k-1} = s_{k-1})$ 

 $\therefore$  H<sub>k+1</sub>y<sub>k</sub> =  $\rho_k s_k$ , which is equivalent to (standard quasi-Newton condition).

# 4.1- Outline of New Algorithm

**Step1:** Set  $x_0$ ,  $\in$  (initial point, scalar termination).

**Step 2**: Set k = 0,  $d_k = -g_k$ .

Step3: Set  $x_{k+1} = x_k + \lambda_k d_k$ ,  $k \ge 0$  where  $\lambda_k$  is obtained from the line search procedure.

**Step4:** check for convergence, i.e. if  $\|g_{k+1}\| \le 0$ , stop; otherwise continue.

Step5: Compute 
$$\rho_{k} = \frac{2f_{k}(\ln(f_{k}))^{\frac{1}{2}} + \hat{w}}{2f_{k+1}(\ln(f_{k+1}))^{\frac{1}{2}}}$$
, where  $\hat{w} = \frac{\lambda_{k}g_{k}^{T}d_{k}}{2}$ 

**Step6:** Compute  $W_k$ ,  $r_k$ ,  $\mu_k$  which are defined in (32-34). **Step7:** Compute the new search direction defined by:

 $\begin{aligned} d_{k+1} &= -g_{k+1} + \beta_{K}^{MHS} d_{k}, \ k \geq 1, \ \text{where} \ \beta_{K}^{MHS} \ \text{is computed by the following} \\ \text{formula} \ \beta_{k}^{MHS} &= \frac{g_{k+1}^{T} w_{k}}{r_{k}^{T} w_{k}} \ . \end{aligned}$ 

**Step8:** if k=n or if  $\|\mathbf{g}_{k+1}^{T}\mathbf{g}_{k}\| > 0.2\|\mathbf{g}_{k+1}\|$  is satisfied go to step (2), else set k=k+1 and go to step then stop. Otherwise go to step 3.

#### 4.2 global convergence

In order to establish the descent condition and the global convergence of the new proposed method, we make the following additional assumption.

# 4.2.1 Assumption

1) The level set  $\Omega = \{x/f(x) \le f(x_0)\}$  at  $x_0$  is bounded.

2) In some neighborhood  $N \text{ of } \Omega$ , f is continuously differentiable and its gradient is Lipschitz continuous with Lipschitz constant L > 0, i.e.

$$\|g(x) - g(y)\| \le L \|x - y\|$$
, for all  $x, y \in N$ . (43)

The above Assumption implies that there exists a positive constant  $\gamma$  such that :  $\|g(x)\| \leq \gamma$  for all  $x \in \Omega$ . (44)

# 4.2.2Theorem

The direction  $d_{k+1}$  given in (38) satisfies the descent condition

$$g_{k+1}^{T}d_{k+1} = -\|g_{k+1}\|^{2}$$
Proof:
(45)

Since  $\mathbf{d}_0 = -\mathbf{g}_0$ , we have  $\mathbf{g}_0^T \mathbf{d}_0 = -\|\mathbf{g}_0\|^2$ , which satisfies (45). Now from (8), we have:

$$\begin{aligned} \mathbf{d}_{k+1}^{T} \mathbf{g}_{k+1} &= - \left\| \mathbf{g}_{k+1} \right\|^{2} + \beta_{k}^{\text{MHS}} \mathbf{r}_{k} \mathbf{g}_{k+1} \text{, where } \beta_{k}^{\text{MHS}} = \frac{\mathbf{g}_{k+1}^{T} \mathbf{W}_{k}}{\mathbf{r}_{k}^{T} \mathbf{W}_{k}} \\ \mathbf{d}_{k+1}^{T} \mathbf{g}_{k+1} &= - \left\| \mathbf{g}_{k+1} \right\|^{2} + \frac{\mathbf{g}_{k+1}^{T} \mathbf{W}_{k}}{\mathbf{r}_{k}^{T} \mathbf{W}_{k}} \mathbf{r}_{k}^{T} \mathbf{g}_{k+1} \\ \text{Since } \mathbf{r}_{k}^{T} \mathbf{g}_{k+1} &= 0 \\ \therefore \ \mathbf{d}_{k+1}^{T} \mathbf{g}_{k+1} &= - \left\| \mathbf{g}_{k+1} \right\|^{2} \text{.} \end{aligned}$$

We note that this method always satisfies  $\mathbf{g}_k^T \mathbf{d}_k = -\|\mathbf{g}_k\|^2 < 0$  for all k, which implies the sufficient descent condition (13) with c=1.

**Property (\*):** Consider the method (2) and (3), assume that there exists a positive constant  $\overline{\gamma}$  such that  $\|g_{k+1}\| \ge \overline{\gamma}$  holds for all k. then we say that the method has Property (\*) if there exists constants b > 1 and  $\xi > 0$  such that for all k:

$$\left|\beta_{k}\right| \leq b \tag{46}$$

and 
$$\|\mathbf{s}_{k}\| \leq \xi \Rightarrow |\boldsymbol{\beta}_{k}| \leq \frac{1}{b}$$
 (47)

Also we need the following additional Assumption (Ford et al., 2009) to prove the global convergence of the proposed method.

(48)

# 4.2.3 Assumption

- 1) Assume that there exists appositive constant  $\tau_1$  such that, for all k  $|\mathbf{g}_k^{\mathrm{T}}\mathbf{r}_k| > \tau_1 |\mathbf{g}_k^{\mathrm{T}}\mathbf{d}_k|$
- 2) Assume that there exists appositive constant  $\tau_2$  such that satisfies  $0 \le \tau_1 \le 1$  and

$$\rho_{k} |\mu_{k}| \leq \tau_{2} \min\left\{ \frac{|\mathbf{g}_{k+1}^{T} \mathbf{y}_{k}|}{|\mathbf{g}_{k+1}^{T} \mathbf{y}_{k-1}|}, \frac{|\mathbf{r}_{k}^{T} \mathbf{y}_{k}|}{|\mathbf{r}_{k}^{T} \mathbf{y}_{k-1}|} \right\} \text{ for all } k$$
(49)

**4.2.4 Theorem:** Consider the method (2) and (3) that satisfies the following conditions:

(1)  $\beta_k \ge 0$  for all k.

(2) Property (\*) holds.

Assume that  $\lambda_k$  satisfies the strong Wolfe condition (9) and (10). If Assumption 4.2.1 holds, then the method converges in the sense that  $\lim_{k\to\infty} \|\mathbf{g}_{k+1}\| = 0$  (Ford et al., 2009).

Now using the above theorem, we obtain the following global convergence property.

# 4.2.5 New Theorem:

Suppose that Assumption 4.2.1 and 4.2.3 are satisfied. Consider the method (2)-(3) with (38). Assume that  $\lambda_k$  satisfies the strong Wolfe condition (9) and (10) then the new method converges in the sense that  $\lim_{k \to \infty} \|g_{k+1}\| = 0$ .

Proof:

It's clearly  $\beta_k \ge 0$ . So we only prove that the proposed method satisfies condition (2) of Theorem (4.2.4). To this end, we assume that there exists a constant  $\overline{\gamma}$  such that  $\|g_{k+1}\| \ge \overline{\gamma}$  for all k.

It follows from (33) and (49) that:  

$$\begin{vmatrix} g_{k+1}^{T} w_{k} \end{vmatrix} = \begin{vmatrix} g_{k+1}^{T} y_{k} \end{vmatrix} + \rho_{k} \begin{vmatrix} \mu_{k} g_{k+1}^{T} y_{k-1} \end{vmatrix}$$

$$\leq |g_{k+1}^{T} y_{k}| + \tau_{2} |g_{k+1}^{T} y_{k}|$$

$$\leq (1 + \tau_{2}) |g_{k+1}^{T} y_{k}|$$

$$\leq (1 + \tau_{2}) L ||g_{k+1}|| ||s_{k}||.$$
(50)

and also from (33), (49), and the fact  $g_{k+1}^{T}r_{k} = 0$  we have

$$\begin{aligned} \left| \mathbf{r}_{k}^{\mathrm{T}} \mathbf{w}_{k} \right| &\geq \left| \mathbf{r}_{k}^{\mathrm{T}} \mathbf{y}_{k} \right| - \rho_{k} \left| \boldsymbol{\mu}_{k} \mathbf{r}_{k}^{\mathrm{T}} \mathbf{y}_{k-1} \right| \\ &\geq (1 - \tau_{2}) \left| \mathbf{r}_{k}^{\mathrm{T}} \mathbf{y}_{k} \right| \\ &= (1 - \tau_{2}) \left| \mathbf{g}_{k}^{\mathrm{T}} \mathbf{r}_{k} \right| \end{aligned}$$
(51)

It follow from (48) and (45) that:  

$$\left| \mathbf{g}_{k}^{\mathrm{T}} \mathbf{r}_{k} \right| \geq \tau_{1} \left| \mathbf{g}_{k}^{\mathrm{T}} \mathbf{d}_{k} \right| = \tau_{1} \left\| \mathbf{g}_{k} \right\|^{2}$$
(52)

Therefore, from (51) yield  

$$\begin{aligned} \left| r_{k}^{T} w_{k} \right| &\geq \tau_{1} (1 - \tau_{2}) \left\| g_{k} \right\|^{2} \tag{53} \end{aligned}$$
By definition of  $\beta_{k}^{\text{MHS}}$ , (50) and (53) and since  $\left\| s_{k} \right\| < A$ , we have  

$$\left| \beta_{k}^{\text{MHS}} \right| &\leq \frac{\left| g_{k+1}^{T} w_{k} \right|}{\left| r_{k}^{T} w_{k} \right|} \leq \frac{(1 + \tau_{2}) L \left\| g_{k+1} \right\| \left\| s_{k} \right\|}{\tau_{1} (1 - \tau_{2}) \left\| g_{k} \right\|} \leq \frac{(1 + \tau_{2}) L \gamma A}{\tau_{1} (1 - \tau_{2}) \overline{\gamma}^{2}} = b \tag{54}$$
Now let  $\xi = \frac{(1 + \tau_{2}) \overline{\gamma}^{2}}{\tau_{1} (1 - \tau_{2}) L \gamma b}$ 

Then, if  $\|\mathbf{s}_k\| \leq \xi$ , we have

$$\left|\beta_{k}^{\text{MHS}}\right| \leq \frac{(1+\tau_{2})L\gamma A}{\tau_{1}(1-\tau_{2})\overline{\gamma}^{2}} \leq \frac{1}{b}$$
(55)

Therefore, Property (\*) holds. Thus from Theorem (4.2.4), the Theorem is true (i.e.  $\lim_{k\to\infty} \|g_{k+1}\| = 0$ ).

#### **5** Numerical results

A new non-quadratic model is derived and a new implicit multi-step quasi Newton method have also been derived, using these two derivations in memoryless BFGS method and obtain the new modification of HS (modified Hestenes-Stiefel) method.

We compare MHS with standard HS method. The parameters in the strong Wolfe line search were chosen to be  $\delta = 0.001$  and  $\sigma = 0.9$ . For each test problem, the termination criterion is  $\|g_{k+1}\| < 10^{-5}$ , also the value of  $\mu_k$  where  $\mu_k = \frac{S_{k-1}^T S_k}{S_{k-1}^T S_{k-1}}$  is between the (0,1). The numerical results of our

experiment are reported from Table (1). Each problem was tested with various value of n changing from n=100, 1000, 10000. The numerical results are given in the form of NOI (Number of Iterations), NOE (Number of Evaluations) and using a program written in FORTRAN language.

# Table (1)

# Comparison the new modified HS method with the standard HS method

| Test fn. | Dim.  | New modified<br>HS method<br>NOF NOI |     | HS method<br>NOF NOI |     | Test fn. | Dim.  | New modified<br>HS method<br>NOF NOI |    | HS method NOF NOI |    |
|----------|-------|--------------------------------------|-----|----------------------|-----|----------|-------|--------------------------------------|----|-------------------|----|
| Powell   | 100   | 93                                   | 40  | 109                  | 41  | Penalty  | 100   | 8                                    | 2  | 8                 | 2  |
|          | 1000  | 188                                  | 70  | 109                  | 41  |          | 1000  | 8                                    | 2  | 8                 | 2  |
|          | 10000 | 177                                  | 73  | 163                  | 57  |          | 10000 | 10                                   | 3  | 10                | 3  |
| Cantrel  | 100   | 198                                  | 30  | 272                  | 36  | Cubic    | 100   | 49                                   | 19 | 44                | 16 |
|          | 1000  | 214                                  | 46  | 328                  | 40  |          | 1000  | 48                                   | 19 | 44                | 16 |
|          | 10000 | 269                                  | 37  | 370                  | 43  |          | 10000 | 49                                   | 19 | 44                | 16 |
| Miele    | 100   | 186                                  | 61  | 110                  | 34  | Sum      | 100   | 65                                   | 12 | 65                | 12 |
|          | 1000  | 163                                  | 60  | 172                  | 47  |          | 1000  | 87                                   | 18 | 82                | 18 |
|          | 10000 | 289                                  | 94  | 429                  | 157 |          | 10000 | 173                                  | 38 | 185               | 36 |
| Wolfe    | 100   | 89                                   | 44  | 99                   | 49  | Extended | 100   | 27                                   | 5  | 27                | 5  |
|          | 1000  | 103                                  | 51  | 141                  | 70  | cilff    | 1000  | 27                                   | 5  | 27                | 5  |
|          | 10000 | 280                                  | 137 | 399                  | 164 |          | 10000 | 29                                   | 6  | 29                | 6  |
| Shallow  | 100   | 24                                   | 10  | 25                   | 10  | Denschnb | 100   | 21                                   | 9  | 15                | 6  |
|          | 1000  | 27                                   | 11  | 25                   | 10  | (CUTE)   | 1000  | 25                                   | 11 | 18                | 7  |
|          | 10000 | 27                                   | 11  | 24                   | 9   |          | 10000 | 24                                   | 10 | 18                | 7  |
| Rosen    | 100   | 60                                   | 24  | 54                   | 22  | Dixmaana | 100   | 14                                   | 6  | 12                | 5  |
|          | 1000  | 72                                   | 29  | 88                   | 32  | (CUTE)   | 1000  | 13                                   | 5  | 12                | 5  |
|          | 10000 | 67                                   | 28  | 54                   | 22  |          | 10000 | 17                                   | 7  | 12                | 5  |
| Recip    | 100   | 18                                   | 6   | 16                   | 5   | Dixmaanb | 100   | 13                                   | 5  | 13                | 5  |
|          | 1000  | 18                                   | 6   | 16                   | 5   | (CUTE)   | 1000  | 13                                   | 5  | 13                | 5  |
|          | 10000 | 25                                   | 8   | 18                   | 6   |          | 10000 | 14                                   | 5  | 14                | 5  |

#### References

Al-Bayati, A., (1993),"A new non-quadratic model for unconstrained non-linear optimization", Mutah. J. For Research and Studies, 8.

Boland, W., Kamgnia, E. and Kowallik, J., (1979)," A conjugate gradient optimization method invariant to non-linear scaling ", Journal of optimization theory and Applications, 2.

Dai, Y. H. and Yuan, Y., (1999),"A nonlinear conjugate gradient method with a strong global convergence property", SIAM J. Optim., 10, pp.177-182.

Ford, A. J. and Moghrabi, A. I., (1994)," Multi-step quasi-Newton methods for optimization", Journal of Computational and Applied Mathematics, 50, pp.305-323.

Ford, A. J., Narushima, Y. and Yabe, H. (2009)," A three-term conjugate gradient method with sufficient descent property for unconstrained optimization", Computational Optimization and Applications, 40, pp.191-216.

Fletcher, R. and Reeves, C., (1964)," Function minimization by conjugate gradients", Computer Journal, 7,pp.149-154.

Hager, W. W. and Zhang, H., (2005),"A new conjugate gradient method with guaranteed descent and an efficient line search ", SIAM. J. Optim. ,16,pp.170-192.

Hager, W. W. and Zhang, H., (2006), "A survey of nonlinear conjugate gradient methods", Pacific Journal of Optimization, 2, pp.35-58.

Hestenes, M. R. and Stiefel, E. L., (1952)" Methods of conjugate gradients for solving linear systems", Journal of Research of the National Bureau of Standards, Section B,49, pp.409-432.

Liu, Y. L. and Storey, S. C., (1991),"Efficient generalized conjugate gradient algorithms", Part 1: Theory, J. Optima. Theory Appl.,69, pp.129-137.

Nocedal, J., (1980)," Updating quasi-Newton matrices with limited storage", Math. Comput., 35, pp. 773-782.

Nocedal, J. and Wright, S.J., (2006),"Numerical Optimization (Second Edition)", Springer Series in Operation Research, Springer Verlag, New York.

Polyak, B. T., (1969), "The conjugate gradient method in extreme problems", USSR Comp. Math. Phys., Vol. 9, pp. 94-112.

Shanno, D. F., (1978)," Conjugate gradient methods with inexact searches", Math. Oper. Res. 3, pp. 244-256.

Tassopoulus, A. and Story, C., (1984),"A variable metric method using nonquadratic model", Journal of optimization theory and Applications, 43, pp.200-217.

Wolfe, P. (1969)," Convergence conditions for ascent methods", SIAM. Rev. 11, pp. 226-235.

Zoutendijk, G., (1970)," Nonlinear Programming ", Computational Methods, in: J. Abadie (Ed.), Integer and Nonlinear Programming, North-Holland.