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The spectral form of the Dai-Yuan conjugate gradient  algorithm

یوان-الصیغة الطیفیة لخوارزمیة التدرج المترافق ل داي

Dr.Abdul-Ghafoor  J. Salem.*            Dr. Khalil  K. Abbo**

Abstract
Conjugate Gradient (CG) methods comprise a class of unconstrained

optimization algorithms which are characterized by low memory requirements
and strong local and global convergence properties. Most of CG methods do not
always generate a descent search directions, so the descent or sufficient descent
condition is usually assumed in the analysis and implementations. By assuming a
descent and pure conjugacy conditions a new version of spectral Dai-Yuan (DY)
non-linear conjugate gradient method introduced in this article. Descent
property for the suggested method is proved and numerical tests and
comparisons with other methods for large-scale unconstrained problems are
given.

الملخص

مـن خوارزمیـات ألأمثلیـه غیـر المقیـدة وتتمیـز اًصـنف(CG) طرائق المتجهات المترافقة تشكل 

. خــزن مــصفوفات وكــذلك لهــا خاصــیة التقــارب المحلــي والمطلــقالــى تحتــاجلاا هــذه الطرائــق بأنهــ

تفــرض خاصــیة الانحــدار فــإن لأتولــد متجهــات بحــث انحداریــة دائمــا لــذلك (CG)اغلــب طرائــق  

ص اقترحنــا البفــرض خاصــیتي الانحــدار والترافــق الخــ. عــادة عنــد تحلیــل وتمثیــل هــذه الخوارزمیــات

تــم برهــان خاصــیة ، یــوان للمتجهــات المترافقــة غیــر الخطیــة-دايصــیغة طیفیــة جدیــدة لخوارزمیــة

.نفسهالمجالمقارنتها عملیا مع خوارزمیات اخرى فيتللخوارزمیة المقترحة وتمالانحدار

1-Intrduction
   The non-linear Conjugate Gradient (CG) method is a very useful
technique  for solving large scale unconstrained minimization problems
and has wide applications in many fields [9].  This method is an iterative
process which requires at each iteration the current gradient and previous
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direction, which is characterized by low memory requirements and strong
local and global convergence properties [3 and 12].
  In this paper, we focus on conjugate gradient methods applied to the
non-linear unconstrained minimization problem:

.,)(min nRxxf Î )1(..........
Where RRf n ®:  is continuously differentiable function and bounded
below. A conjugate gradient method generates a sequence 1, ³kxk

starting from an initial guess nRx Î1 , using the recurrence
kkkk dxx a+=+1 )2(..........

Where  the positive step size ka  is  obtained  by  a  line  search,  and  the
directions kd  are generated by the rule:

1111 , gddgd kkkk -=+-= ++ b )3(..........
Where )( kk xfg Ñ= ,  and  let kkk ggy -= +1  and kkk xxs -= +1  , here kb
is the CG update parameter. Different CG methods corresponding to
different choice for the parameter kb  see [1, 4 and 10].  The  first  CG
algorithm for non-convex problems was proposed by Fletcher and Revees
(FR) in 1964 [11], which is defined as
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We know that the  other equivalents forms for kb   are Polack-Ribeir (PR)
and Hestenes- Stiefel (HS) for example
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Although all the above formulas are equivalent for convex quadratic
functions, but they have different performance for non-quadratic
functions, the performance of a non-linear CG algorithm strongly
depends on coefficient kb .  Dai  and  Yuan  (DY)  in  [6]  proposed  a  non-
linear CG method (2) and (3) with kb    defined as:
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Which generates a descent search directions
.0<k

T
k gd )7(..........

At every iteration k and convergence globally to the solution if the
following Wolfe conditions are used to accept the step-size ka  [2]:

k
T
kkkkkk dgcxfdxf aa 1)()( +£+ )8(..........

k
T
kk

T
kkk dgcddxg 2)( ³+a )9(..........
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Where .10 21 <<< cc  Condition (8) stipulates a decrease of f  along kd
if  (7) satisfied. Condition (9) is called the curvature condition and it's
role is to force ka   to be sufficiently far a way from zero [12]. Which
could happen if only condition (8) were to be used. Conditions (8) and (9)
are called Standard Wolfe Conditions (SDWC). Notice that if equation

(8) satisfied then always there exists 0
_

>a  such that for any ],0[
_

aa Îk

the conditions (8) and (9) will be satisfied according to the theorem (1)
given later. If we wish to find a point ka , which is closer to a solution of
the one dimensional problem

)()( minMin
00

kk dxf aa
aa

+=F
>>

)10(..........

Than a point satisfying (8) and (9) we can impose on ka  the Strong
Wolfe Conditions (STWC):

k
T
kkkkkk dgcxfdxf aa 1)()( +£+ )11(..........

k
T
kk

T
kkk dgcddxg 2)( £+a )12(..........

Where 10 21 <<< cc . In contrast to (SDWC) k
T
k dg 1+  cannot be arbitrarily

large [12]. The (STWC) with the sufficient descent property
)1,0(,. Î-< cgcgd kk

T
k )13(..........

Widely used in the convergence analysis for the CG methods.
Theorem (1):  Assume that f is continuously differentiable and that is
bounded below along the line kk dxx a+= , ),0( ¥Îa . Suppose also
that kd  is a direction of descent (7) is satisfied if 10 21 <<< cc  then there
exists nonempty intervals of step lengths satisfying the (SDWC) and
(STWC) conditions. For proof see [12].
  The Fletcher-Revees (FR) and Dai-Yuan (DY) methods have common
numerator 11 ++ k

T
k gg  .  One theoretical difference between these methods

and other choices for the update parameter kb  is  that  the  global
convergence theorems only require the Lipschitz assumption not the
bounded ness assumption  [9].
    The global convergence for the methods with 11 ++ k

T
k gg  in the numerator

of kb  established with exact and inexact line searches for  general
functions [2, 7, and 13]. Despite the strong convergence theory that has
been developed for methods with 11 ++ k

T
k gg  in  the numerator  of kb , these

methods are all susceptible to jamming, that is they begin to take small
steps without making significant progress to the minimum [9]. On the
other hand the convergence of the methods with k

T
k yg 1+  in the numerator

(PR) and (HS) for general non-linear function are uncertain, in general
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the performance of these methods is better than the performance of the
methods with 11 ++ k

T
k gg  in  the  numerator  of kb  see [9], but they have

weaker convergence theorems.
 This paper is organized as follows: in section 2 new spectral form for DY
non-linear conjugate gradient algorithm is suggested. In section 3 we will
show that our algorithm satisfies sufficient descent condition for every
iteration. Section 4 presents numerical experiments and comparisons.
2. New spectral form for Dai and Yuan CG method
      An attractive feature of the CG method is that the following (pure
conjugacy condition )

01 =+k
T
k dy )14(..........

is always holds if the objective function )(xf  is convex quadratic and
line search is exact [8]. In this section we use the relation (7) and (14) to
derive new spectral DY conjugate gradient method. Consider the search
direction of the form

11
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where kg  is parameter. Assume that the search direction in (15) satisfies
the relation (7) i . e
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  To find the value of c, we use the pure conjugacy condition (14) i e
01 =+k

T
k dy  then
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With simple algebra we get
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Equations (17) and (19) give
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   Therefore the new spectral DY search direction is
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With 1+kg  defined in the equation (17)
Algorithm (spectral form of DY.  SPDY say)

 Step (1): Choose an initial starting point 01 >Î eandRx n , consider

1,1,
1

111 ==-= kand
g

gd a

Step(2): Test for convergence. If e<kg  stop kx  is optimal
              Else go to step(3)
Step(3): Compute ka  satisfying the (SDWC) or (STWC) and update the
              Variable kkkk dxx a+=+1  and compute kkkk sandygf ,, 11 ++

Step(4):  Direction computation: compute 1+kg  from (20) and set

11
11 k

k
T
k

k
T
k

kk s
sy
gg

gd ++
++ +-= g .  If Powell restart is satisfied then

111 +++ -= kkk gd g

                 Else dd k =+1 , compute initial guess for )(
1

1
-

+ =
k

k
kk d

d
aa  and

                  Set 1+= kk  go to step(2)
3. Descent property of the SPDY algorithm

   An important feature for any minimization algorithm is the descent
(7) or the sufficient descent (13) property. In this section we proof that
our suggested new  algorithm (SPDY) generates a sufficient descent
directions for each iteration k.
Theorem (1):

Suppose that the step-size ka satisfies the standard Wolfe conditions
(SDWC), consider the search directions kd  generated from (21) where

1+kg  computed from (20) then the search directions 1+kd  satisfies the
sufficient descent condition (13) for all k.
Proof
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The proof is by induction. If k=1 then 011111 <-=-= ggggd TT   then the
sufficient descent holds with c=1,  know let kk

T
k gcgs -<  to proof for

k+1, multiply (21)by T
kg 1+   to get
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Note that from second standard Wolfe condition (9)we have
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From (20), (2.9) and (23) we get
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4. Numerical results and comparisons
  In this section we present the computation performance of a

FORTRAN implementation of the SPDY, DY and FR algorithms on a set
of unconstrained optimization test problems. We selected ( 15 ) large-
scale unconstrained optimization test problems in extended or generalized
form from [5]. For each function we have considered n=100, 1000 (where
n is the number of variables ).  All algorithms implement the standard
Wolfe line search conditions with 0001.01 =c  and 9.02 =c   and   same
stopping criterion 610-

¥
<kg ,  where

¥
. is the maximum absolute

component of a vector.
    The comparison of algorithms are given in the following context. We
say that, in the particular problem i  the performance of Algorithm(Alg1)
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was better than the performance of Alg2 if the number of iterations (iter)
or the number of function-gradient evolutions (fg) or the number of
restart (irs) of Alg1 was less than the number of (iter) or (fg) or the (irs)
corresponding to Alg2, respectively. Table(1) and table(2) shows the
details of numerical results for the Fletcher-Revees (FR), Dai-Yuan (DY)
and our algorithm (SPDY).

Table (1) Comparison of the algorithms for n=100
    FR          DY      SPDY   Test

 Problems
Iter        fg            irs Iter        fg            irs Iter        fg            irs

Trigonometric    18    34   10   18   34     9   18   33   10
Ex.  Rosenbrock  (CUTE)    41    84   22   40   81   24   34   72   18
Ex. White & Holst    36    76   20   34   68   18   31   67   17
 Perturbed Quadratic  101  154   31   82 123   29   95 145   29
Diagonal 2    67  107   23   59 100   17   55   93   18
Hager    28    46   11   27   45   12   25   41   10
Generalized Tridiagonal 2    36    57   11   39   59   15   40   60   16
Extended Powell    59  113   20   72 136   25   66 125   16
Extended BD1    42    70   39   52   86   51   44   75   41
Extended Maratos    70  160   36   68 151   34   64 151   29
Ex. Quad.  Penalty QP2    28    60   15   24   51   12   23  54   12
Partial Perturbed Quad.    74  114   26   84 132   23   75 113   21
Almost  Perturbed Quad    84  133   21   98 153   31 101 152   32
Tridiago. Perturbed Quad.  105  168   35  105 164   33   95 151   24
ENGVAL1 (CUTE)    27    47     9    23   44     5   29   50   11
Total  816 1423 329 825 1427 335 795 1382 304

Table (2) Comparison of the algorithms for n=1000
    FR          DY      SPDY   Test

 Problems

Iter               fg         irs Iter          fg         irs      Iter       fg         irs
Trigonometric   29   53   19   32   57   19   29   52   18
Ex. Rosenbrock  (CUTE)   40   92   20   38   83   21   34   75   18
Ex. White & Holst   36   76   18   32   69   17   26   53   13
 Perturbed Quadratic 284 437   83 326  519   85  338  527   98
Diagonal 2 219 360   71 189  313   56  190  315   60
Hager 278 496 248 285 510 255  188 218  159
Generalized Tridiagonal 2   64   98   25   63   99   27    65  100   26
Extended Powell   67 128   22   77  141   24   58  111     17
Extended BD1   53   87   53   53    87   53   53    87   53
Extended Maratos   70 155   36   70    160   34   63  147   29
Ex. Quad.  Penalty QP2   36   87   20   37    90   20   32    85   20
Partial Perturbed Quad. 225 373   56  240   391   63 203  335   47
Almost  Perturbed Quad 323 503   88  316  502   95  290  451   80
Tridiago. Perturbed Quad. 406 628 114  332  510   87  333  525   95
ENGVAL1 (CUTE) 104 180   90  113  202 101    50    98   25
total 2234 3753 963 2203 3733 957 1952 3179 758
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