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Abstract
In this paper, we have discussed and  investigated an extended PR-CG method

which uses  function and gradient values. The new method involves the extended CG-
methods and have the sufficient descent and globally convergence properties under
certain conditions. We have got some important numerical results by improving a
standard computer program compared with Wu and Chen (2010) method in this field.

الموسعة في التدرج المترافق لحل المسائل التصغیریة الناعمةPR  طریقة

المستخلص
قـیم تـستخدمالتـيالموسـعةPR في هذا البحث تطرقنا إلى تقـصي و اشـتقاق نظـري لطریقـة

تي وتمتلـــك خاصـــیالموســـعحقـــل طرائـــق التـــدرج المترافـــقالطریقـــة الجدیـــدة تـــشمل .الدالـــة والمـــشتقة

تـــم الحـــصول علـــى نتـــائج عددیـــة .تحـــت شـــروط معینـــةالتقـــارب الـــشاملالانحـــدار الحـــاد وخاصـــیة

Wu and Chen (2010) یقـةمج قیاسـیة فـي هـذا المجـال مقارنـة مـع طرامتمیـزة عبـر تطـویر بـر

.نفسهالمجالالمتماثلة في
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1.  Introduction.

      Our problem is to minimize a function of n variables:
)(xfMin , where RR: n ®f  ……………….…………………….……….....(1)

is a smooth nonlinear function and its gradient (x)fÑ  is available. At the current

iterative point kx , the Conjugate Gradient (CG) method has the following form:
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where ka  is a step-length; kd  is a search direction; )(k kxfg Ñ=  and kb  is  a
parameter. The CG-method has played a special role in solving large-scale nonlinear
optimization due to the simplicity of their iterations and their very low memory
requirements, for example. Some well-known formulas for kb  are the Fletcher-
Reeves (FR), Polak-Ribiére (PR), Hestenes-Stiefel (HS) methods which are given,
respectively, by:
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where
11 -- -= kkk ggy …………………………………………………………………….(3d)

       Another important issue related to the performance of CG-methods is the line
search, which requires sufficient accuracy to ensure that the search directions yield
descent. Common criteria for line search accuracy are the Wolfe-Powell conditions:
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 Equations [(4a)-(4b)] and [(5a)-(5b)] are called the “Standard Wolfe” and “Strong
Wolfe” conditions, respectively. It has been shown by Dai and Yuan [32] that for the
FR scheme, the strong Wolfe-Powell conditions may not yield a direction of descent
unless 21£s . In typical implementations of the Wolfe-Powell conditions, it is often
most efficient to choose s  close to one. Hence, the constraint 21£s , needed to
ensure descent, represents a significant restriction in the choice of the line search
parameters. For the PR scheme, the strong Wolfe-Powell conditions may not yield a
direction of descent for any choice of )1,0(Îs . Although all these methods are
equivalent in the linear case, their behaviors for general objective functions may be
far different. In the PR method, if a bad direction and a tiny step from 1-kx  to kx  are
generated, the next direction kd  and the next step ka  are also likely to be poor unless
a restart along the gradient direction is performed. For general functions, [19] proved
the global convergence of  PR method with exact line search. On the other hand, the
PR and HS methods perform similarly in terms of theoretical property. Both methods
are preferred to the FR method in its numerical performance, because the methods
essentially perform a restart after it encounters a bad direction. Nevertheless, [25]
showed that the PR and the HS methods can cycle infinitely without approaching a
solution, which implies that they do not have globally convergence.

      Therefore,  over  the  past  few  years,  much  effort  has  been  put  to  find  out  new
formulae for CG-methods such that they have not only global convergence property
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for general functions but also good numerical performance [21] and [26]. New kinds
of nonlinear CG-methods are developed by using new conjugacy condition, such as
[31]; [20]; [18]  and [35]. Recently, [2] proposed a new three term preconditioned
gradient memory method. Their method subsumes some other families of nonlinear
preconditioned gradient memory methods as its subfamilies with Powell's restart
criterion and inexact Armijo line searches. Their search direction was defined by:
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where ka  is a step-size defined by inexact Armijo line search procedure and kb  is the
conjugacy parameter. [11] introduced two versions CG-algorithm. Their search
directions are defined by:
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More recently, [5] introduced a new three-term CG-method. An attractive property of
their proposed method is that the generated directions are always descending. Besides,
this property is independent of line search used and the convexity of objective
function. A remarkable property of the method is that it produces a descent direction
at each iteration. Motivated by the nice descent property. In order to ensure the global
convergence for general functions, Dai and Liao restrict kb  to be positive, that is:
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The search direction of their method was given by:
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where +DL
kb  is defined in (9), and 111 ---= k

T
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kk yddgm and t   is defined by:
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Also, [7] proposed several extended CG-methods which  combine both quadratic and
non-quadratic models. Their extended search directions are defined as:
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Finally, [3]is considered as a modified three term CG-method defined as :
kkkkkk ydgd gb -+-= ++ 11 ………………………………………………………... (18)

k
T
k

k
T
kPR

k gg
yg 1+=b and ,

)1(
1mod

k
T
kk

T
k

k
T
kified

k gduggu
dg
+-

= +g ...……...…………….....(19)

k
T
kk

T
kk

T
kk

T
kk

T
kkk

T
kkk

T
kk

T
kkkk

T
kk

T
kkk

T
kkk

k
T
kk

T
kkkkk

T
kk

T
kkkkk

T
kk

T
k

dygygddygyggyggdgygggvgdggvgg

dygyggggygvggggdyy
u

11
2

1
2

1
22

1
2

1
22

1
222

11
222

1 ))()((

++++++

++++

-++--

+-+-
= .(20)

where ]1,0(Îu  is  a  constant.  Obviously, 1mod sc
k

ified
k gg =  for u approaches 0, and

2mod sc
k

ified
k gg =  for 1=u . The search direction generated by this method at each

iteration satisfies the descent condition. The optimal value of the parameter u  is given
in (20).

        In  this  paper,  we  have   proposed  a  new  formula New
kb  for kb  applying the

rational non-quadratic model and Perry’s conjugacy condition [1].
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where kH  is an approximation to the inverse Hessian and 11 -- -= kkk xxs . They
respectively can be seen as the modifications of the method HS and PR. In
comparison with classic CG methods, the decrease of the objective function value is
contained in the two new formulae. Moreover, New

kb  keeps  the  property  of   PR
method, namely, if a very small step is generated the next search direction tends to the
Steepest Descent (SD) direction, preventing a sequence of tiny steps from happening.
Furthermore, finite quadratic termination is retained for the new methods. Since the
sufficient descent condition is a property of great importance for the global
convergence analysis of any CG-method, we have modified the conjugacy parameter
of [14] to implement the non-quadratic rational model which satisfies the sufficient
descent property and the standard Wolfe-Powell conditions. In addition, the global
convergence property of the new proposed CG-method is discussed and a set of
numerical results presented show that the new proposed method is efficient.
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2. Materials and Methods.
2.1 Extended CG-Methods for Non-Quadratic Models.
          Many attempts have been made to investigate more general function than the
quadratic one as a basis for the CG-methods. Over years, various authors have
published works in this area, and a large variety of methods have been derived to
solved this problem for many sorts of objective functions. The CG-methods discussed
so far assume a local quadratic representation of the objective function. However,
quadratic models may not always be adequate to incorporate all the information which
might be needed to represent the objective function successfully. and in problems
where the quadratic representation is not good. When we are remote from such a
region, a non-quadratic model may better represent the objective function and that
leads to speculation on a better way to choose a type of a non-quadratic model.

2.2 Extended Rational CG-Method. [8]
           The CG-method so far discussed is a local quadratic representation of  the
objective  function.  In  problems  when  the   quadratic  representation  is  not  good,  or
when we are remote from such a region, quadratic function ))(( xqf , where f  is
monotonic increasing, may be better to represent the objective and thus it gives an
advantage  to  a  method  based  on  this  model.  In  order  to  obtain  better  global  rate  of
convergence for minimization methods when applied to more general functions than
the quadratic. In this paper, Al-Bayati's 1993 extended CG-method which is invariant
to nonlinear scaling of quadratic rational functions is proposed and combined with the
standard conjugacy condition of [14] to increase the efficiency of this type of CG-
methods. There is some precedent for this approach, if )(xq  is quadratic function then
a function f  is defined as nonlinear scaling of )(xq  if  the  invariancy  property  to
nonlinear scaling by [17] holds:

))(()(min xqfxf = …………………………………………………….…………(22)

 where 0>= f
dq
df  and 0>q ………….................................................................(23)

has been considered by [15]. Al-Bayati introduced several non-quadratic rational
models; see for example Boland theorem [30]; [8]; [4]; [10] and [9]. Al-Bayati's, 1993
non-quadratic model to be investigated  here, is defined as the quotient of two
quadratic functions  and so belongs also to the class of rational functions Al-Bayati's
rational function model was considered by:
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 is the quadratic function then it determines the solutions minx  in  a  finite  number  of
iterations not exceeding (n), and )]([ xqf  satisfy the property (23).

2.3 Outline of Al-Bayati's Extended Rational CG-Model.

Step 1:  Compute  a, b and c using
2
gsa

T

= ; awb -= and fawwac )( --= .

Step 2:  If d£b d£cor ; set 1=r  and go to Step 4.
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Step 3:  Compute
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        Where d  is a suitable tolerance value; say 11101 -´=d  .This direction kd  is
then  used  instead  of  the  direction  used  in  the  standard  CG-formula  and  since  the
model satisfies conditions (23), the resulting algorithm has finite convergence on
model (24). Recently, [6] introduced a new extended CG-method for which its search
directions are defined by:
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[ ] ),min,0(max FRPRZ
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kr   is a scalar defined in (26).

3. Wu and Chen (2010) CG-Method.
       In this section, we are going to present the recent work of the two well-known
scientists Wu and Chen in (2010). They introduced several well-known CG-formulas.
The conjugacy parameters of these CG-methods are given by; 21 , kk bb , 43

kk and bb
respectively by making use of the Powell’s restarting criterion and the Armijo-type
line search defined by:
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They proved that all the above CG-methods satisfy the sufficient descent condition
and have the global convergence property.

4. A New Extended CG-Method.
      Consider the following quadratic model we proceed as in [14]:
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where nnRA ´Î  is a symmetric positive definite matrix, nRbÎ and RcÎ . Then
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From Taylor series b=g we get:
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It follows from Perry's conjugacy conditions (21) and (40) that
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Additionally, 1-+-= kkkk dgd b  and (41)  imply that:
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If  exact line search., i.e. 01 =-k
T
k dg  and 11 -- -= kk gd  is used in (42a) yields:
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For more details see [14].
        From Section (2) we can get kr  using (26) to use in the new extended CG
method whose conjugacy parameter is defined by New

kb  such that:
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Note that the scalar kr  may be rewritten as:
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By using (45), equation (44) becomes:

2
1

112
1

2
11

1 )(
)(4

)()(2

-

--
-

--
- -

+-
+=

k

k
T
k

kk

k
T
k

kk
PR
k

New
k

g

sg
ff

gsff
bb ………………………………(46)

2
1

2
1

3
11

3
1

)(4
)()(8

--

---

-

+-
+=

kkk

k
T
kkkPR

k
New
k

gff
sgff

bb …………………………….……….….....(47)

4.1 Outline of The New Extended CG-Method.
Step 1:    Given nRx Î1 ; ( 0>e ); (k) is an index of the algorithm
Step 2:    Set k=1; kk gd -=
Step 3:    Set kkkk dxx a+=+1 ; ka  is obtained by WP-procedure.

Step 4:    If  Powell restarting, 2
1 2.0 kk

T
k ggg >- ,  satisfied then set:

11 ++ -= kk gd  else set k
New
kkk dgd b+-= ++ 11   ( New

kb is defined in (47)),
                go to Step 2.
Step 5:    If e<+1kg ,  stop else set  k=k+1 go to Step 3.

4. 2  Theoretical Properties for the New Extended CG-Method.
       In this section, we focus on the convergence behavior on the New

kb  method with
exact line searches. Hence, we make the following basic assumptions on the objective
function.

4. 3 Assumption.
f  is bounded below in the level set })()({ 00

xfxfRxL n
x £Î= ;  in  some

neighborhood U  of the level set
0xL , f  is continuously differentiable and its

gradient fÑ  is  Lipschitz  continuous  in  the  level  set
0xL  ,  namely,  there  exists  a

constant L> 0 such that:
yxLyfxf -£Ñ-Ñ )()(   for all x, y Î

0xL ……………...……………...……….(48)
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4.4 Lemma
           Consider a general CG-method, and suppose that gg ££< kg0  holds.  We
call a method has Lemma 4.4 if there exists two constants b>1 and p>0 such that for
all k, bk £b   and

b
ps kk 2

1
£Þ£ b ……………………………..………………………………….(49)

4.5  Lemma (Zoutendijk Condition).
         Suppose that Assumption 4.3 holds. Consider any CG-type method in the form
of kkkk dxx a+=-1  where kd  is a descent direction and ka satisfies the Wolfe-
Powell line search conditions (4 and 5 ). Then we have that:
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4.6  Theorem
        Suppose that Assumption 4.3 holds. Consider the new extended CG-method
defined in (47) with New

kb , if ka is  obtained  by  an exact line search and  then:
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k
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Proof:
We now prove the theorem by contradiction and assume that there exists

some constants g  > 0 such that g³kg  for all 0³k . The compactness of the level

set
0xL  implies that there exists a constant g >0  such that g£kg . Since 0®ks ,

we know that there is a ,k  for all pskthatsuchkk k £<> , where p is the same

as in Lemma 4.4. Then, for all ,kk >  we have:
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Furthermore, we know
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we know using Lemma 4.5 together with (52) ,yields

¥<å
¥

=0
2

4

k kd
g ………………………………………..……………………………...(53)

Which contradictions (51). Therefore, we conclude the truth of the theorem.
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4.7 Theorem
         Suppose that Assumption 4.3  holds. If there exists a constant g > 0 such that

g³kg ,  for all 0³k . If ka is obtained by Wolfe-Powell conditions (4) and (5) and

kd   satisfies the new New
kb  CG-method, then the new extended method has sufficient

descent directions  i.e.,
0;2

>-£ cgcgd kk
T
k …………..…………………………………..……...……(54)

Proof:
For initial direction we have:

02
11111 £-=Þ-= ggdgd T ……………………………………………….......(55)

which satisfies (54). Now let the theorem be true for all 1-k , i.e.
02

11111 £-=Þ-= ----- kk
T
kkk ggdgd …………..…………………………….....(56)

Multiplying  the search direction of (47) by T
kg  yields:
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Using Wolfe-Powell conditions (4) and (5) we have:
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If exact line searches are used then (57) becomes using (56):
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Hence, for ELS, the search directions are sufficiently descent since )1( 1--= kc a >0.

For inexact line searches we have:
       Since our function f is uniformly convex function either in the quadratic or in the
non-quadratic regions, then there exists a Lipschitz constant L >0 and a constant,

0>h  such that:

        ( h³-Ñ-Ñ )())()( yxyfxf T 2yx -   for all x, y Î
0xL …………..…...……(59)

Or equivalently:
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From Powell restarting criterion we have:
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Using (62) and (63) in (61):
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Thus our new proposed extended CG-method has also sufficient descent directions
using inexact line searches under the condition that Powell restarting condition must
be used. Therefore, the method has a global convergent property by satisfying the
conditions of  Zoutendijk  theorem [19].

5. Numerical Results
        The main work of this section is to report the performance of the new method on
a  set  of  test  problems.  The  codes  are  written  in  Fortran  and  in  double  precision
arithmetic. All the tests are performed on a PC. Our experiments are performed on a
set of  35 nonlinear unconstrained problems that have second derivatives available.
These test problems are contributed in CUTE and their details are given in the
Appendix. Our numerical results are divided into three branches according to the
numerical experiments with their number of variables:

1- 10 numerical experiments with   n =   100, 200, . . . . . . ., 1000.
2- 5  numerical experiments with    n =   100, 300, 500, 700,  900.
3- 4  numerical experiments with    n =  100, 400, 700,1000.

       In  order  to  assess  the  reliability  of  our  new proposed  method,  we  have  tested  it
against the standard Wu & Chen's modified  PRCG-method [14] using the same set of
test problems. All these methods terminate when the following stopping criterion is
met:

610-£kg  ………………………………………….…………………………….(68)

Tables 5.1, 5.2 and 5.3 compare some numerical results for the modified PRCG
method due to Wu & Chen and the  new extended PRCG method for 35 test functions.
In all these tables (n) indicates  the dimension of the problem; (NOI) indicates  the
number of iterations; (NOFG) indicates  the number of function and gradient
evaluations; (TIME) indicates  the total time required to complete the evaluation
process for each test problem.

Tables 5.4, 5.5 and 5.6 compare the percentage performance of the new extended
PRCG-methods against the standard Wu & Chen PRCG-method taking over all the
tools  as  100%.  In  order  to  summarize  our  numerical  results,  we  are  concerned  only
with the total of (n) different dimensions for all tools used in these comparisons.
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       It is clear from Table (5.4) that taking, over all, the tools as a 100% for the Wu &
Chen PRCG method, the New Extended PRCG method has an improvement, in about
(12.3%) NOI; (11.5%) NOFG and (2.5%) TIME, also from Table (5.5) that taking,
over  all,  the  tools  for  PRCG  method  has  an  improvement,  in  about  (6.1%)  NOI;
(5.3%) NOFG  and  (3.4%) TIME. It is clear from Table (5.6) that taking, over all, the
tools for PRCG method has an improvement, in about (12.3%) NOI; (11.3%) NOFG
and (2.2%) TIME. These results indicate that new extended PRCG method,  in
general, is the best.
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Table (5.1)
COMPARISON BETWEEN  THE NEW AND (WU & CHEN) METHODS FOR

THE TOTAL OF (35) PROBLEMS WITH n= 100, 200, … ,1000

Prob.
Wu & Chen/2010

NOI/NOFG/TIME

New Extended PRCG

NOI/NOFG/TIME

1 1709/2017/1.30 1700/2008/1.36

2   219/412/0.03 219/412/0.03

3    75/96/0.03 75/96/0.02

4 1592/1724/0.99 1592/1724/1.05

5 1044/1137/0.16 1044/1137/0.15

6   331/358/0.28 349/377/0.29

7 10506/10624/1.10 6831/6938/0.70

8   143/182/0.20 161/196/0.21

9   319/453/0.04 319/453/0.03

10   205/282/0.11 205/282/0.09

11   561/677/0.14 558/674/0.17

12   205/317/0.03 205/317/0.04

13    32/64/0.01 32/64/0.02

14 1314/1400/0.18 1314/1400/0.19

15 4179/4259/0.76 4179/4259/0.74

16   126/147/0.03 126/147/0.04

17    90/118/0.03 90/118/0.03

18    109/133/0.03 109/133/0.04

19 1279/1368/0.21 1279/1368/0.21

20     75/96/0.04 75/96/0.01

21 947/1109/0.10 947/1080/0.10

22    645/678/0.26 645/678/0.25

23 1190/1326/0.49 1182/1318/0.50

24    137/211/0.01 137/211/0.00

25    251/330/0.04 251/330/0.03

26    860/934/0.27 875/949/0.30

27    144/194/0.00 149/191/0.03

28     80/160/0.05    80/160/0.06

29     85/105/0.07    85/105/0.07

30     44/76/0.01    44/76/0.04

31    206/258/0.10   206/258/0.10

32 1144/1248/0.14 1089/1199/0.19

33     27/77/0.00    27/77/0.00

34    80/110/0.03    80/110/0.02

35    211/307/0.02   200/280/0.00

Total 30164/32987/7.29 26459/29221/7.11
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Table (5.2)
COMPARISON BETWEEN  THE NEW AND (WU & CHEN) METHODS FOR

THE TOTAL OF (35) PROBLEMS WITH n = 100, 300,500,700, 900

Prob. Wu & Chen/2010

NOI /NOFG/TIME

New Extended PRCG

NOI/NOFG/TIME

1 939/1102/0.68 930/1093/0.69

2 113/208/0.02 113/208/0.01

3 37/47/0.02 37/47/0.00

4 775/848/0.45 775/848/0.46

5 513/559/0.06 513/559/0.08

6 170/184/0.13 170/184/0.14

7 4591/4644/0.38 3622/3735/0.23

8 81/98/0.09 81/98/0.09

9 168/228/0.02 168/228/0.03

10 93/134/0.04 93/134/0.05

11 223/293/0.05 223/293/0.06

12 89/140/0.00 89/140/0.01

13 18/35/0.00 18/35/0.00

14 663/701/0.11 663/701/0.09

15 3307/3345/0.53 3319/3357/0.53

16 65/75/0.03 65/75/0.06

17 45/60/0.00 45/60/0.00

18 54/65/0.02 54/65/0.02

19 639/683/0.10 639/683/0.09

20 37/47/0.01 37/47/0.02

21 455/494/0.06 455/494/0.05

22 373/403/0.14 374/404/0.14

23 432/495/0.19 424/487/0.19

24 68/87/0.00 68/87/0.00

25 119/174/0.02 119/174/0.03

26 456/487/0.13 510/549/0.14

27 69/100/0.00 74/99/0.00

28 40/81/0.03 40/80/0.01

29 43/53/0.03 43/53/0.03

30 22/38/0.02 22/38/0.02

31 95/122/0.05 95/122/0.05

32 623/682/0.08 595/657/0.06

33 12/35/0.00 14/42/0.00

34 39/55/0.02 39/55/0.02

35 104/152/0.02 100/140/0.01

Total 15570/16954/3.53 14626/16067/3.41
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Table (5.3)
COMPARISON BETWEEN  THE NEW AND (WU & CHEN) METHODS FOR

THE TOTAL OF (35) PROBLEMS WITH n= 100, 400,700, 1000

Prob.
Wu & Chen/2010

NOI /NOFG/TIME

New Extended PRCG

NOI/NOFG/TIME

1 895/1011/0.67 886/1002/0.65

2 87/164/0.02 87/164/0.02

3 29/38/0.01 29/38/0.01

4 631/685/0.44 631/685/0.43

5 406/443/0.06 406/443/0.06

6 135/146/0.13 135/146/0.11

7 4778/4809/0.55 3057/3110/0.36

8 53/68/0.07 66/79/0.06

9 133/191/0.01 141/183/0.02

10 84/119/0.03 84/119/0.05

11 186/230/0.04 227/279/0.08

12 98/138/0.02 98/138/0.01

13 14/28/0.00 14/28/0.00

14 513/541/0.09 513/541/0.07

15 2156/2188/0.40 2156/2188/0.46

16 53/61/0.03 53/61/0.03

17 36/48/0.02 36/48/0.01

18 43/52/0.01 43/52/0.03

19 510/545/0.07 510/545/0.08

20 29/38/0.01 29/38/0.01

21 379/412/0.04 379/412/0.07

22 334/355/0.12 334/355/0.12

23 386/428/0.18 382/424/0.15

24 56/84/0.02 56/84/0.00

25 98/124/0.01 98/124/0.02

26 265/281/0.08 327/351/0.12

27 61/84/0.01 61/84/0.02

28 32/64/0.01 32/64/0.03

29 35/43/0.03 35/43/0.03

30 18/30/0.00 18/30/0.01

31 76/95/0.03 76/95/0.03

32 393/437/0.05 397/441/0.06

33 9/27/0.00 9/27/0.00

34 32/44/0.01 32/44/0.00

35 82/120/0.02 80/112/0.01

Total 13125/14171/3.29 11517/12577/3.22
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Table (5.4)
PERCENTAGE PERFORMANCE OF TABLE (5.1)

NEWWU & CHEN
(2010)

TOOLS

87.7%100%NOI

88.5%100%NOFG

97.5%100%TIME

Table (5.5)
PERCENTAGE PERFORMANCE OF TABLE (5.2)

NEWWU & CHEN
 (2010)

TOOLS

93.9%100%NOI

94.7%100%NOFG

96.6%100%TIME

Table (56)
PERCENTAGE PERFORMANCE OF TABLE (5.3)

NEWWU & CHEN
 (2010)

TOOLS

87.7%100%NOI

88.7%100%NOFG

97.8%100%TIME

Appendix.
1)Trigonometric 2)Penalty 3)Raydan 4)Hager 5)Generalized Tridiagonal
6)Extended Three Exp-Terms 7)Diagonal4 8)Diagonal 9)Extended Himmelblau
10)Extended PSC1 11)Extended BD1 12)Extended Quadratic Penalty QP1
13)Extended EP1 14)Extended Tridiagonal-2 15)ARWHEAD (CUTE)
16)DIXMAANA (CUTE) 17)DIXMAANB (CUTE) 18)DIXMAANC (CUTE)
19) EDENSCH (CUTE) 20)DIAGONAL-6 21)ENGVAL1 (CUTE)
22)DENSCHNA (CUTE) 23)DENSCHNC (CUTE) 24)DENSCHNB (CUTE)
25)DENSCHNF (CUTE) 26)Extended Block-Diagonal BD2 27)Generalized
quarticGQ1 28)DIAGONAL 7 29)DIAGONAL-8  30)Full Hessian 31)SINCOS
32)Generalized quartic GQ2 33)ARGLINB (CUTE) 34)HIMMELBG (CUTE)
35)HIMMELBH (CUTE)
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