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Conjugate Gradient Back-propagation with Modified Polack –Rebier

updates for training feed forward neural network

   Dr. Abbas Al-Bayati* Dr. Khalil K. Abbo**             Ibrahem  A.  Saleh***

Abstract

     Several learning algorithms for feed-forward (FFN) neural networks
have been developed, many of these algorithms are based on the gradient
descent algorithm  well-known in optimization theory which have poor
performance in practical applications. In this paper we modify the Polak-
Ribier conjugate gradient method to train feed forward neural network.
Our modification is based on the secant equation (Quasi-Newton
condition). The suggested algorithm is tested on some well known test
problems and compared with other algorithms in this field.

تخلصالمس

ذه تستند والأمامیةات التغذیة وعدة خوارزمیات التعلیم للشبكات العصبیة ذطورت  كثیر من ھ

ا ألأمعروف في نظریة ومن ال، الخوارزمیات الى خوارزمیة الانحدار السلبي لیست ذات مثلیة انھ

اءة ي كف اف ةتالتطبیق ولاك. العملی ة ب ویر طریق اول تط ث نح ذا البح ي ھ ر للمت--ف ات ریبیی جھ

اطع ، الأمامیةالمترافقة لتعلیم الشبكة العصبیة ذات التغذیة  ة الق شرط ( وتطویرنا استند الى معادل

مع بعض وقورنتمسائل ألاختبار المعروفة لبعض اختبرتالخوارزمیة المقترحة ). شبیھ نیوتن 

.الخوارزمیات المعروفة في ھذا المجال

Introduction

      Several learning algorithms for Feed-Forward (FFN) Neural networks
have been developed for solving function approximation, pattern
recognition, and other well known problems. Many of these algorithms
are based on the gradient descent algorithm [9, 15] well known in
optimization theory. They usually have a poor convergence rate and
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depend on parameters which have to be specified by the users,  because
no theoretical basis for choosing them exists. The values of these
parameters are often crucial for the success of the algorithm. One of these
algorithms is the standard Backpropagation (BP) [14].
   Although BP is the most common and widely used supervised
algorithm, nevertheless because of the user depended parameters, it is
usually inefficient on large scale problems.
    The neural network training problem can be formulated as a non linear
unconstrained optimization problem. So the training process can be
realized by minimizing the error function  E  defined by:
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Where lx  is a function of w  (the weight vector), b  (the bias) and d is the
target through the equations of the forward pass. This cost function
measures the squared error between the desired and actual output vectors.
The general purpose of the training is to search an optimal set of
connection w in the manner that the error of the network output can be
minimized.

The CBP algorithm

Lets diagram the network as
lbwbwbw xxx

ll
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Where lnl Rx Î   for  all Ll ,,.........0=  and lw  is  an 1-* ll nn matrix for all
Ll ,....,1= , lb  is the bias for each Ll ,....,1=  there are 1+L  layers  of

neurons, and L  hidden layers, we would like to change  the weights w
and biases b so that the actual output lx   becomes closer to the desired
out put d.
The Backpropagation algorithm consists of the following steps.

1- Forward pass. The input vector ox  is transformed into the output
vector lx , by evaluating the equation
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          For l=1 to L, and k is index of iteration usually called epoch
2- Error computation .The difference between the desired output  d

and actual output Lx  is computed
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3- Backward pass. The error signal at the output units is propagated
Backwards through the entire network, by evaluating
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4- Learning updates. The weights and biases are updated using the
     results of the forward and backward passes. Compute the gradient
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        K=k+1;  go to step(1).
    We see from step(4) the BP algorithm uses the Steepest Descent (SD)
search direction with fixed step-size or (learning rate) a  in  order  to
perform the minimization of the error function E, the iteration form of the
SD algorithm is:

kk gd -=
kkkk dww a+=+1

)6(

 Where k is the current iteration usually called epoch, nRw Î0  is given
initial weight vector, ka  is learning rate and kk gd -= for  all  k  and  g  the
gradient vector of the error function E that is )(wEg Ñ= ,  E represents the
batch error measure defined as the sum of squared differences error
function over the entire training set.
      The inefficiency of SD is due to the fact that the minimization
direction and learning rate are chosen poorly; if the step-size does not
lead directly to the minimum, steepest descent will zig-zag with many
small steps[15]. In the literature there have been proposed many
suggestions [3, 4] to define the search direction kd and most of them use
second order information , for example the Quasi-Newton(QN) methods
are one of the most exploited methods.
       The following iterative method can be seen as general QN procedure
to solve the problem(1):
Calculate the search direction kd by solving the equation
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kkk gHd -= )7(

Then set

kkkk dww a+=+1 )8(

     where, kH  is the secant approximation to the inverse 12 ))(( -Ñ kwE  and
ka  is updated by line search. The matrix kH is usually required to

positive definite to ensure a descent direction i.e
0<k

T
k dg )9(

kH  is updated at every iteration to a new inverse Hessian approximation
1+kH  for which the general QN equation

kkk syH =+1 )10(

  Where kkk wws -= +1  and kkk ggy -= +1 , is satisfied [6] . By extending the
secant condition (10),Wei in [17] proposed the modified secant condition

kk syH =+1 )11(

Where

kkk sAyy += )12(

Where kA is a simple symmetric and positive matrix.
Despite the theoretical and super linear rate of convergence advantages of
Quasi-Newton methods, the main drawback of these methods is the use of
the inverse Hessian or an approximation to it and this requires more
storage hence not suitable for large-scale problems.
    The conjugate gradient method is one choice for solving large scale
problems, because it does not need any matrices [11] or [18], In this work
we will propose a new conjugate gradient algorithm for training feed
forward neural network.
     The remainder of this paper is organized as follows, section 2 presents
a brief summary of conjugate gradient. In section 3 the new conjugate
gradient method presented and finally section 4 deal with our
experimental results.
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2- Conjugate Gradient Methods(CG)

   In Conjugate gradient methods the basic idea for determining the search
direction kd  in step(4) Eq.(4) is the linear combination of the negative
gradient at the current iteration with the previous search direction namely

1111 , gddgd kkkk -=+-= ++ b )13(

  In the literature there have been proposed several choices for defining
the scalar parameter kb  which gives rise to distinct conjugate gradient
methods[16]. The most famous ones were proposed by Fletcher-Reeves
(FR) [7] defined as:
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And Polak – Ribiere (PR) [12] written as:
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If the objective function E is strongly convex quadratic, then in theory the
two choices for the update parameter kb  are equivalent with an exact line
search i.e. the learning rate ka  computed as:
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For non-quadratic cost functions, each choice for kb  leads to different
performance. Despite the strong convergence theory that has been
developed for the Fletcher-Reeves FRb  ,  this  method  is  susceptible  to
jamming that is to take small steps without making significant progress to
the minimum see [8]. In general, the performance of Polak-Ribiere PRb  is
better than the performance of FRb  method. On the other hand, Powell
showed that [13] with an exact line search, PR method could cycle
infinitely, without converging to a stationary point. In summary, the
convergence of the PR method for general non-linear function is
uncertain [8], the reason for this uncertainty is 0<PRb  in some cases.  In
each conjugate gradient(CG) iteration, the step size (learning rate) ka  is
chosen to yield an approximation minimum for the problem

)(min 0 kk dwE aa +³ )17(
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Since 0>ka , the direction kd    should  satisfy  the  descent  condition
eq.(9) for all k. If there exists a constant c >0 such that

(0,1)c,2
Î-< kk

T
k gcdg )18(

  For all k, then the search direction satisfies the sufficient descent
condition. The termination conditions for CG line search are often based
on some versions of the Wolfe conditions. The standard Wolfe conditions
[2] are

k
T
kkkkkk dgxEdwE daa £-+ )()( )19(

k
T
kk

T
k dgdg 1 s³+ )20(

Where kd is descent direction and 10 <<< sd  .
3- Back propagation with Modified Polak-Ribiere updates

    As mentioned in the previews section the main drawback for PR
method is 0<PRb in some cases, to overcome  this drawback we
incorporate the second other information of the objective function E by
using equations (11) and (12) that is

kk syH =+1 )21(

Where 1+kH is an approximation to the inverse )( 1
2

+Ñ kwE  , and

kkkk sAyy += )22(

Where kA  is any symmetric and positive definite, since kA  is symmetric
and positive definite we can take kA  as diagonal matrix i.e.

nnkk IA *= q )23(

There exist different values for kq 0)( >kq for example we may take
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Therefor  we   can  modify  PR  ( )( MPRb  by using equations (11), (18) and
(24) or (25)
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Then the new search direction is

k
MPR
kkk dgd b+-= ++ 11

Where MPR
kb  as in equation (26).
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Then our modified (MPRBP say) algorithm can be written as:
Modified PR Backpropagation (MPRBP) algorithm
 The steps (1), (2) and (3) are same as CBP algorithm and step(4) changes
to the following form
Step(4):
1.  Initialization: use Nguyen widrow method to initialize the weights and
     Biases and set k=1, 0, >= eerrgaol and compute )(( kwEg l

ijk Ñ=

     And L1,..,l)),(( =kwE l , kk gd -= , kk g/1=a
2.  If eor)( << k

l
k gerrwE  stop Llkwl

ij ,..,1),( = is optimal else goto 3
3.   learning rate computation: compute ka  by line search procedure such
      that Wolfe conditions (19) and (20) are satisfied and update the
      weights and biases according to the
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4.   Direction computation: compute MPR
kkg b,1+  and set

k
MPR
kk dgd b+-= +1 ,  if Powell restart is satisfied then set 11 ++ -= kk gd

      Else dd k =+1 ;  k=k+1 go to 2

3. Experiments and Results:
    A computer simulation has been developed to study the performance of
the learning algorithms. The simulations have been carried out using
MATLAB. The performance of the modified Polak-Rebier(MPRBP)has
been evaluated and compared with batch versions of BP, constant
learning BP (CBP) , Fletcher-Revees (FR) and Polak-Rebier (PR) these
algorithms known as (traingd), (traincgf) and (traincgp) respectively  in
the neural net work toolbox. Toolbox default values for the heuristic
parameters of the above algorithms are used unless stated otherwise. The
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algorithms were tested using the same initial weights, initialized by the
Nguyen-Widrow method [11] and received the same sequence of input
patterns. The weights of the network are updated only after the entire set
of patterns to be learned has been presented.
    For each of the test problems, a table summarizing the performance of
the algorithms for simulations that reached solution is presented. The
reported parameters are: min the minimum number of epochs, mean the
mean value of epochs, max the maximum number of epochs, Tav the
average of total time and succ. The succeeded simulations out of (100)
trials within the error function evaluations limit.
   If an algorithm fails to converge within the above limit, it is considered
that it fails to train the FNN, but its epochs are not included in the statical
analysis of the algorithms, one gradient and one error function
evaluations are necessary at each epoch.
3.1 Problem (1): (SPECT Heart Problem):
   This data set contains data instances derived from Cardiac Single
Proton Emission Computed Tomography (SPECT) images from the
university of Colorado [8]. The network architectures for this medical
classification problem consists of one hidden layer with 6 neurons and an
output  layer  of  one  neuron.  The  termination  criterion  is  set  to  E £ 0.1
within limit of 1000 epochs, table(1) summarizes the result of all
algorithms i e for 100 simulations the minimum epoch for each algorithm
is listed in the first column (Min), the maximum epoch for each algorithm
is listed in the second column, third column contains (Tav) the average of
time for 100 simulations and last columns contains the percentage of
succeeds of the algorithms in 100 simulation.

Table(1): Results of simulations for the Heart problem
Algorithms  Min       Max        Mean       Tav            Succ
CBP
FR
PR
MPRBP with [4]
MPRBP with [1]

  fail         --             --             --                0.0%
   31        70          31.870       0.0911         100%
   20        56          31.066       0.0701         100%
   18        59          31.850       0.0833         100%
   21        52          28.860       0.0657         100%
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3.2 Problem (2):
 Continuous function  Approximation:
      The second test problem we consider is the approximation of the
continuous trigonometric function:
        f(x)=sin(x)*cos(3x).
   The network architectures for this problem is 1-15-1 FNN (thirty
weights, sixteen biases) is trained to approximate the function f(x), where
x Î [-p,p]  and  the  network  is  trained  until  the  sum of  the  squares  of  the
errors becomes less than the error goal 0.001. The network is based on
hidden neurons of logistic activations with biases and on a linear output
neuron with bias. Comparative results are shown in table (2). Figure (1)
shows performance of SBP.
         Table(2): Results of simulations for the function approximation  problem

Algorithms  Min       Max       Mean      Tav             Succ
CBP
FR
PR
MPRBP with [4]
MPRBP with [1]

  Fail       ---           ---                ---               ---
   66        292        116.60       0.5229          100%
   61        208        115.27      0.4874           100%
   66      216          111.13      0.4861           100%
   54      149          104.14      0.4660           100%
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